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Abstract 
This study explores the decomposition of predictive uncertainty in hydrological modeling into its 

contributing sources. This is pursued by developing data-based probability models describing 

uncertainties in rainfall and runoff data, and incorporating them into the Bayesian Total Error 

Analysis methodology (BATEA). A case study based on the Yzeron catchment (France) and the 

conceptual rainfall-runoff model GR4J is presented. It exploits a calibration period where dense 

raingauge data is available to characterize the uncertainty in the catchment-average rainfall using 

geostatistical conditional simulation. The inclusion of information about rainfall and runoff data 

uncertainties overcomes ill-posedness problems and enables simultaneous estimation of forcing and 

structural errors as part of the Bayesian inference. This yields more reliable predictions than 

approaches that ignore or lump different sources of uncertainty in a simplistic way (e.g., standard 

least squares). It is shown that independently-derived data quality estimates are needed to 

decompose the total uncertainty in the runoff predictions into the individual contributions of 

rainfall, runoff and structural errors. In this case study, the total predictive uncertainty appears 

dominated by structural errors. Although further research is needed to interpret and verify this 

decomposition, it can provide strategic guidance for investments in environmental data collection 

and/or modeling improvement. More generally, this study demonstrates the power of the Bayesian 

paradigm to improve the reliability of environmental modeling using independent estimates of 

sampling and instrumental data uncertainties.   
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1 Introduction 

1.1 Hydrological modeling in the presence of rainfall and runoff errors 

Data and model errors conspire to make reliable and robust calibration of hydrological models a 

difficult task. Consequently, a multitude of paradigms for model estimation and prediction have 

been proposed and used over the last few decades, ranging from optimization approaches to 

probabilistic inference schemes [e.g., see the review by Moradkhani and Sorooshian, 2008]. 

The use of raingauges to estimate catchment-average precipitation is currently prevalent in 

hydrological modeling [Moulin et al., 2009]. A major source of uncertainty is then the poor 

representativeness of an often small set of gauges of the entire areal rainfield, which is highly 

variable in both space and time [e.g., Severino and Alpuim, 2005; Villarini et al., 2008]. The 

raingauges themselves are subject to both systematic and random measurement errors, including 

mechanical limitations, wind effects and evaporation losses, all of which are design-specific and 

can vary substantially with rainfall intensity [Molini et al., 2005]. Methods for quantifying rainfall 

uncertainty include geostatistical approaches such as kriging [e.g., Goovaerts, 2000; Kuczera and 

Williams, 1992] and conditional simulation [e.g., Clark and Slater, 2006; Gotzinger and Bardossy, 

2008; Onibon et al., 2004; Vischel et al., 2009], or approaches based on dense raingauge networks 

[e.g., Villarini et al., 2008; Willems, 2001]. 

Similarly, runoff data also contain significant observational errors, due to discharge gauging errors, 

extrapolation of rating curves, unsteady flow conditions, flow regime hysteresis and temporal 

changes in the channel properties. Several approaches have been proposed to quantify this 

uncertainty [e.g. Di Baldassarre and Montanari, 2009; Herschy, 1994; Lang et al., 2010; McMillan 

et al., 2010; Reitan and Petersen-Overleir, 2009]. 

Finally, the characterization of structural uncertainty is a particularly challenging task, and the 

hydrological community is yet to agree on suitable definitions and approaches for handling 

structural model errors in the context of model calibration [e.g. see the conceptualizations proposed 

by Beven, 2005; Doherty and Welter, 2010; Kuczera et al., 2006]. 

1.2 Decomposing predictive uncertainty 

The focus of this paper is on the decomposition of the total uncertainty in hydrological predictions 

into its contributing sources. This is important in several scientific and operational contexts: 

(i) Operational prediction, especially when data of differing quality are used in calibration and 

prediction; 
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(ii) Model comparison: separating data and structural uncertainties enables a more meaningful 

model comparison because structural errors are not obscured by data uncertainty; 

(iii) Prediction in ungauged basins: insights into the relative contributions of data and model 

structural errors may be useful when a calibrated model is transferred to a different catchment. In 

addition, potential relationships between catchment characteristics and hydrological model 

parameters may be hidden or biased by data errors. 

(iv) Strategic guidance for reducing total predictive uncertainty: insights into the relative 

contributions of individual sources of error help in more informed research and experimental 

resource allocation, and, importantly, allow a meaningful a posteriori evaluation of these efforts. 

Uncertainty decomposition has a considerable history in the hydrologic forecasting community. For 

example, the Bayesian Forecasting System (BFS) [Krzysztofowicz, 1999; 2002] distinguishes 

between two sources of uncertainties in hydrologic forecasts: 

 “Input uncertainty” refers to the uncertainty in forecasting an unknown future rainfall. 

 “Hydrologic uncertainty” collectively refers to all other uncertainties, in particular structural 

errors of the hydrologic model, parameter estimation errors, input/output measurement and 

sampling errors [Krzysztofowicz, 1999]. 

This description highlights a major difference between the uncertainty decomposition in 

forecasting mode versus the decomposition in prediction mode. In the former, input uncertainty is 

due to forecast errors, while in the latter, input uncertainty is due to errors in the estimation of areal 

rainfall using observations. Note that the word prediction is used here to denote an application 

where the hydrologic model is forced with observed inputs (as opposed to forecasted inputs). 

This paper focuses on decomposing uncertainty in the prediction context. This can be viewed as an 

attempt to further decompose what is termed “Hydrologic uncertainty” in Krzysztofowicz’s BFS 

framework. Although Seo et al. [2006] discussed the potential benefits of such an additional 

decomposition, it is usually not viewed as a major objective because, at least for forecast lead times 

exceeding the routing time of the catchment, rainfall forecast uncertainty will usually dominate 

other sources of error [Krzysztofowicz, 1999]. However, the situation is different in a prediction 

context, where no rainfall forecast is involved. In this case, the relative contributions of rainfall, 

runoff and structural errors to the total predictive uncertainty are unclear and likely case-specific. 
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In a prediction context, attempts to decompose the total uncertainty into its three main sources have 

been made using several related methods. Multiple studies have employed recursive data 

assimilation methods such as extended and ensemble Kalman filters [Evensen, 1994; Moradkhani 

et al., 2005b; Rajaram and Georgakakos, 1989; Reichle et al., 2002; Vrugt et al., 2005] or 

Bayesian filtering [Moradkhani et al., 2005a; Moradkhani et al., 2006; Salamon and Feyen, 2009; 

Smith et al., 2008; Weerts and El Serafy, 2006]. In this paper, we consider Bayesian hierarchical 

approaches [e.g. Huard and Mailhot, 2008; Kuczera et al., 2006], which to-date have been 

implemented in batch estimation form (but can also be formulated recursively). While the 

distinction between recursive versus batch processing strategies is important from the 

computational perspective, our focus here is on the fundamental issues of the derivation of 

informative error models and their incorporation into the inference framework. 

