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ON THE HYPERBOLICITY OF SURFACES OF GENERAL

TYPE WITH SMALL c21

XAVIER ROULLEAU, ERWAN ROUSSEAU

Abstract. Surfaces of general type with positive second Segre number s2 :=

c
2

1 − c2 > 0 are known by results of Bogomolov to be quasi-hyperbolic i.e.
with finitely many rational and elliptic curves. These results were extended by
McQuillan in his proof of the Green-Griffiths conjecture for entire curves on
such surfaces. In this work, we study hyperbolic properties of minimal surfaces
of general type with minimal c21, known as Horikawa surfaces. In principle these
surfaces should be the most difficult case for the above conjecture as illustrate
the quintic surfaces in P3. Using orbifold techniques, we exhibit infinitely many
irreducible components of the moduli of Horikawa surfaces whose very generic
member has no rational curves or even is algebraically hyperbolic. Moreover, we
construct explicit examples of algebraically hyperbolic and (quasi-)hyperbolic
orbifold Horikawa surfaces.

1. Introduction

Our motivations are the following conjectures of Green-Griffiths and Lang:

Conjecture 1 (Lang). Let X be a variety of general type. Then a proper Zariski
closed subset Z of X contains all its subvarieties not of general type. In particular,
X has only a finite number of codimension-one subvarieties not of general type.

Even in the case of surfaces, this conjecture is still open. It has attracted a lot
of attention because of its important conjectural links with arithmetic: according
to the Bombieri-Lang conjecture, the rational points on a variety of general type
defined over a number field should not be Zariski dense.

A surface satisfying Conjecture 1, i.e. with finitely many rational and elliptic
curves, is said algebraically quasi-hyperbolic. A projective variety X ⊂ Pn is called
algebraically hyperbolic if there exists a positive real number ε such that

2g(C)−2 ≥ εdegC

for each reduced irreducible curve C ⊂ X, where g(C) and degC are the geometric
genus and the degree of the curve C →֒ X respectively.

The analytic version of Conjecture 1 is:

Conjecture 2 (Green-Griffiths,-Lang). Let X be a variety of general type. Then
a proper Zariski closed subset of X contains all images of entire curves f : C → X.
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A projective variety satisfying Conjecture 2 is said quasi-hyperbolic and a variety
that contains no non-constant entire curve is said hyperbolic.

Let us recall that minimal surfaces of general type X are classified according to
their Chern numbers. These Chern numbers c21, c2 satisfy:

1

5
(c2 − 36) ≤ c21 ≤ 3c2.

If c21 = 3c2 then, by Yau [34], X is a quotient of the unit ball. Therefore X is
hyperbolic.

A striking overhang toward Conjecture 1 is its proof by Bogomolov for surfaces
whose Segre number s2 = c21 − c2 is positive. The key point in Bogomolov’s proof
is that for surfaces with positive Segre number, the sufficiently high symmetric
differentials have global sections.

An extension of Bogomolov’s result to its analytic version was obtained by Lu
and Yau [20] proving conjecture 2 for surfaces with c21 > 2c2.

Then McQuillan [21] proved Conjecture 2 for surfaces with positive second Segre
number.

For surfaces with s2 ≤ 0 there is no such a good result. Demailly and El Goul
[11] proved Conjecture 2 for some surfaces with 13c21 > 9c2.

In the extreme case, a surface that reaches the equality c2 = 5c21 + 36 if c21 is
even and c2 = 5c21 +30 otherwise is called a Horikawa surface. Thus the Horikawa
surfaces are the one for which the Segre number s2 = c21 − c2 is the most negative
as possible in the geography of (minimal) surfaces of general type.

As the previous list of results suggests, one is naturally lead to believe that it is
for these surfaces that the above conjectures will be the most difficult to establish.

Even for hypersurfaces in P3, (which have s2 < 0), we are far from complete
results. The case of quintics (c21 = 5, c2 = 55) is particularly difficult to treat
and this may be explained by the fact that they are Horikawa surfaces, thus with
minimal second Segre number. Indeed, a conjecture by Kobayashi predicts that
generic quintics should be hyperbolic. We know by Geng Xu [33] that a very
generic surface of degree d ≥ 5 in P3 contains no curve of geometric genus 0 or 1.
But we still do not know that they are hyperbolic, even algebraically hyperbolic.

Moreover, we have very few examples of hyperbolic surfaces of low degree. A
striking fact is that no example of hyperbolic surface is known for d = 5.

Here we investigate the hyperbolic properties of Horikawa surfaces using their
very interesting geometric properties. Indeed, we know that most Horikawa sur-
faces realizing the equality c2 = 5c21 + 36 appear as ramified coverings. Therefore
it is very natural to associate to such surface an orbifold. Our philosophy is to use
this orbifold to study the geometry of curves in Horikawa surfaces.

We will see that ”orbifold” techniques as systematically introduced by Campana
([5], [6], see also [26]) are useful in this context.

Let N ≥ 0 be an integer and let FN be the N th Hirzebruch surface. The surface
FN has a natural fibration FN → P1. We denote by F a fiber, and by T the section
of this fibration such that T 2 = N . Any divisor D on FN is numerically equivalent
to aT + bF for a, b integers. We denote by (a, b) the equivalence class of D. The

holomorphic Euler characteristic of a surface is χ :=
c2
1
+c2
12 . Horikawa obtained the

following classification: an Horikawa surface with even c21 is either
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(1) a double covering of P2 branched along an octic (χ = 4),
(2) a double covering of P2 branched along a curve of degree 10 (χ = 7),
(3) a double covering of FN branched along a curve of type (6, 2a), (2a ≥ −N)

(χ = 3N + 2a− 1).

Here the branch curve has at most ADE singularities. We show:

Theorem 3. (1) Let X be a very generic Horikawa surface of type (1). Then
X has no rational curves.

(2) Let X be a very generic Horikawa surface of type (2). Then X is alge-
braically hyperbolic, in particular X has no rational or elliptic curves.

(3) Let X be a very generic Horikawa surface of type (3) with a = 3 and
χ = 3N + 5. Then X has no rational curves.

This result is obtained as a consequence of more general results on the algebraic
hyperbolicity of branched covers which may be of independent interest.

One of the most natural examples of surfaces with s2 < 0 are hypersurfaces in
P3. In [4], Bogomolov and De Oliveira studied the hyperbolicity of hypersurfaces of
degree d > 5 with sufficiently many nodes. Translated into the langue of orbifold,
their key observation is that for such a surface X, the natural structure of orbifold
X has positive orbifold Segre number s2(X ) > 0. Here we investigate hyperbolic
properties of Hirzebruch quintic surfaces, degree 5 covers of P2 branched over 5
lines in general position. In this study, we develop the theory of jet differentials in
the orbifold setting and, as an application, prove

Theorem 4. Let X be a Hirzebruch quintic surface. Then any entire orbifold
curve f : C → X satisfies a differential equation of order 2.