1.3 Specifying data and structural error models 

Although the importance of adequate descriptions of input/output/structural errors is well known, 

developing quantitative error models is a considerable challenge in hydrological applications. In 

particular, assigning reasonable values to the variances of rainfall and runoff errors is notoriously 

difficult [e.g. Huard and Mailhot, 2008; Reichle, 2008; Weerts and El Serafy, 2006]. The 

characterization of structural errors of hydrological models is also a major research challenge [e.g., 

see the discussions in Beven, 2005; Doherty and Welter, 2010; Renard et al., 2010]. 

As a result, it is currently common to use rule-of-thumb or literature values to fully specify the 

input, output and structural error models and keep their parameters fixed during the hydrological 

model calibration. For example, Huard and Mailhot [2008] used literature values for rainfall errors 

and rule-of-thumb values for structural errors (~15% standard error). Similarly, Salamon and Feyen 

[2010] used literature values for runoff errors (~12.5% standard error for large runoff) and rule-of-

thumb values for rainfall and structural errors (~15% standard error).  

However, recent empirical and theoretical evidence re-emphasizes the need for reliable descriptions 

of uncertainties in both the forcing and response data if a meaningful decomposition of predictive 

uncertainty is required [e.g., Huard and Mailhot, 2008; Renard et al., 2010]. Since the inference 

can be sensitive to these specifications [Renard et al., 2010; Weerts and El Serafy, 2006], using an 

unreliable error model will generally yield an unreliable uncertainty decomposition. Hence, using 

literature values from other studies may not always be adequate. For instance, rating curve errors 

depend on the hydraulic configuration of the gauging section, the number of gaugings, the degree 
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of extrapolation, etc, all of which are site-specific. Similarly, structural errors of a hydrological 

model are likely to depend on the catchment, time period, etc, and are difficult to estimate a priori. 

An alternative to fixing the error model parameters a priori is to include them in the inference. For 

instance, the variance of rainfall errors can be estimated during hydrological model calibration, 

rather than being fixed a priori. Although this distinction may appear a superficial technicality, it is 

highly pertinent to the inference in the presence of multiple sources of errors [Huard and Mailhot, 

2008; Renard et al., 2010; Weerts and El Serafy, 2006]. In particular, fixing the error model 

parameters to incorrect values may yield a computationally tractable, yet statistically unreliable 

inference. On the other hand, the information content of the data may not be sufficient to support 

the inference of the error model parameters. 

The approach of inferring the error model parameters was used in the studies of Kavetski et al. 

[2006c], Reichert and Mieleitner [2009] and Thyer et al. [2009]. However, these studies did not 

attempt to fully decompose predictive uncertainty. Kuczera et al. [2006] attempted to 

simultaneously infer rainfall and structural errors, but limited themselves to point-estimates of 

inferred quantities, thus leaving open questions regarding parameter identifiability and posterior 

well-posedness. More recently, Renard et al. [2010] and Kuczera et al. [2010b] quantitatively 

demonstrated the difficulties of simultaneously identifying rainfall and structural errors from 

rainfall-runoff data when only vague estimates of data uncertainty are known prior to the 

hydrological model calibration. This result confirms the earlier discussions by Beven [2005; 2006] 

of potential interactions between multiple sources of error. However, Renard et al. [2010] also 

illustrated that the use of more precise (though still inexact) statistical descriptions of data errors 

makes the posterior distribution well-posed. 

It is therefore vital that priors on individual sources of error reflect actual knowledge, rather than be 

used as mere numerical tricks to achieve well-posedness. Given the difficulty of obtaining prior 

estimates of structural errors (especially for highly conceptualized rainfall-runoff models), it may 

be more practical to first focus on the observational uncertainty in the rainfall-runoff data. Provided 

the data error models are reliable, they can achieve closure on the total errors, and can allow 

reliably estimating structural errors as “what remains” once data errors are accounted for. 

1.4 Study aims 

The aims of this paper are: (i) demonstrate the development and incorporation of uncertainty 

models for forcing and response data into a Bayesian methodology for hydrological calibration and 

prediction; (ii) examine the resulting improvements in the predictive performance, (iii) evaluate 
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whether using informative models for data errors enables inference of structural errors as part of 

the model calibration process; and (iv) evaluate the ability of the inference to provide quantitative 

insights into the relative contributions of individual sources of uncertainty. Point (iii) above is of 

primary importance because of the intrinsic difficulty in defining structural error models a priori. 

This constitutes a major contribution of this paper, since previous attempts at isolating the 

contribution of structural errors to predictive uncertainty [Huard and Mailhot, 2008; Salamon and 

Feyen, 2010] were based on assuming known parameters of the structural error model. 

This paper uses the Bayesian Total Error Analysis (BATEA) [Kavetski et al., 2002; Kavetski et al., 

2006b; Kuczera et al., 2006]. The Bayesian foundation of BATEA, in particular, its ability to 

exploit quantitative (though potentially vague) probabilistic insights into individual sources of 

error, makes it well suited for using independent knowledge to improve parameter inference and 

predictions, and to quantify individual contributions to predictive uncertainties. However, the 

development of realistic error models for rainfall and runoff errors is of general interest for any 

method aiming at decomposing the predictive uncertainty into its three main contributive sources. 

Here, the rainfall error model is developed using a geostatistical analysis of the raingauge network 

coupled with conditional simulation [e.g., Vischel et al., 2009]. For the runoff data, the rating curve 

data and gaugings are used to derive a heteroscedastic error model [Thyer et al., 2009]. The 

BATEA framework is then used to explore different calibration schemes for integrating 

observational uncertainty into the inference, and to evaluate their influence on calibration and 

validation, focusing on objectives (ii)-(iv) described above. 

This work is innovative in several aspects. First, while the characterization of rainfall errors has 

received considerable attention [e.g., Krajewski et al., 2003; Villarini et al., 2008 and others], a 

comprehensive integration of this knowledge within a Bayesian statistical inference for 

hydrological models is yet to be demonstrated in a real catchment case study. More generally, the 

integration of independently derived data error models into a Bayesian framework for probabilistic 

predictions, and a stringent verification and refinement of all error models, is of increasing interest 

not just in hydrology, but elsewhere in environmental sciences [e.g., Cressie et al., 2009]. Finally, a 

systematic disaggregation of predictive uncertainty into its contributing components in realistic 

case studies is only in its nascence. Previous studies in this area [e.g., Huard and Mailhot, 2008; 

Salamon and Feyen, 2010] were based on assuming known fixed values for the structural error 

parameters, which is hardly tenable as discussed in section 1.3. 
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Second, this study further develops the BATEA approach. Previous applications of BATEA 

focused primarily on rainfall errors and lacked a separate characterization of structural errors 

[Kavetski et al., 2006a; Thyer et al., 2009]. Kuczera et al. [2006] explored separate specifications 

of rainfall, runoff and structural errors, but did not use informative priors on the parameters of their 

error models, nor carried out a full Bayesian treatment of the posterior distribution (they limited 

themselves to finding the posterior mode only). Renard et al. [2010] illustrated, based on synthetic 

experiments, the necessity of deriving reliable and precise prior descriptions of data errors to 

achieve well-posed inferences. The present paper builds on the latter work and proposes a practical 

strategy towards these objectives. Moreover, it explicitly demonstrates the utility of independent 

rainfall error analysis for improving the predictive reliability, and for gaining quantitative and 

qualitative insights into the contribution of different sources of errors in hydrological prediction. 

1.5 Outline of presentation 

The Bayesian inference framework is outlined in Section 2. Section 3 describes the specific data 

and methods used in this case study: the hydrological model and catchment data are described in 

Section 3.1; Section 3.2 describes the geostatistical raingauge analysis, the development of an error 

model for the catchment-average rainfall data, and its incorporation into the Bayesian inference; 

Section 3.3 describes the runoff error model and Section 3.4 discusses the treatment of structural 

errors. Section 4 presents the results of a case study that evaluates the utility of this information in 

improving the quantification and decomposition of the runoff predictive uncertainty, with an 

emphasis on posterior scrutiny of the hypotheses made during calibration. The results are discussed 

in Section 5, followed by a summary of key conclusions in Section 6. 

2 Theory: Bayesian framework 

2.1 General setup: data and model 

In general, a rainfall-runoff (RR) model H() hypothesizes a mapping between rainfall and runoff, 

given a set of (usually time-invariant) parameters  . Let  and 

 denote, respectively, the true rainfall and true runoff time series of length . 

Let  denote the runoff predicted by the RR model, such that  

 1: 1,..,t t
N t t N

R R


 R

 1: 1,..,t t
N t t N

Q Q


 Q

Q̂

tN

  ˆ ,Q H R   (1) 

Hydrological models are usually also forced with potential evapotranspiration (PET). However, 

sensitivity to PET random errors is minor, and the impact of PET systematic errors remains much 
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smaller than that of rainfall errors [e.g., Oudin et al., 2006]. We therefore exclude PET uncertainty 

from the analysis and notation. The influence of initial conditions is minimized using a warm-up. 

2.2 Data uncertainty 

The uncertainty in the rainfall/runoff data can be characterized using statistical error models, which 

describe what is known about the true values given the observations, 

  | , Rp R ~ R R   (2) 

  | , Qp Q ~ Q Q   (3) 

where  and  are error model parameters describing the statistical properties of the rainfall 

and runoff errors respectively (e.g., means, variances and autocorrelations of observation errors). 

The specification of these error models is a major focus of this paper. It will be described in details 

in sections 3.2 (rainfall) and 3.3 (runoff). 

R Q

2.3 Structural errors of rainfall-runoff models 

Unlike data errors, which can be estimated independently from the hydrological model by 

analyzing the observational network, no widely accepted approaches exist for characterizing 

structural uncertainty [e.g., see Beven, 2005; 2006; Doherty and Welter, 2010; Kennedy and 

O'Hagan, 2001; Kuczera et al., 2006]. The most common approach is to use an exogenous 

structural error term [e.g., Huard and Mailhot, 2008; Kavetski et al., 2006b]  

  ˆ ,   Q Q H R    (4) 

  |p      (5) 

where   is an additive error. For instance, standard least squares regression corresponds to 

assuming  2| 0,N    , and assuming that this term also accounts for input/output errors. 

A more recent strategy seeks to represent structural uncertainty as a stochastic variation of one or 

more RR model parameters [e.g., Kuczera et al., 2006; Rajaram and Georgakakos, 1989; Reichert 

and Mieleitner, 2009; Smith et al., 2008] or states [e.g. Moradkhani et al., 2005a; Moradkhani et 

al., 2005b; Moradkhani et al., 2006; Salamon and Feyen, 2009; Vrugt et al., 2005; Weerts and El 

Serafy, 2006]. Time- and state- varying parameters have also been explored within the instrumental 

variable literature [e.g., Young, 1998; Young et al., 2001]. 
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In this paper, we use a hierarchical structural error model that hypothesizes a single stochastic RR 

parameter , which varies on a characteristic time scale represented using epochs   , 

  1: 1: ( )
ˆ , ,t t tQ H  R    (6) 

  ( ) ~ |t p     (7) 

where ( )t  is the epoch associated with the tth time step and   are parameters describing the 

statistical properties of the stochastic parameters (e.g.,   could contain the mean and variance of 

storm-dependent parameters). 

A key challenge in using approach (7) is the meaningful specification of  . Since structural error 

remains the least understood source of uncertainty, scarce guidance exists for specifying anything 

other than vague priors, whether on exogenous structural error terms or on stochastic parameters. 

2.4 Remnant errors 

In addition to error models developed for particular error sources, we also account for “remnant” 

errors [Renard et al., 2010; Thyer et al., 2009]. These are related to the notions of “model 

inadequacy” [Kennedy and O'Hagan, 2001] and “model discrepancy” [Goldstein and Rougier, 

2009], but are intended to capture not only unaccounted structural errors of the hydrological model, 

but also inevitable imperfections and omissions in the descriptions of data uncertainty. 

Here, we assume additive Gaussian remnant errors t  with unknown variance 2
 , 

  2ˆ ;   ~ 0,t t t tQ Q N      (8) 

Note that in traditional regression, remnant errors such as (8) represent the lumped effects of all 

sources of error and correspond to “residual” errors. 

2.5 Posterior distribution 

When derived using the approach of Kavetski et al. [2002] and Kuczera et al. [2010b], the BATEA 

posterior distribution is given by Bayes’ theorem as follows 

        , , , | , , | , , , , , , ,p p p   p R R Q R Q R R R Q         (9) 

 
       

         

, , , | , | , , , , | , |

                                    ( )

Q R

R Q

p p p p

p p p p p p









   R R Q Q R R R

R

    



   

   


 (10) 
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The BATEA posterior in eqn (10) explicitly represents individual sources of uncertainty in the 

hydrological model-data system as follows: 

1) The “runoff likelihood”  | , , , ,Qp Q R     describes runoff and remnant errors. We refer to 

Kuczera et al. [2010b] for a fully general derivation of this likelihood, and to section 3.3 for its 

derivation with the specific error models used in the case study. 

2) The “rainfall likelihood”  describes rainfalls errors;  | , Rp R R  

3) The “stochastic-parameter term”  |p    characterizes structural errors. 