Using Nevanlinna theory and constructions of Persson [25], we exhibit some
explicit examples of (quasi) hyperbolic Horikawa orbifold surfaces

Theorem 5. For χ equal to 4 and 2k − 1 (for any integer k > 2), there exists
(quasi) hyperbolic orbifold Horikawa surfaces whose minimal resolutions have Euler
characteristic χ.

Acknowledgements. Part of this research was done during the authors stay
in Strasbourg University. We thank Matthias Schütt for many discussions on
singularities of quintic surfaces, Benoît Claudon and Jevgenija Pavlova for their
drawings.

2. Orbifold set-up

2.1. Orbifolds. As in [13], we define orbifolds as a particular type of log pairs.
The data (X,∆) is a log pair if X is a normal algebraic variety (or a normal
complex space) and ∆ =

∑

i diDi is an effective Q-divisor where the Di are distinct,
irreducible divisors and di ∈ Q.

For orbifolds, we need to consider only pairs (X,∆) such that ∆ has the form

∆ =
∑

i

(

1−
1

mi

)

Di,

where the Di are prime divisors and mi ∈ N.
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Definition 6. An orbifold chart on X compatible with ∆ is a Galois covering
ϕ : U → φ(U) ⊂ X such that

(1) U is a domain in Cn and ϕ(U) is open in X,
(2) the branch locus of ϕ is ⌈∆⌉ ∩ ϕ(U),
(3) for any x ∈ U ′′ := U \ ϕ−1(Xsing ∪ ∆sing) such that ϕ(x) ∈ Di, the

ramification order of ϕ at x verifies ordϕ(x) = mi.

Definition 7. An orbifold X is a log pair (X,∆) such that X is covered by orbifold
charts compatible with ∆.

Remark 8. (1) In the language of stacks, we have a smooth Deligne-Mumford
stack π : X → X, with coarse moduli space X.

(2) More generally, Campana introduces geometric orbifolds in [5] as pairs of
this type but which are not necessarily locally uniformizable.

Example 9. Let X be a complex manifold and ∆ =
∑

i(1 −
1
mi

)Di with a sup-

port ⌈∆⌉ which is a normal crossing divisor, i.e. for any point x ∈ X there is a
holomorphic coordinate system (V, z1, . . . , zn) such that ∆ has equation

z
(1− 1

m1
)

1 . . . z
(1− 1

mn
)

n = 0.

Then (X,∆) is an orbifold. Indeed, fix a coordinate system as above. Set

ϕ : U → V, φ(x1, . . . , xn) = (xm1

1 , . . . , xmn
n ).

Then (U, φ) is an orbifold chart on X compatible with ∆.

We have more examples of orbifolds looking, in the case of surfaces, at singular-
ities that naturally appear in the logarithmic Mori program.

Definition 10. Let (X,∆), ∆ =
∑

i

(

1− 1
mi

)

Ci, be a pair where X is a normal

surface and KX+∆ is Q-Cartier. Let π : X̃ → X be a resolution of the singularities
of (X,∆), so that the exceptional divisors, Ei and the components of ∆̃, the strict
transform of ∆, have normal crossings and

KX̃ + ∆̃ +
∑

i

Ei = π∗(KX +∆) +
∑

i

aiEi.

We say that (X,∆) is klt (Kawamata log terminal) if mi < ∞ and ai > 0 for
every exceptional curve Ei.

Thanks to a result of [23] (see also the appendix of [7]), we have

Example 11. Let (X,∆), ∆ =
∑

i

(

1− 1
mi

)

Ci, be a klt pair with X a surface,

then (X,∆) is an orbifold.

2.2. Chern classes. Let π : X → (X,∆) be a two dimensional orbifold. Let S be
the singular points of X and of the divisor ⌈∆⌉, ∆ =

∑

(1− 1
mi

)Di. The orbifold

canonical line bundle is: KX = π∗(KX +∆), therefore:

c1(X ) = −π∗(KX +
∑

(1−
1

mi
)Di).

To each point p of S, there is a well defined integer β(p), the order of the isotropy
group, such that by the orbifold Gauss-Bonnet formula [30]:
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c2(X ) = e(X) −
∑

(1−
1

mi
)e(Di \ S)−

∑

p∈S

(1−
1

β(p)
).

Let p ∈ S be a smooth point of X.

Lemma 12. Suppose that p is an ADE singularity of ⌈∆⌉. We have :
Type β(p)
A1 mimj

A2n
2

2n+1(
1
mi

+ 1
2n+1 −

1
2)

−2

A2n−1
4
n
( 1
mi

+ 1
mj

+ 1
n
− 1)−2, n ≥ 2

D2n+2
4
n
( 1
mi

+ 1
mj

+ 1
nmk

− 1)−2

D2n+3 2(2n + 1)m2
i , n ≥ 1

E7 96
where the branches are as follows:

r

mi mj
r

mi

r
mk

mi mj
r mi

2

r

2
2

A2n+1 A2n D2n+2 D2n+1 E7

Figure 2.1. ADE singularities and conditions on the multiplicities

Proof. See [32] Table 2.3, [31], [7] and [18]. �

Let C1, . . . be disjoint reduced divisors on X whose irreducible components are
(−2)-curves. There exist a surface X ′ and map X → X ′ such that the Ci’s are
contracted onto ADE-singularities and that is an isomorphism outside. Let an
(resp dn, en) be the number of An (resp. Dn, En) singularities on X ′.

Proposition 13. The surface X ′ has a natural structure of orbifold X and its
Chern numbers are c21(X ) = c21(X) and:

c2(X ) = c2(X)−
∑

(n+1)(an+dn+ en)+
∑ an

n+ 1
+

dn
4(n− 2)

+
e6
24

+
e7
48

+
e8
120

.

The denominators 4(n − 2), 24, 48, 120 are the order of the binary dihedral
BD4(n−2), the binary tetrahedral, the binary octahedral, and the binary icosahe-
dral group respectively.

2.3. Orbifold Riemann-Roch. Let L be an orbifold line bundle on the orbifold
X of dimension n. From Kawazaki’s orbifold Riemann-Roch theorem [17] or Toën’s
for Deligne-Mumford stacks [30], we obtain the asymptotic:

χ(X , Lk) =
c1(L)

n

n!
kn +O(kn−1),

using orbifold Chern classes.
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It should be remarked that we use here the fact that we work only with effective
orbifolds: the stabilizers are generically trivial therefore the correction terms of
the orbifold Riemann-Roch do not affect the leading term.