In addition, independent information on any quantity of inference can be supplied via the priors: 

1)  and  Rp    Qp   : priors on the parameters describing, respectively, rainfall and runoff data 

uncertainties; 

2)  p  : prior on the time-invariant RR parameters; 

3) : prior on the parameters p     of the probability model of the stochastic parameters  ;  

4) : prior distribution of the true rainfall time series; note that the product of this prior with 

the “rainfall likelihood” 

 p R

 | , Rp R R   is proportional to the rainfall error model (2).  

5) ( )p  : prior on the parameters of the remnant error model. Here,    in eqn (8). 

The posterior in eqn (10) can be explored using Markov Chain Monte Carlo (MCMC) sampling. In 

this study, we use a multi-stage limited-memory MCMC strategy detailed by Kuczera et al. 

[2010a]. Also note that eqn (10) can be modified to use joint priors on any quantity of inference. 

This would be needed, for example, if BATEA was applied recursively as new data arrives. 

The key scientific (as opposed to computational) challenge in using BATEA, or any other Bayesian 

approach, for the decomposition of individual sources of error, is to develop accurate and precise 

probabilistic models for the individual terms in the posterior (10). This will generally require 

independent information to augment and constrain the inference. Illustrating these developments in 

a practical study is a major objective of this paper. 
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2.6 Calibration schemes 

The BATEA framework can be used to derive several calibration schemes, differing in the type of 

error models and the amount of prior knowledge utilized in the inference. This allows exploring the 

benefits and challenges of explicitly describing each source of uncertainty and of including 

additional prior information. The following schemes are considered in this study (Table 1): 

1) The SLS scheme (Standard Least Squares) lumps the effects of all sources of errors into the 

remnant error term in eqn (8). 

2) The OI scheme (Output-Input) explicitly accounts for rainfall and runoff uncertainty. Structural 

errors are handled entirely by the remnant error term. Vague priors are used for the terms  p R  

and . However, prior information, derived from rating curve analysis, is used for the runoff 

error parameters . 

 Rp  

Q

3) The OI-CS scheme is an “enhanced” OI scheme, augmented using an informative prior for the 

term . This prior is derived using Conditional Simulation (CS) as described in Section 3.2.  p R

4) The OIS scheme (Output-Input-Structural) explicitly accounts for rainfall and runoff uncertainty, 

and characterizes structural errors using a stochastic RR parameter. Note that it still uses the 

remnant error (8) to account for the inevitable imperfections of the uncertainty models. 

5) The OIS-CS scheme is an “enhanced” OIS scheme, augmented using the CS prior for the term 

.  p R

2.7 Quantification and decomposition of predictive uncertainty 

2.7.1 “Total” predictive distributions 

In Bayesian methods, the uncertainty in a quantity of interest (e.g. runoff Y) is usually quantified by 

means of the predictive distribution. Let  denote the vector of all inferred quantities, and Ξ

( | )p Ξ D  denote the posterior of parameters Ξ  given observed data D . By definition, the 

predictive distribution of Y is [Gelman et al., 2004]:    

 ( | ) ( | , ) ( | ) dp Y p Y p D D D Ξ Ξ  Ξ  (11) 

The “total” predictive distribution (TPD) in eqn (11) integrates over the posterior uncertainty in the 

parameters Ξ  and can be obtained directly from the MCMC samples ( ) 1...( )
simi i NΞ . It is widely used 
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in hydrology, including flood forecasting [e.g. Krzysztofowicz, 1999; Reggiani et al., 2009; Todini, 

2008] and climate studies [Rougier, 2007]. 

2.7.2 “Partial” predictive distributions 

In this study, the individual contributions of distinct sources of uncertainty are quantified by 

formulating “partial” predictive distributions (PPD’s). The derivation of a PPD is illustrated using a 

simple 2-parameter model. 

Let 1 2( |p   ), D  be the posterior of parameters 1 and 2. For example, 1 and 2 could be viewed 

as representing input and structural errors, which we are trying to disaggregate in this study. Now, 

consider the conditional distribution: 

 * * *
2 2 1 1 2( | , ) ( | , ) ( | , )p Y p Y p d 1      D D , (12) 

where *
2  is a given conditioning value (e.g., the posterior mode).  

Eqn (12) represents the uncertainty in Y contributed by the uncertainty in 1, conditional on *
2 . We 

hence refer to it as the “PPD of Y arising from the uncertainty in 1”. The PPD *
1, )p Y( | D , 

representing the uncertainty contributed by 2, can be defined in a similar manner. 

Unlike the TPD, PPDs cannot in general be constructed directly from MCMC samples of the joint 

posterior distribution. Sampling from the conditional posterior distribution *
1( | , )p 2 D

*
1 2( | , )

 in eqn (12) 

would, in general, require separate MCMC sampling. However, in the special case where the 

posteriors of 1 and 2 are independent, the conditional distribution p  D  is equal to the 

marginal distribution 1( | )p  D . The PPD then reduces to 

 * *
2 2 1 1( | , ) ( | , ) ( | ) 1p Y p Y p d     D D  (13) 

Consequently, if the analysis of the full posterior suggests that 1 and 2 are near-independent, the 

PPD in eqn (13) can be approximated from the MCMC samples by generating a realization Y(i) for 

each parameter ( ) *
1 2 1...( )

sim

i
i N  , . To the extent that 1 and 2 are independent, the sample 

( )
1...( )

sim

i
i NY   is then an approximate realization from the PPD *

2( | , )p Y D . 
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This study distinguishes between the following sources of errors: (i) rainfall errors; (ii) structural 

errors; and (iii) runoff + remnant errors. The corresponding PPDs are constructed from the MCMC 

samples generated during the inference by iterating the flowchart in Figure 1 for i = 1:Nsim.  

3 Material and methods 

3.1 Study area and hydrological model 

3.1.1 The Yzeron catchment 

The case study is based on the 129 km2 Yzeron catchment in the Rhône-Alpes region of France, 

near Lyon (Figure 2a). Its regime is rainfall-dominated, with floods between autumn and spring, 

and extended periods of low flows in summer. The annual average rainfall and runoff are 

approximately 845 mm and 150 mm respectively, yielding an annual runoff coefficient of 0.18. 

The upstream elevations range from 400 to 917 m, with steep slopes often exceeding 10%. 

Nearly 8 years of daily runoff (shown in Figure 2b) are used in this study. The last two years, 2007-

2008 are used for calibration, while the preceding 6 years are used for validation. 

Two separate sets of raingauges are used. The first set, denoted as R3D, comprises 3 raingauges in 

the lower areas of the catchment (squares in Figure 2a), with daily totals available for the whole 

period of study. The daily mean of the R3D raingauges provides an estimate of the daily areal 

rainfall (inverted bars in Figure 2b) that was used in the calibration and validation experiments. 

The second set, R13H, comprises 13 raingauges located within the vicinity of the Yzeron 

catchment, shown as dots in Figure 2a. The spatial density of this network is quite high considering 

the moderate catchment size; moreover, it provides measurements at an hourly resolution. 

However, its observations are available only for the last 2 years of the study period. Consequently, 

the R13H data are used solely to investigate the error properties of the R3D estimates of the 

catchment-average rainfall. In particular, the high spatial density of the R13H gauges permits the 

spatial variability of rainfall to be described using conditional simulation (Section 3.2). The 

concurrent availability of the R3D and R13H data explains the use of the last 2 years of the study 

period for calibration, while only R3D data is used in the validation period. 

3.1.2 The GR4J rainfall-runoff model 

This study applies the widely-used GR4J model [Perrin et al., 2003], which simulates catchment 

runoff using rainfall and potential evapotranspiration at a daily time step (Figure 2c).  The model 

has two conceptual stores (production and routing), two unit-hydrograph elements and 4 calibration 
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parameters: the maximum production storage 1  [L, mm], the groundwater exchange parameter 2  

[L/T, mm/day], the maximum routing storage 3  [L, mm] and the unit-hydrograph time-delay 

parameter 4  [T, days]. Further details can be found in Perrin et al. [2003]. 

3.2 Development of the rainfall error model 

3.2.1 Conditional simulation (CS) 

The uncertainty of areal rainfall estimates is generally dominated by sampling errors, i.e., errors 

due to the incomplete description of the rainfall spatial field using raingauges [Moulin et al., 2009; 

Severino and Alpuim, 2005]. Conditional simulation (CS) is a geostatistical method that generates 

multiple replicates of the rainfall field based on the values measured at individual raingauges [e.g., 

Vischel et al., 2009]. In most common CS methods, the replicates match the observed values at the 

raingauge locations, but differ elsewhere. The spatial variability of the replicates depends on the 

geostatistical properties (distribution, variogram, etc.) of the rainfall fields, which are estimated 

prior to generating the CS replicates. 

CS provides a natural means to describe the uncertainty in the areal rainfall forcing and is therefore 

well suited for augmenting the statistical inference of hydrological models. 

3.2.2 The Turning-Band-Method (TBM) rainfall generator for CS 

The CS method used in this study was the Turning-Band-Method (TBM) rainfall generator. The 

main equations of the TBM geostatistical model are provided in Appendix A. Further details are 

provided by Tompson et al. [1989]. A summary of the main characteristics is provided below.  

TBM generates three-dimensional fields that describe rainfall variability in two spatial (areal) 

dimensions and in the time dimension. Rainfall fields are constructed from the product of two 

independent fields: (i) a Boolean indicator field representing pixels with zero and non-zero rainfall; 

and (ii) a field of non-zero precipitation generated from a pre-specified distribution. 

The TBM simulation depends on parameters describing the at-site rainfall distribution (e.g., mean 

and variance of a lognormal distribution) and the spatio-temporal properties of the observed rainfall 

fields (e.g., the spatio-temporal variogram). The simulated field is constructed to be consistent not 

only with the observed variogram of raw data (e.g., hourly rainfall), but also with the variograms of 

data aggregated over various durations (e.g., 2, 4, 6, 12, 24-hour intervals). This constraint is 

addressed using the integrative properties of random fields: given the variogram of the point 
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process that generates (unobserved) instantaneous rainfall, it is possible to derive the variograms of 

the aggregated fields. This operation is known as the regularization of the point variable to the 

aggregated variable [e.g., Journel and Huijbregts, 1978, chapter II]. Consequently, the inference of 

the variogram parameters of the (unobserved) point process is based on the (observed) variograms 

of observations aggregated over various durations. This allows the generated field to be consistent 

with the spatio-temporal properties of aggregated rainfall. 

The TBM method generates Gaussian random fields, which are then transformed to obtain the 

indicator field and the non-zero precipitation field. This transformation is based on thresholding for 

the indicator field and on the transformation  ( )F 1    for the non-zero precipitation field, where 

Φ is the cumulative density function (cdf) of the standard Gaussian distribution and F-1 is the 

inverse cdf of non-zero rainfalls. Care is needed at this step because these transformations alter the 

spatial correlations of the simulated random field. Therefore, empirical and analytical correction 

formulae are used to match the correlation structure of the final rainfall field to the observations 

(See Appendix A for details). Finally, Gibbs sampling is used to condition the simulations at the 

raingauge locations. Onibon et al. [2004] provide further details. 

3.2.3 Derivation of the rainfall error model using CS data 

Figure 3 depicts three representative CS replicates over 4 consecutive hourly steps. In all replicates, 

rainfall values match the observations at the conditioning gauge locations (empty squares, at the 

R13H locations), but differ elsewhere. For each replicate, the hourly rainfalls are aggregated to the 

daily scale and averaged over the catchment area. This yields the daily areal rainfall of the Yzeron 

catchment associated with a particular conditional replicate. 

Figure 4a compares the time series of areal rainfall estimated from the R3D network to the 

distribution estimated from 34 CS replicates (conditioned on rainfall values from the R13H 

network). The limited number of replications is due to current computational constraints: a single 

CS of 2 years of hourly data over a 49 x 49 grid takes several hours on a standard desktop CPU. 

Improved computational strategies are beyond our scope and will be investigated in future work. 

Figure 4a shows that the spread of the conditional replications is highly variable on a daily scale. 

For example, the individual replicates varied from 15 to 40 mm on day 119, while the R3D 

estimate was 25 mm. This suggests considerable uncertainty in the R3D areal rainfall estimates 

during this particular event. Conversely, the replicates ranged from 55 to 67 mm for day 134, with 

the R3D estimate of 62 mm, suggesting a markedly smaller uncertainty in the R3D data. Figure 4b 
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also shows that the standard deviation of CS replicates (computed for each day of the calibration 

period) has no clear relationship with the R3D-estimated areal rainfall. This implies that larger 

rainfall events are not necessarily subject to larger uncertainties. 

Figure 4c compares the mean of the conditional replications R̂  with the R3D-estimated values R  

for each day of the calibration period. Overall, they are in acceptable agreement, suggesting the 

absence of strong systematic bias in the R3D estimates. However, a closer inspection reveals 

considerable discrepancies between the two estimates of the areal rainfall for small events. More 

precisely, on some days R3D estimates are zero even when CS suggests considerable precipitation 

(up to 20 mm). This suggests that significant rainfall events can be missed with only three 

raingauges, or that the CS is overestimating small events, or both. 