We will apply this result to the case of orbifold surfaces X of general type with
big orbifold cotangent bundle ΩX . Indeed, let TX be the orbifold tangent bundle.
Then P(TX ) is naturally an orbifold and we can apply the previous Riemann-Roch
formula to the tautological line bundle OP(TX )(1). As a corollary, we obtain using

orbifold Serre duality: if c21(X )− c2(X ) > 0 then

H0(SmΩX ) ≥ c.m3

for a positive constant c.

2.4. Orbifold hyperbolicity. In the context of manifolds, complex hyperbolicity
is concerned with the geometry of rational, elliptic curves and more generally entire
curves i.e. holomorphic maps from C. For orbifold hyperbolicity, algebraic curves
are replaced by orbifold Riemann surfaces C i.e. the data of a Riemann surface C
of genus g ≥ 0 and r points p1, . . . , pr ∈ X marked by orders of stabilizer groups

m1, . . . ,mr ≥ 2 corresponding to the Q-divisor ∆ =
∑

i

(

1− 1
mi

)

pi.

Definition 14. An orbifold Riemann surface C is rational (resp. elliptic) if

deg(KC) < 0 i.e. 2g − 2 +
∑

i

(

1− 1
mi

)

< 0 (resp. deg(KC) = 0).

Example 15. A case-by-case check gives that (C,∆) is elliptic if it is isomorphic
to one of the following orbifold curve:

2 (E, ∅) where E is an elliptic curve

2 (P1,
(

1− 1
m1

)

{0}+
(

1− 1
m2

)

{1}+
(

1− 1
m3

)

{∞} where (m1,m2,m3) is

either (2, 3, 6), (2, 4, 4), (3, 3, 3)
2 (P1,

(

1− 1
2

)

{0}+
(

1− 1
2

)

{1}+
(

1− 1
2

)

{p3}+
(

1− 1
2

)

{∞} with p3 ∈ C \
{0, 1}.

Recall that an orbifold map between orbifolds f : X1 → X2 is a map between the
underlying spaces X1 and X2 which lifts to an equivariant map in orbifold charts.

Definition 16. An orbifold map p : X1 → X2 is an orbifold covering if every
x ∈ X2 is in some U ⊂ X2 such that for every component V of p−1(U) the

corresponding orbifold chart φ1 : Ṽ → V verifies that p◦φ1 : Ṽ → U is an orbifold
chart for U .

Definition 17. Let X be an orbifold. An orbifold rational (resp. elliptic) curve
in X is the image of an orbifold map f : C → X where C is rational (resp. elliptic).

A hyperbolic orbifold should not have rational and elliptic curves and more
generally:

Definition 18. An orbifold X is (Brody-)hyperbolic if there is no non-constant
orbifold map f : C → X . An orbifold X is quasi-hyperbolic if the Zariski closure
of the union of the images of orbifold maps f : C → X is a proper sub-variety.

Example 19. From the uniformization theorem available in the orbifold setting,
we have that an orbifold curve C is hyperbolic if and only if deg(KC) > 0.
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In the algebraic setting, we can generalize the notion of algebraic hyperbolicity
to orbifolds:

Definition 20. A compact orbifold X , with ω an orbifold hermitian metric, is
algebraically hyperbolic if there exists ǫ > 0 such that for any orbifold morphism
f : C → X with C compact,

deg(KC) ≥ ǫ

∫

C

f∗ω.

We can generalize Green-Griffiths-Lang conjecture in the orbifold context

Conjecture 21 (Orbifold Green-Griffiths-Lang conjecture). Let X be an orbifold
of general type. Then there exists a proper sub-orbifold Z ⊂ X which contains the
image of all holomorphic maps f : C → X .

Even in the setting of manifolds, this conjecture is widely open. An important
result was obtained by McQuillan [21] with the confirmation of the conjecture for
surfaces of general type with c21 − c2 > 0. The positivity of the second Segre
number ensures by a Riemann-Roch computation as already explained above that
H0(SmΩX) > cm3. McQuillan has extended his result to 2-dimensional Deligne-
Mumford stacks with projective moduli [22] (see also [26] and [27]).

Since orbifolds are examples of DM stacks, a consequence of his result that we
shall use is

Theorem 22. Let X be an orbifold surface of general type with positive orbifold
second Segre number

c21(X )− c2(X ) > 0.

Then there exists a proper sub-orbifold Z ⊂ X which contains the image of all
orbifold maps f : C → X , in other terms: the orbifold X is quasi-hyperbolic.

Let C → X be an orbifold rational or elliptic curve. The subjacent space to C is
P1 or a smooth elliptic curve, thus such a curve gives rise to an entire orbifold curve
C → X . Therefore a quasi-hyperbolic orbifold is algebraically quasi-hyperbolic in
the sense that it has only finitely many rational and elliptic orbifold curves.

Example 23. Following [4] (see also [26]), we see that nodal surfaces in P3 of
degree d with l nodes provide examples of orbifolds with positive orbifold second
Segre number if

l >
8

3

(

d2 −
5

2
d

)

.

It should be remarked that this numerical condition can be satisfied only for d ≥ 6.
Moreover, in [4], the authors claim that a subspace H0(X , SmΩX ) of symmetric
orbifold differentials can be extended to the resolutions of such surfaces but it
seems to us that there is a gap in the argument of [4] Lemma 2.2.

2.5. Orbifold jet differentials. Since Bloch [2], jet differentials have turned out
to be a useful tool to study hyperbolic properties of complex manifolds. We would
like to use these technics in the orbifold setting extending the construction of
Demailly [10] for manifolds to this situation.
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Start with an orbifold X and an orbifold subbundle V ⊂ TX . Then we consider
the orbifold X̃ := P(V) with its natural orbifold line bundle

OX̃ (−1).

We have an orbifold map π : X̃ → X . We define

Ṽ := π−1
∗ OX̃ (−1) ⊂ TX̃ ,

here π∗ is the differential map between T
X̃

and π∗TX (see [12]).
Therefore, as in the case of manifolds, we have an inductive process which gives

the orbifold Demailly-Semple jet bundles:

(X0,V0) = (X ,V), (Xk ,Vk) = (X̃k−1, Ṽk−1).

Taking V0 := TX0
, one can define jet differentials Ek,m as the direct image sheaf

Ek,m := (π0,k)∗OX̃k
(m),

where π0,k := Xk → X is the natural projection map.
One can use the orbifold Riemann-Roch to compute the Euler characteristic. In

the case of orbifold surfaces, one obtains

χ(X , Ek,m) = mk+2(αkc
2
1 − βkc2) +O(mk+1),

where c1 and c2 denote the orbifold Chern classes. Using the semi-stability of TX

with respect to KX , which is also true for orbifolds ([18] and [29]), one can control
the higher cohomology as in [14]. In particular, one obtains for an orbifold surface
of general type

(2.1) h0(X , E2,m) ≥
m4

648
(13c21 − 9c2) +O(m3).