The errors in the R3D estimates can be approximated as 

 ˆ /t t tR R    (14) 

The multiplicative model was selected in an attempt to capture the heteroscedasticity of the rainfall 

errors, especially for large storm events. It has been used in several previous studies [e.g., Kavetski 

et al., 2002; Villarini et al., 2008; Vrugt et al., 2008, and others]. 

Figure 4d, which plots the multipliers   versus the R3D rainfall estimates, reveals a complex 

distributional structure of rainfall errors. Multipliers associated with small-recorded rainfall values 

are predominantly larger than 1.0 (corresponding to the under-estimation reported earlier) and are 

highly variable. The discrepancies in small rainfall events have several possible explanations: (i) 

biases in the R3D areal averages due to insufficient spatial coverage; and/or (ii) biases in the CS of 

small rainfall events. Multipliers tend to stabilize around 1.0 for higher rainfall values, suggesting 

an absence of strong systematic biases and a limited heteroscedasticity. While the low 

heteroscedasticity of multipliers associated with larger events supports the multiplicative error 

model (14), the difficulty in describing errors in small rainfall suggests that simple models, such as 

Gaussian multipliers, may not be adequate over the entire rainfall range and need future refinement.  

3.2.4 Diagnostic evaluation of CS predictions versus R3D gauges 

To investigate the reliability of CS for small rainfall events, we evaluated the CS replicates against 

R3D raingauge values (as opposed to areal averages), by comparing the rainfall series from a given 

R3D raingauge gk with the CS predictive distribution at the pixel containing gk. The reliability of 

the CS predictive distribution is evaluated using the predictive QQ plot, which displays the p-
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values of the observations within the predictive distribution against the quantiles of the uniform 

distribution. A statistically reliable predictive distribution leads to p-values close to the 1:1 line. 

Departures from the bisector have specific diagnostic interpretations (see Laio and Tamea [2007] 

and Thyer et al. [2009] for further details). 

While Figure 5b suggests that the CS predictive distribution is reliable for daily rainfall exceeding 

2 mm, Figure 5a suggests poorer reliability for small rainfalls. In particular, numerous observations 

have p-values of zero, suggesting a tendency of the CS to over-estimate the actual rainfall. The 

discrepancies in small rainfall events discussed in previous section 3.2.3 are therefore at least partly 

due to biases in the CS of small events. 

Since the current analysis shows that CS reliably quantifies the uncertainty in the larger rainfall 

events, which are generally (though not always) of primary interest, it supports the use of CS as a 

tool to derive rainfall error estimates for hydrological applications. The investigation of the 

apparently poor CS performance for small rainfall is deferred to a future study. 

3.2.5 Conditional simulation as a prior on the true rainfall in BATEA 

A key advantage of the Bayesian paradigm is its ability to augment the inference with independent 

knowledge. In this study, we incorporate the information from the geostatistical analysis of the 

R13H network into a BATEA calibration of a hydrological model forced with the R3D rainfall. 

This is achieved by using the CS replicates to specify the term  p R  in the BATEA posterior (10). 

The prior ( )p R  is described using independent Gamma distributions with time-varying parameters 

ˆt  and ˆ
t , describing the rainfall at all time steps t where rainfall exceeds 2 mm,  

 
1, 2

ˆˆ( ) | ,
t

t

N

t t t
t R mm

p p R  
 

 R  (15) 

The scale ˆt  and shape ˆ
t  at step t are estimated by matching the moments of the Gamma 

distribution to the moments of the CS replicates described in Section 3.2.3. Note that the 

specification of the prior (p )R  is based solely on the R13H data (analyzed using CS) and does not 

use data from the R3D network. A posteriori, the R3D data is used indirectly in the exploratory 

analyses reported in sections 3.2.3 - 3.2.4. 

Note that the exclusion of rainfalls below 2mm from the error model is used as a computational 

acceleration strategy to remove insensitive degrees of freedom from the inference. This 
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approximation has little effect on the inference results because the predicted runoff is largely 

insensitive to small rainfalls. 

3.2.6 Rainfall error model 

The likelihood of rainfall errors,  | , Rp R R   in eqn (10), is specified as follows 

 , (16) 2,  ~ ( , ,0)t t t tR R TN      

where TN(a, b2, 0) denotes a Gaussian distribution with mean a and standard deviation b, truncated 

at zero. Similarly to eqn (15), the error model (16) is applied only on days where 2tR mm . The 

advantages and limitations of rainfall models (15)-(16) are discussed in Section 5.4. 

3.3 Development of the runoff error model 

Runoff uncertainty was investigated by analyzing the rating curve and related stage-discharge 

gaugings. The Yzeron catchment can be considered well-gauged, with gaugings covering a large 

fraction of the flow duration curve. 

Figure 6 shows the runoff measurement errors, defined as the difference between the runoff 

gaugings and the runoff predicted by the rating curve (“RCP runoff”). There is a clear trend of 

runoff measurement errors increasing with the RCP runoff. 

In view of Figure 6, we hypothesized a heteroscedastic error model, where runoff uncertainty is 

Gaussian with a zero mean and a standard deviation Q proportional to the RCP runoff, 

  (17) 2;      ~ (0, ), ,Q Q Q QQ Q N a bQ       

where Q  is the gauged runoff and  is the RCP runoff. In the context of eqn (3), . Q ( , )Q a b

Eqn (17) was fitted to the Yzeron runoff data (with vague priors on a and b) using the WINBUGS 

software [Spiegelhalter et al., 2003]. The 90% predictive limits of the runoff measurement error 

model are shown in Figure 6. The fanning out of the uncertainty bounds for large runoff values is 

dominated by extrapolation from lower flows, where many more gaugings are available. This 

deficiency arises due to limited gauging data in the high flow range (a single measurement for 

flows exceeding 10 mm). 
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The posterior mean and standard deviation for the parameters of the rating curve error model (17) 

were a = 0.0032 ± 0.0015 and b = 0.096 ± 0.014. Since the precision of these estimates is relatively 

high, they were fixed at their posterior means during the subsequent BATEA calibration.  

Note that eqn (17), in combination with the remnant error model (8), allows deriving the runoff 

likelihood term in eqn (10). Given the error models selected here, observed runoff is treated as a 

realization from a Gaussian distribution with mean  and variance ˆ
tQ  2 2a bQ   . 

3.4 Representation of structural errors 

The characterization of structural error of the GR4J model is explored using stochastic daily 

variation of its parameter 1 . We also investigate a more traditional exogenous treatment of 

structural errors using the remnant error term (see also section 2.4). 

When 1  is treated as stochastic, it is assumed to follow a truncated Gaussian distribution with 

unknown mean 
1

 and standard deviation 
1

 , 

  (18) 
1 1

2
1 ~ ( , ,0TN     )

Note that 1  controls the maximum storage of the production store (Figure 2c). It may seem 

surprising, or even imprudent, to make this quantity time-dependent because the actual storage can 

then in principle exceed the maximum capacity. However, a separate sensitivity analysis [similar to 

Figure 5 of Kuczera et al., 2006] indicated that this parameter, when made stochastic, had the 

largest impact on model predictions. Importantly, we examined the inferred stochastic variability of 

1  to determine its effect on the storage values and long-term water balance (Section 4.4.2). 

4 Inference results and posterior diagnostics 

This section describes the application of the calibration schemes of Section 2.6 and Table 1 to the 

Yzeron data, using the input, output and structural error models constructed in Sections 3.2-3.4. 

4.1 Well-posedness of the calibration schemes 

The convergence of MCMC samples reflects the statistical characteristics of the target distribution. 

In particular, slowly convergent sampling is often indicative of ill-posed posteriors [Renard et al., 

2010]. Such posteriors arise when the data contains insufficient information to identify the 

quantities of interest and no prior information is available or used. 
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The MCMC convergence was assessed using the GR criterion [see Cowles and Carlin, 1996 for a 

broader review; Gelman et al., 2004]. For all calibration schemes except OIS (see below), GR 

statistics were below 1.2 for all inferred quantities, suggesting a well-posed inference. As expected 

intuitively, Table 1 shows that convergence is faster for lower-dimensional inference schemes. Yet 

it also highlights the impact of the prior on the speed of MCMC convergence. Despite having 

exactly the same likelihood function and the same number of inferred quantities, scheme OI-CS 

converges ten times faster than OI because it uses the informative CS prior. This emphasizes that 

the computational cost of an inference depends more on its structure than just on its dimensionality. 

An in-depth discussion of dimensionality and computation in hierarchical models is provided by 

Spiegelhalter [2002]; see also the synthetic investigations in Renard et al. [2010]. 

The OIS scheme, which attempts to infer both rainfall and structural errors without using the CS 

prior, suffered from a prohibitively slow rate of MCMC convergence, with GR statistics for several 

inferred quantities (including hydrological parameters and latent variables) still exceeding 3.0 after 

106 MCMC iterations. Inspection of the simulated values revealed strong negative correlations 

between the latent variables for input and structural errors (with some posterior cross-correlations 

exceeding -0.9). Moreover, the posterior standard deviations of inferred quantities were higher than 

in OIS-CS scheme by a factor of about 3 on average, but exceeding 10 for some latent variables. 

This computational behavior is symptomatic of ill-posedness [see detailed discussion in Renard et 

al., 2010]. In practical terms, this means that rainfall and structural errors are not simultaneously 

identifiable solely from the given forcing-response time series with no associated error estimates. 

The non-convergence of the OIS scheme, contrasted with the convergence of the OIS-CS scheme, 

supports a key conclusion of Renard et al. [2010], namely that the specification of informative 

priors for rainfall and runoff uncertainty is a necessary step to ensure well-posedness when both 

forcing and structural errors are modeled hierarchically using latent variables. 

4.2 Reliability of total predictive uncertainty (all schemes) 

This section examines the adequacy of the predictive distribution of runoff. Posterior scrutiny of 

the predictive distribution is important because violations of calibration assumptions can result in 

unreliable and misleading predictions [Hall et al., 2007; Thyer et al., 2009]. In addition to visual 

appraisals, which are of clear value to a hydrological expert, a more formal approach for evaluating 

the reliability of a predictive distribution is given by the predictive QQ plot (see Section 3.2.3). 

However, reliability alone is insufficient to demonstrate that a particular predictive method is 

superior to another [e.g. Gneiting et al., 2007]. In particular, the precision of the predictive 
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distribution also needs to be assessed. Moreover, the reliability of the total predictive distribution 

does not prove that all individual error models are correctly specified – it is a necessary but 

insufficient condition. This topic is further discussed in section 5.2. 

Figure 7 shows the predictive QQ plots constructed for the validation period. In addition, Figure 8 

shows the total predictive distributions from schemes OI, OI-CS and OIS-CS for several flood 

events. Those figures allow a visual appraisal of the precision (i.e., sharpness or resolution) of the 

TPDs. Several important results can be noted: 

1) The SLS scheme produces an unreliable predictive distribution. The shape of the QQ curve in 

Figure 7a suggests a general over-estimation of predictive uncertainty. However, when restricted to 

runoffs above 2 mm (65 days, Figure 7b), it shows that predictive uncertainty is actually severely 

under-estimated for large runoffs, with many observations outside of their predicted range. 

2) The shape of the OI-curve in Figure 7 suggests a severe under-prediction of observations. This is 

confirmed by the second row of Figure 8, with the predicted runoff being consistently lower than 

the observed values. 

3) The OI-CS scheme slightly under-estimates the predictive uncertainty, with about 1% of the 

observations lying outside of the predictive range (p-values of 0 and 1 by convention). On the other 

hand, Figure 8 shows that OI-CS yields markedly more precise predictions compared to other 

schemes. 

4) The OIS-CS scheme yields a reliable estimation of the predictive uncertainty, for all runoff 

ranges (Figure 7a-b). However, Figure 8 shows that its predictive precision is the lowest, 

suggesting that, in this application, representing structural errors using a stochastic parameter has 

increased the predictive uncertainty compared to the OI-CS setup, where structural errors were 

represented as part of the additive remnant error term. 

Further insights can be gained by examining the estimated parameters of the rainfall and structural 

error models, as listed in Table 2: 

1) The standard deviation of the rainfall multipliers is estimated as 1.54 in the OI scheme, but 

reduces to 0.27 in the OIS-CS scheme. This occurs because the OI scheme lacks an adequate 

description of structural errors (the homoscedastic Gaussian remnant error term is poorly suited to 

this) and, by increasing its standard deviation, the rainfall error model can compensate for 

unaccounted structural errors. This compensation is detectable in this case study because of the 

availability of independent prior knowledge on rainfall errors. 
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2) Conversely, the estimated parameters of the rainfall error models are similar in schemes OI-CS 

and OIS-CS. This illustrates the constraint exerted by the CS prior, limiting the interactions 

between rainfall and structural errors. However, recall that removing the stochastic variability in 1  

(OI-CS) leads to a slight under-estimation of the predictive uncertainty. 

4.3 Decomposition of total predictive uncertainty into forcing, response 
and structural components (OIS-CS only) 

The previous section showed that the BATEA methodology yields reliable estimates of predictive 

uncertainty when prior information on rainfall and runoff errors is available (scheme OIS-CS). It is 

then of practical significance and scientific interest to explore and evaluate the relative 

contributions of forcing and structural errors to the total predictive uncertainty. 