In the case of smooth hypersurfaces of degree d of P3, one obtains that

h0(X,E2,m) ≥ C.m4

for d ≥ 15 (and C > 0). In general, the bigger c21/c2 is, the easier it is to obtain
global jet differentials. This is another illustration that Horikawa surfaces are the
most difficult cases to deal with. Therefore, for smooth surfaces in P3 of degree
d = 5, one has to take k much larger. In contrast, we will provide below an example
of an orbifold surface of P3 of degree 5 where h0(X , E2,m) ≥ C.m4 (for C > 0).

As in the case of manifolds, one obtains as a consequence of Ahlfors-Schwarz
lemma:

Theorem 24. Let π : X → X be a projective orbifold and an ample line bundle A
on X such that H0(Xk,OX̃k

(m)⊗ π∗
0,kA

−1) ≃ H0(X , Ek,m ⊗A−1) has a non-zero

section P . Then every orbifold entire curve f : C → X must satisfy the algebraic
differential equation P (f) = 0.

The generalization of jet differentials to orbifolds can be applied to classical
problems which are not yet solved by Nevanlinna theory. Among these problems,
there is the following one.
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Conjecture 25. Let H1, . . . ,Hq be hypersurfaces of degrees di of Pn in general
position. Assume that f : C → Pn is a holomorphic curve which ramifies over Hi

with multiplicity divisible by mi and that
∑

i

(

1−
1

mi

)

di > n+ 1,

then f is algebraically degenerate i.e. its image is contained in a proper algebraic
hypersurface.

The idea is that if f : C → Pn is as above, then it defines an orbifold entire curve

f : C → (Pn,∆) where ∆ :=
∑

i

(

1− 1
mi

)

Hi. The numerical condition above is

equivalent to
KPn +∆ > 0,

and Conjecture 25 is a particular case of Conjecture 21.

2.6. Horikawa orbifolds. Let us recall that for minimal surfaces of general type,
we have the inequalities 5c21 + 36 ≥ c2 if c21 is even, 5c21 + 30 ≥ c2 if c21 is odd.
Surfaces realizing the equalities are called Horikawa surfaces. Horikawa gave a
classification of these surfaces [16]:

Theorem 26. Let Z be a Horikawa surface with c21 even, then there is a birational
map Z → X ′ where X ′ is a surface branched along a curve with ADE singularities,
more precisely X ′ is either

(1) a double covering of P2 branched along an octic (χ = 4),
(2) a double covering of P2 branched along a curve of degree 10 (χ = 7),
(3) a double covering of FN branched along a curve of type (6, 2a), (2a ≥ −N)

(χ = 3N + 2a− 1).

In the sequel, we will say that a Horikawa surface is of type (i) according to the
above classification.

It is therefore natural to associate orbifolds to Horikawa surfaces.

Definition 27. We say that an orbifold X = (X,∆) is Horikawa if there is a
Horikawa surface Z with a birational map Z → X ′ where X ′ → X is a branched
covering with ramification divisor ∆.

Example 28. From Horikawa’s theorem (P2,
(

1− 1
2

)

C) where C is a curve of
degree 8 or 10 with at most ADE singularities is a Horikawa orbifold.

Hirzebruch considered Horikawa surfaces with c21 = 5 that are (resolutions of)
5-fold covers of P2 branched along five lines. More generally, examples of Horikawa
orbifolds are provided by (P2,

(

1− 1
5

)

C) where C is a curve of degree 5 with at
most nodes.

3. Algebraic hyperbolicity

3.1. Horikawa surfaces with even first Chern number. Having in mind
Lang’s conjecture claiming that there are only a finite number of curves of genus 0
or 1 on surfaces of general type, the aim of this section is to provide a lower bound
on the genus of a curve on some explicit surfaces.

To study curves in Horikawa surfaces, one strategy is to study orbifold curves
in Horikawa orbifolds. Using this philosophy, we obtain
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Theorem 29. (1) Let X be a very generic Horikawa surface of type (1). Then
X has no rational curves.

(2) Let X be a very generic Horikawa surface of type (2). Then X is alge-
braically hyperbolic, in particular X has no rational or elliptic curves.

(3) Let X be a very generic Horikawa surface of type (3) with a = 3 and
χ = 3N + 5. Then X has no rational curves.

This theorem will be a consequence of more general results which we establish
now.

3.2. Covers of the plane. Let D = ∪Dk ⊂ P2, where Dk is a very general curve
of degree dk. For n > 1 dividing d =

∑

dk , let us consider p : X → P2 the n-cyclic
covering branched along D (for the construction of cyclic cover see [1]).

The singularities of ∆ are the intersection points of the Dk’s. For such a sin-
gularity, there exist local coordinates z1, z2 such that ∆ has equation z1z2 = 0 ;
the singularity on the cover is therefore {tn = z1z2} it is a An−1. The map p is an
orbifold covering between X and (P2,∆) where ∆ =

(

1− 1
n

)
∑

Di.

Theorem 30. Let f : C → X be an orbifold compact curve in X not contained in
the branch locus D. Then

deg(KC) ≥ (d−
d

n
− 4) degC,

where degC is the degree of C computed as deg p(f(C)).
For d > 4 and (d, n) 6= (5, 5), (6, 2), (6, 3), (8, 2), the surface X is algebraically
hyperbolic. For (d, n) = (5, 5), (6, 3) or (8, 2), X has no rational curves.

Remark 31. The Chern numbers of the desingularisation of X are:

c21 = n(−3 + (1− 1
n
)d)2

c2 = 3n+ (n− 1)(d2 − 3d).

For (d, n) = (6, 2), the surface X is K3 : such a surface contains an infinite
number of elliptic curves [14]. The three other cases (d, n) = (5, 5), (6, 3) or (8, 2)
are Horikawa surfaces. The case (5, 5) is a quintic surface. For (d, n) = (6, 3), we
have c21 = 3 and 5c21 +30 = c2 = 45. The case (d, n) = (8, 2) is a Horikawa surface
of type (1).

First, let us prove a lemma about the branch locus:

Lemma 32. Consider the orbifold structure ∆i induced on Di by
(

1− 1
n

)
∑

j 6=iDj ,

If d ≥ 5 then (Di,∆i) is hyperbolic.

Proof. We can suppose that Di is a rational or an elliptic curve. By the genericity
hypothesis on D, Di is of degree 1, 2 or 3. If degD ≥ 5, then Di(D −Di) is ≥ 4,
and it is even > 4 if degD > 5, therefore

(

1− 1
n

)

Di(D −Di) > 2 since for d = 5
we must have n = 5. Thus (Di,∆i) is hyperbolic. �

For the proof of Theorem 30, we use the main Theorem of Xi Chen in [8] (see
also [24]):

Theorem 33. For all reduced curve C ⊂ P2, we have:

(3.1) 2g(C)− 2 + i(C,D) ≥ (d− 4) degC, ,



ON THE HYPERBOLICITY OF SURFACES OF GENERAL TYPE WITH SMALL c2
1

11

where d =
∑

dk and i(C,D) is the number of distinct points of ν∗D if ν : C ′ → C
is the normalization.

Proof. (Of Theorem 30). Let f : C → X be an orbifold map. We have the
following commuting diagram:

C
f

//

h
��

X

p

��

(C ′
1,∆

′)
g

// (P2,∆)

where C1 = p(f(C)), C ′
1 is the desingularisation of C1, and g is an orbifold mor-

phism. Let

g∗(Dj) =
∑i(C1,D)

i=1 ti,jpi,

g∗(D) =
∑i(C1,D)

i=1 tipi.

Now, let ∆̃ =
∑i(C1,D)

i=1

(

1− 1
m̃i

)

pi be the minimal orbifold structure on C ′
1 such

that g : (C ′
1, ∆̃) → (P2,∆) is an orbifold morphism. The conditions for g to be an

orbifold morphism are n|m̃i.ti,j for all j. Therefore the minimal orbifold structure
is given by

m̃i = lcmj

(

n

gcd(n, ti,j)

)

.

As ti =
∑

j tij, we have gcd(n, tij) ≤ ti for all i, j, thus:

n

ti
≤

n

gcd(n, ti,j)
≤ lcmj

(

n

gcd(n, ti,j)

)

= m̃i.

So, we have:

i(C1,D)
∑

i=1

(

1−
1

m̃i

)

≥

i(C1,D)
∑

i=1

(

1−
ti
n

)

= i(C1,D)−
d

n
degC1.

Now, inequality 3.1 of Chen gives:

2g(C ′
1)− 2 + i(C1,D) ≥ (d− 4) degC1,

therefore:

2g(C ′
1)− 2 +

i(C,D)
∑

i=1

(

1−
1

m̃i

)

≥ (d−
d

n
− 4) degC1.

To conclude, we observe that

deg(KC) ≥ 2g(C ′
1)− 2 +

i(C,D)
∑

i=1

(

1−
1

m̃i

)

because C is a uniformisation of C ′
1.

For d > 4, by Lemma 32, the curves over the branch locus are hyperbolic.
We then check that for d > 4, we have d − d

n
− 4 > 0 if and only if (d, n) 6=

(5, 5), (6, 2), (6, 3), (8, 2). Moreover, for (d, n) = (5, 5), (6, 3), (8, 2), we have d −
d
n
− 4 = 0.

�
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This implies (1) and (2) of Theorem 29.
When n = d, the surface X is the degree d hypersurface in P3 defined by:

X = {xd4 −G(x1, x2, x3) = 0},

where G is a homogeneous polynomial in x1, x2, x3 of degree d defining the curve
C ⊂ P2. We can apply the result to smooth X:

Corollary 34. If C is very generic and d ≥ 6, then the algebraic surface X is
algebraically hyperbolic. If C is very generic and d = 5, then the algebraic surface
X contains no curves of geometric genus 0.

This result should be compared to results of Clemens, Ein, Pacienza, Voisin
establishing the algebraic hyperbolicity of very general hypersurfaces of Pn of large
degree (see [12] for a survey).

Moreover let us mention that, even if here we are interested in surfaces, since
inequality 3.1 of Chen generalizes to higher dimension (see [8] and [24]), the proof
above immediately generalizes to

Theorem 35. If D ⊂ Pn is a very generic hypersurface of degree d and d ≥
2n+2, then the degree d branched cover X ⊂ Pn+1 ramified over D is algebraically
hyperbolic.

3.3. Covers of Hirzebruch surfaces FN , Algebraically hyperbolic Horikawa

surfaces. For N ≥ 0, let FN := P(O⊕O(N)) be the Hirzebruch surface and let T
and F the divisors on FN generating Pic(FN ) with T 2 = N , T.F = 1 and F 2 = 0.
Let D = ∪Dk ⊂ FN where each Dk is a very general member of a base point free
complete linear series. And let D ∼ aT + bF with a(N − 1) + b ≥ 0.

Theorem 36. (Chen, [9] Corollary 1.12). We have:

(3.2) 2g(C)− 2 + i(C,D) ≥ min(a− 3, b− 2) degC

for all reduced irreducible curves C ⊂ FN with C 6⊂ D where degC = (T +F ).C.

As before, for n dividing a and b, we consider p : X → FN a n-cyclic covering
branched along D. Then we have

Theorem 37. Let f : C → X be an orbifold compact curve in X not contained
in the branch locus. Let c, d be the integers such that p(f(C)) = C1 ∼ cM + dF ,
then:

deg(KC) ≥ min(a− 3, b− 2)(c(N + 1) + d)−
1

n
(bc+ ad+ acN).

Proof. We follow the notations and proof of theorem 30 : C ′
1 is the desingularisation

of C1. First we remark that

degC1 = c(1 +N) + d, C1.D = bc+ ad+ acN.

Then, using the inequality 3.2, we obtain:

2g(C ′
1)− 2 +

i(C,D)
∑

i=1

(

1−
1

m̃i

)

≥ min (a− 3, b− 2) (degC1)−
C1.D

n
.

�
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To wish to apply Theorem 37 to the Horikawa surfaces (for which a = 6, n = 2).
To obtain a non-trivial result, we need b ≥ 3 if N ≥ 1 and b ≥ 6 if N = 0 (recall
that a(N − 1) + b ≥ 0). Recall moreover that b must be divisible by 2. The case
b = 4 gives :

deg(KC) ≥ c(N + 1) + d−
1

2
(bc+ 6d+ 6cN) = c(−1− 3N)− 2d,

and therefore is not interesting. If b ≥ 6, we have:

deg(KC) ≥ 3(c(N + 1) + d)−
1

2
(bc+ 6d+ 6cN) = c(3 −

b

2
),

thus we obtain a result (deg(KC) ≥ 0) only for b = 6.
Let us suppose that D ∼ 6T + 6F on FN (N ≥ 0) is a very general member of

a base point free complete linear series. The double cover of FN ramified over D
is a Horikawa surface X with χ = 3N + 5. That implies (3) of theorem 29:

Corollary 38. The Horikawa surface X contains no rational curve.

We would like to emphasize here the fact that this result is valid for a very
generic surface in some irreducible component of the moduli space of Horikawa
surfaces.

3.4. The example of Hirzebruch Quintic surfaces. Our starting point was
the fact that we do not know quasi-hyperbolic quintics. An interesting construction
of quintics is due to Hirzebruch: consider 5 lines L1, . . . , L5 in general position on
P2 and then the degree 5 ramified cover of P2 branched over the Li’s which is a
quintic surface X in P3. If ℓi = ℓi(x1, x2, x3) is an equation of Li, an equation of
X is :

X = {x54 − ℓ1ℓ2ℓ3ℓ4ℓ5 = 0}.

This surface X is an orbifold which has a singularity A4 over over each of the 10
nodes of L1 + .. + L5. This surface was constructed to exhibit a quintic that has
Picard number at least 41.

A corollary of Theorem 30 and proposition 32 is

Corollary 39. X has no orbifold rational curves.

As X is an orbifold of general type, a natural question is

Problem 40. Show that X, a Hirzebruch quintic surface, has only finitely many
(orbifold) elliptic curves.

A first result toward this is

Theorem 41. If X is a Hirzebruch quintic, then the image in P2 of any orbifold
elliptic curve f : C → X is not rational. More precisely, it is mapped in P2 to a
singular genus one curve which intersects every line Li with multiplicity divisible
by 5.

Proof. As above, we have the following diagram:

C
f

//

h
��

X

p

��

(C ′
1,∆

′)
g

// (P2,∆)
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where C1 = p(f(C)), C ′
1 is the desingularisation of C1, and g is an orbifold

morphism. Therefore (C ′
1,∆

′ =
∑

(

1− 1
mi

)

pi) is an orbifold elliptic curve i.e.

KC′

1
+∆′ = 0. A case-by-case check gives that (C ′

1,∆
′) is isomorphic to one of the

following orbifold curve:

2 (E, ∅) where E is an elliptic curve

2 (P1,
(

1− 1
m1

)

{0}+
(

1− 1
m2

)

{1}+
(

1− 1
m3

)

{∞} where (m1,m2,m3) is

either (2, 3, 6), (2, 4, 4), (3, 3, 3)
2 (P1,

(

1− 1
2

)

{0}+
(

1− 1
2

)

{1}+
(

1− 1
2

)

{p3}+
(

1− 1
2

)

{∞} with p3 ∈ C \
{0, 1}.

Let

g∗(Lj) =
∑i(C1,L)

i=1 ti,jpi.

g∗(L) =
∑i(C1,L)

i=1 tipi.

The conditions for g to be an orbifold morphism are 5|mi.ti,j for all j. As
gcd(5,mi) = 1 by the preceding case-by-case analysis, we conclude that 5|ti,j.
Therefore g : C ′

1 → (P2,∆) is an orbifold morphism. From theorem 30, we deduce
that this excludes the case C ′

1 = P1. Therefore in the above list, only the first
case one can occur. So C1 is a genus one curve. The condition 5|ti,j implies that
deg(C1) =

∑

j tij is divisible by 5 and C1 cannot be a smooth elliptic curve. �

Therefore we have reduced the problem of counting orbifold elliptic curves in
Hirzebruch quintics to counting genus one curves in P2 which intersects every line
Li with multiplicity divisible by 5.

Remark 42. The following computation shows that it is natural to believe that
there are finitely many of these curves.

V d,δ the Severi variety of plane curves of degree d and δ nodes has dimension
3d + g − 1. Let C ∈ V d,δ be a curve which intersects Li in

∑

j βj points with
multiplicity 5j. The total number of conditions is

D :=

5
∑

i=1

li
∑

j=1

βj(5j − 1),

with
∑

j 5jβj = d. Then D =
∑

i(d −
∑

j βj), et
∑

βj ≤ d
5 . Therefore D ≥

∑

i d(1 − 1
5) = 4d. Thus for g ≤ 1 the number of conditions is greater than the

number of parameters.

4. Analytic hyperbolicity

4.1. Nevanlinna theory. Nevanlinna theory can be used to study entire curves in
ramified covers. We will briefly recall in this context the truncated defect relation
of Cartan following the notations of [19] to which we refer for details.

Let f : C → Pn be a linearly-non degenerate entire curve and D1, . . . ,Dq be q hy-

perplanes in general position. Let us denote as usual N [n](f, r,Di) and T (f, r,Di),
the truncated counting function and the characteristic function.
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The defect is defined by

δ[n](f,Di) := lim inf
r−>∞

(

1−
N [n](f, r,Di)

T (f, r,Di)

)

.

Then we have the truncated defect relation of Cartan:

Theorem 43.
∑

δ[n](f,Di) ≤ n+ 1.

We can apply this to ramified covers of the plane. Let X ⊂ P3 be the degree d
cover of P2 ramified over d lines Di.

Theorem 44. If d ≥ 6 then X is an hyperbolic orbifold.

Proof. Composing with the projection, we obtain an orbifold map g : C → (P2,∆).
If g is linearly degenerate, from theorem 30, it would have to lie in the branch
locus and would be constant by proposition 32. So we suppose, it is linearly non-
degenerate. By the First Main Theorem of Nevanlinna theory, we have

d

2
N [2](f, r,Di) ≤ N(f, r,Di) ≤ T (f, r,Di).

Therefore

δ[2](f,Di) ≥ 1−
2

d
,

which implies
∑

δ[2](f,Di) ≥ d− 2,

contradicting Cartan’s relation if d ≥ 6. �

Unfortunately we see in the previous proof that we cannot say anything for
d = 5, the case of Hirzebruch quintics. An interesting question is to prove that we
have again algebraic degeneracy of entire curves in this case. Note that, according
to Conjecture 25, this should be true since KP2 +∆ = O(1). Surprisingly, it seems
that this problem is still open.

Problem 45. Prove that any entire curve f : C → P2 intersecting 5 lines in
general position with multiplicity at least 5 is algebraically degenerate.

Nevertheless, we can use Nevanlinna theory to construct some hyperbolic orb-
ifold Horikawa surfaces.

Theorem 46. Let a ≥ 3 be an integer. Then there exists a hyperbolic orbifold
Horikawa surface whose minimal resolution has χ = 2a− 1.

Proof. Let F0 = P1 × P1. Consider the divisor

∆ =

(

1−
1

2

) 6
∑

i=1

Gi +

(

1−
1

2

) 2a
∑

i=1

Hi,

where the Gi are fibers of the first projection p1, and the Hi are fibers of the second
projection p2. Then (F0,∆) is an Horikawa orbifold. The corresponding Horikawa
surface has χ = 2a− 1.

Let f : C → (F0,∆) be an orbifold entire curve. Then p1 ◦ f : C → P1 is
an entire curve with multiplicity at least 2 over 6 points. The truncated defect
relation (i.e. Nevanlinna Second Main Theorem in this case) implies that p1 ◦ f is
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constant. Therefore f has its image contained in a fiber of p2 and has multiplicity
at least 2 over 2a points of this fiber. This implies again that f is constant since
2a ≥ 6. �

We can apply this kind of construction to numerical quintics. A quintic surface
has c21 = 5 and c2 = 55. Horikawa [15] proved that a surface with c21 = 5 and
c2 = 55, called a numerical quintic, is either a quintic or a double cover.

Let us consider surfaces of the second type with their attached natural geometric
orbifolds (X,∆).

Theorem 47. There exists a numerical quintic whose geometric orbifold is quasi-
hyperbolic.

Proof. Let F0 = P1 × P1. Consider the divisor

∆ =

(

1−
1

2

) 5
∑

i=1

Gi +

(

1−
1

2

)

(H1 +H2 + C +D1 +D2),

where the Gi are fibers of the first projection p1, the Hi are fibers of the second
projection p2, C is a curve of type (2, 1), and the Di are curves of type (1, 1) such
that:

(1) G1, H1, C and D1 meet in a point a.
(2) G1, H2, C and D2 meet in a point b.

Then ⌈∆⌉ is a curve of type (6, 8) with two quadruple points lying on a single fiber
of F0.

(F0,∆) is a numerical quintic orbifold.
Let f : C → (F0,∆) be an orbifold entire curve. Then p1 ◦ f : C → P1 is

an entire curve with multiplicity at least 2 over 5 points. The truncated defect
relation (i.e. Nevanlinna Second Main Theorem in this case) implies that p1 ◦ f is
constant. Therefore f has its image contained in a fiber of p2. For a generic fiber
i.e. not G1, f has multiplicity at least 2 over at least 5 points of this fiber. This
implies again that f is constant. Therefore the image of f is contained in G1.

�

One can remark that Cartan’s theorem unfortunately says nothing in the case
of Horikawa surfaces which are degree 2 covers of the plane P2.

4.2. Jet differentials. As we have just seen, applications of Nevanlinna theory are
quite limited. This is one motivation to develop the tool of orbifold jet differentials.

Let us illustrate it in the case of Hirzebruch quintics. First one could think of
using jets of order 1 to apply theorem 22.

As already mentioned, the surface X has a natural structure of orbifold X =
(X, 0).

Proposition 48. The Chern numbers of X are:

c21(X ) = 5
c2(X ) = 7,

Proof. Let X ′ → X be the resolution of singularities of X, its Chern numbers are
equals to the Chern numbers of a smooth quintic (Brieksorn resolution Theorem)
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i.e. K2
X′ = 5, e(X ′) = 55. We have K2

X = K2
X = 5 and c2(X ) = e(X ′) − 10.(5 −

1
5 ) = 7. �

Therefore the orbifold second Segre number is negative and we cannot apply
theorem 22.

Turning to jet differentials of order 2, one sees that

13c21(X )− 9c2(X ) = 2 > 0.

Therefore by inequality (2.1), we have

Corollary 49. Let X be an Hirzebruch quintic surface. We have:

h0(X,E2,m ⊗ L−1) ≥ 2.
m4

648
+O(m3),

for L an ample line bundle on X. As a consequence, any entire orbifold curve
f : C → X satisfies a differential equation of order 2.

There are many known quintic surfaces with quotient singularities (see e.g. [28]),
but as far as we know, the Hirzebruch surface is the only one such that the asso-
ciated orbifold satisfies 13c21(X )− 9c2(X ) > 0.

This result can also be seen as a first step toward problem 45.

5. Persson-Horikawa surfaces

Let us recall some notations. For N a positive integer, the N th Hirzebruch
surface is FN = P(OP1 ⊕OP1(N)). We denote by F denote a fiber of the P1-bundle
FN → P1 and by T a section s.t. T 2 = N . We denote by (a, b) a divisor equivalent
to aT + bF in the Néron-Severi group.

Recall that a Horikawa surface is the double cover of the plane branched along
an octic (case χ = 4), or a curve of degree 10 (case χ = 7) or a double cover of FN

branched over a curve D of type (6, 2a), with 2a ≥ −N . In this section we will
exhibit quasi-hyperbolic Horikawa orbifolds of each type.

5.1. Horikawa surfaces with χ = 2k − 1. Let us prove prove the following
Proposition:

Proposition 50. For any integer k > 2, there exists a quasi-hyperbolic Horikawa
orbifold X whose minimal resolution has Euler characteristic equals to χ = 2k−1.

The divisor −2(F + T ) is the canonical divisor on Hirzebruch surface F0 =
P1 × P1. Following Persson’s construction in [25] Lemma 4.5, there exists on F0 a
Q-divisor:

∆ = (1−
1

k
)(F1 + F2) + (1−

1

2
)(C1 + C2 + E0 + E1 + E2 + E3)

such that the orbifold (F0,∆) is uniformizable for all k ≥ 2 and the desingularisa-
tion of the uniformization is a Horikawa surface with Chern invariants χ = 2k − 1
and c21 = 2χ − 6. The curves C1, C2 are (1, 1)-curves meeting with multiplicity 2
into one point. The curves F1, F2 are fibers of the first projection P1×P1 → P1, the
curves Ei are sections of this fibration. The singularities of ⌈∆⌉ are 6A1+4D4+D6.

Two singularities A1 are on branches with multiplicities mi equal to 2 (thus
β(p) = 4), 4A1 are on branches with multiplicities 2 and k (with β(p) = 2k), the
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E3

E2

E0

E1

F1 F2

C1

C2

branches of the 4D4 have the same multiplicities : 2, 2, k (giving β(p) = 4k2) and
the branches of the D6 point have multiplicities 2, thus β(p) = 32 by Lemma 12.

Let us compute the orbifold Chern numbers of the associated orbifold X : K+∆
is numerically equivalent to: (1, 1 − 2

k
) thus:

c1(X )2 = 2(1 −
2

k
).

For the second Chern number of X :

c2(X ) = 4− 2(1− 1
k
)(2 − 4)− 1

2(3(2 − 3) + (2− 2) + 2(2 − 4))
−(2(1 − 1

4 ) + 4(1 − 1
2k ) + 4(1− 1

4k2
) + (1− 1

32))

and

c2(X ) =
33

32
−

2

k
+

1

k2
.

Therefore :

c1(X )2 − c2(X ) =
31

32
−

2

k
−

1

k2
,

and the orbifold X is quasi-hyperbolic for k > 2.

Remark 51. Let X → F0 be the Z/2Z × Z/kZ-cover of F0 branched over ∆.
The desingularisation of X is a Horikawa surface. The surface X has only ADE
singularities and has a natural structure of orbifold X ′. The map X ′ → X is an
orbifold covering, in particular c1(X

′)2 = 2kc1(X )2 and c2(X
′) = 2kc2(X ).

5.1.1. Generalization : a family of quasi-hyperbolic Horikawa orbifold with χ =
2k − 1, k ≥ 4. Let us consider the configuration of curves in figure 5.1:

The two (1, 1)-curves C1, C2 are in general position. The singularities of ∆ are
7A1 + 5D4. One D4 with multiplicities (2, 2, 2), 4D4 with multiplicities (2, 2, k),
4A1 with (2, k) and 3A1 with (2, 2).

Let X be the associated orbifold. Its Chern numbers are: c1(X )2 = 2(1 − 2
k
)

and
c2(X ) = 4− 2(1− 1

k
)(2 − 4)− 1

2(3(2 − 3) + (2− 2) + 2(2 − 5))
−(3(1 − 1

4 ) + 4(1 − 1
2k ) + 4(1− 1

4k2
) + (1− 1

16))
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E3

E2

E0

E1

F1 F2

C1

C2

Figure 5.1. The divisor ∆ on F0.

thus c2(X ) = 21
16 − 2

k
+ 2

k2
and

c1(X )2 − c2(X ) =
11

16
−

2

k
−

2

k2
.

It is positive if k ≥ 4.

5.2. Horikawa surfaces with χ = 4k − 1. Let us give another construction of
quasi-hyperbolic Horikawa surfaces:

Proposition 52. For every integer k > 1, there exists a quasi-hyperbolic orbifold
Horikawa surface X with

c21(X ) = 4(1− 1
k
)

c2(X ) = 17
12 −

2
k
− 1

k2
.

The desingularisation of the Z/2Z × Z/kZ-cover of the subjacent space to X is a
Horikawa surface with χ = 4k − 1.

Proof. The canonical divisor on F2 is KF2
= −2T . Let k > 1 be an integer. Persson

([25] proposition 4.7) constructed on F2 a divisor :

∆ = (1−
1

k
)(F1 + F2) + (1−

1

2
)(A +B + C)

whose irreducible components Fi, A,B,C have the following configuration : F1

and F2 are fibers, C has type (1,−2), A has type (2, 0), B has type (3, 0).
We have e(A) = e(B) = 0, CA = CB = 0 and FiA = 2, FiB = 3. The common

points to A and B are 2A11 singularities of ⌈∆⌉.
The singularities on ∆ are 2A1 + 2A11 with multiplicities (2, 2) , 4A1 with multi-
plicities (2, k), and 4D4 with multiplicities (2, 2, k) (see figure 5.2).
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B

A

C

F1 F2

Figure 5.2. The divisor ∆ on F0.

Let us compute the orbifold Chern numbers of X = (F2,∆):

c21(X ) = (KF2
+∆)2 =

(

(1−
1

k
)(0, 2) + (1−

1

2
)(6,−2) + (−2, 0)

)2

= 4(1−
1

k
),

and
c2(X ) = 4− 2(1− 1

k
)(2 − 4)− 1

2((0− 4) + (0− 8) + 0)
−(2(1− 1

4) + 2(1− 1
24 ) + 4(1 − 1

2k ) + 4(1− 1
4k2

)).

Therefore : c2(X ) = 31
12 − 2

k
+ 1

k2
and

c1(X )2 − c2(X ) =
17

12
−

2

k
−

1

k2

is positive for k > 1. �

5.3. Examples of quasi-hyperbolic orbifold double octic.

5.3.1. First construction :
c2
1

c2
= 3 − 1

11 . The Horikawa surfaces with χ = 4 are
double cover of the plane ramified over an octic with at most ADE singularities.

Proposition 53. There exists a quasi-hyperbolic orbifold Horikawa surface whose
minimal resolution has χ = 4.

Let X be the orbifold whose subjacent variety is P2 and with ∆ = 1
2(Q+ L1 +

L2 + L3 + L4) where Q is the Steiner quartic (the unique quartic curve with 3
cusps), L1, L2, L3 are the tangents to the 3 cusps and L4 is the unique bitangent
of Q.

The singularities of the curve ⌈∆⌉ are 6A1 + 2A3 +D4 + 3E7. We have:

c21(X ) = (−3 + (1−
1

2
)8)2 = 1.
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Q

L2

L4

L1 L3

Moreover:

c2(X ) = 3−
1

2
(e(Q \ S) +

∑

i

e(Li \ S))−
∑

p∈S

1−
1

β(p)
,

where S is the set of singularities of ⌈∆⌉. Therefore:

c2(X ) = 3−
1

2
(2− 8 + 3(2− 4) + (2− 5))− 12 +

6

4
+

2

8
+

1

16
+

3

96
=

11

32
,

and c21(X )− c2(X ) = 21
32 > 0. The desingularisation of the degree 2 cover ramified

over ⌈∆⌉ is a Horikawa surface with χ = 4.

5.3.2. Second construction: a pencil of quasi-hyperbolic Horikawa surfaces.

Proposition 54. There exists a pencil of quasi-hyperbolic orbifold Horikawa sur-
faces whose minimal resolutions have χ = 4.

Let us consider the curve in Proposition 53, and replace the line L3 by a generic
line L′

3 going through the intersection point of L1 and L2.
That gives a degree 8 curve ∆ with singularities

9A1 + 2A3 +D4 + 2E7

For which c2(X ) = 3
4 and c21(X )− c2(X ) > 0.

5.4. A family of quasi-hyperbolic double covers branched over a degree

10 curve. Let us prove:

Proposition 55. There exists a 4 dimensional family of quasi-hyperbolic Horikawa
orbifolds whose minimal resolutions have χ = 7.

Proof. Let C be the degree 10 curve that is the union of the degree 8 curve in
Proposition 53 and two lines in general position. It has singularities:

23A1 + 2A3 + d4 + 3E7.



22 XAVIER ROULLEAU, ERWAN ROUSSEAU

The orbifold Chern classes of X = (P2, C) are :

c21(X ) = (−3 +
10

2
)2 = 4

and

c2(X ) = 3−
1

2
(2−16+3(2−6)+(2−7)+2(2−9))−29+

23

4
+

2

8
+

1

16
+

3

96
=

83

32
,

thus : c21(X ) − c2(X ) > 0. The moduli of 2 lines in P2 is 4 dimensional. �
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