Figure 9 shows the TPD and PPD for the forcing, structural and response errors (see Section 2.7 for 

details). Under the hypotheses made in this case study (including the hydrological model and the 

data error models), predictive uncertainty in the runoff appears dominated by structural errors. 

Albeit significant, rainfall errors explain a smaller part of TPD, with runoff and remnant errors 

contributing even less. The identifiability of the parameters of the rainfall and structural error 

models (in particular, their near-independence, maximum absolute posterior correlation of about 

0.12) provides confidence that the PPDs with respect to rainfall and structural errors can be 

interpreted as representing the individual contributions of these random variables to the TPD. 

Note that this study uses partial predictive intervals in the decomposition of uncertainty. Since 

these correspond to conditional distributions (see section 2.7), the choice of the conditioning values 

may affect the decomposition of uncertainty. In the validation analyses presented here, we 

condition all latent variables on the modal estimate of their mean (   in eqn (16), see also Figure 

1), because it represents the “most-likely” estimate of individual latent variables. Note that a PPD 

derived with such conditioning excludes the effects of random rainfall errors (as intended for a 

PPD reflecting structural uncertainty only), but includes the effects of systematic rainfall biases 

(since the posterior mean of the multipliers in general deviates from unity). Further design and 

interpretation of partial predictive limits will be carried out in a separate development. 

These results suggest that, in this particular application, a greater reduction in predictive 

uncertainty can be achieved by improving the hydrological model rather than by improving the 

accuracy of the rainfall and runoff data. We also stress that insights such as those above could not 

have been obtained with approaches that do not attempt to isolate structural uncertainty and 

therefore motivate further research efforts on the decompositional approach. 
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4.4 Posterior scrutiny of error model hypotheses 

4.4.1 Input errors (OIS-CS only) 

Figure 10 shows diagnostic plots to scrutinize the rainfall error model in eqn (16). In particular, 

Figure 10a-b suggests that the assumption of independent rainfall multipliers from a truncated 

Gaussian distribution is plausible (however, note the considerable posterior uncertainty). 

Figure 10c-d yields further insights into the identifiability of rainfall errors. It assesses the extent to 

which the posterior estimates of true rainfall differ from the prior, i.e., whether the rainfall-runoff 

data and hydrological model contain sufficient information to modify the prior estimates of the true 

rainfall estimated using CS. Figure 10c compares the 90% credibility intervals of the true rainfall 

arising from the prior and the posterior distributions. In most cases, these intervals are similar, 

suggesting that the information content of the calibration data only marginally modifies the prior 

CS-based estimates of true areal rainfall. A few exceptions can be observed: e.g., on day 136, the 

posterior is considerably tighter than the prior. 

The contribution of the rainfall-runoff data to the refinement of the rainfall error estimates during 

the hydrological model calibration can be quantified using an “uncertainty reduction factor” (URF). 

In this work, the URF is defined as the ratio of the posterior and prior standard deviations of each 

inferred rainfall multiplier. It can be interpreted as follows: (i) URF  0 implies a significant 

reduction of uncertainty in the areal rainfall estimates (high information content in calibration 

data); (ii) URF > 1 indicates increased uncertainty (e.g., if the calibration data conflicts with the 

prior); (iii) URF  1 indicates that the calibration data has not refined the rainfall error model and 

the inference of the rainfall multipliers is governed by the prior. Note that case (iii) is “non-

informative” solely with respect to the inference of rainfall errors, and does not imply that the 

inference of the hydrological model parameters is non-informative or governed by the priors. 

Figure 10d plots the URFs versus the corresponding R3D rainfall values. Two points can be made: 

1) For large rainfall values (>20 mm), the URFs are mainly between 0.8 and 1, indicating little 

reduction in uncertainty. This implies that the prior (rather than the data) controls the inference of 

rainfall errors affecting large events. This is the likely reason for the ill-posedness of scheme OIS, 

which does not use the prior information in eqn (15). 

2) URFs for smaller rainfall events are highly variable, with some multipliers having a significant 

reduction in uncertainty after calibration. Although perhaps un-expected given the low sensitivity 
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of the hydrological model to small rainfalls, such reductions could be explained by the constraint 

exerted by the error model in eqn (16): during calibration, multipliers with a large prior variance 

will have their posterior variances tightened approximately to 2
 . Inadequacies of the simple 

rainfall error model (16) and the CS replicates for small rainfalls (section 3.2.3) may also be 

responsible for the differences in the URF patterns. 

4.4.2 Structural errors (OIS-CS only) 

Similarly to rainfall errors, Figure 11a-b suggests that the structural error model based on stochastic 

variation of 1  at the storm time scale, is plausible. However, as noted in Section 3.4, it is 

important to check the evolution of storage with respect to the production store capacity because 

stochastic variations of parameter 1  may lead to a store content exceeding the store capacity.  

Figure 11c-d shows the evolution of storage during the calibration period. While the store remained 

consistently below its full capacity, exceedances did occur on some rare occasions. A closer 

inspection of GR4J [Perrin et al., 2003] suggests two possible problematic scenarios: 

1) If rainfall exceeds PET, a part of the net rainfall fills the production store, with the remainder 

being routed through unit hydrographs. However, when the store exceeds its capacity, some water 

is subtracted from the production store. Note that this does not create a water balance error because 

this overflowing water is simply transferred to the routing components. Moreover, in the 2-year 

calibration period, overflows due to stochastic variations of 1  amounted to a total of <1.5 mm, 

which is minor in the overall context of a 2-year runoff volume of nearly 300 mm. 

2) If PET exceeds rainfall, a part of the store content is evaporated. The actual evaporation is 

computed as a function of the net PET and the store level. While exceeding the store capacity could 

result in the actual ET exceeding PET, this never occurred in this study. 

4.4.3 Residual diagnostics  

Figure 12 shows distributional and autocorrelation diagnostics for the standardized residuals. Note 

that, for all schemes except SLS, the residuals combine runoff and remnant errors (section 2). For 

those schemes, standardization is therefore performed by dividing the raw residual at time step t by 

2
( )Q t

2
  , where Q  is the standard deviation of runoff errors (which are heteroscedastic with 

respect to the runoff magnitude, as shown in Eqn (17)) and   is the standard deviation of remnant 

errors (which, in this case study, are homoscedastic, as shown in Eqn (8)). 
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Several comments can be made: 

1) Accounting for data errors (schemes OI-CS, OI and OIS-CS) markedly reduces the skewness 

and excess kurtosis (Figure 12a-b) of the standardized residuals. However, skewness and kurtosis 

remained statistically significant for all calibration schemes, including OIS-CS. This further 

discredits the assumption of homoscedastic Gaussian remnant errors and needs to be addressed. 

2) The autocorrelation tends to decrease when more sources of errors are represented explicitly in 

the inference scheme (Figure 12c). The amount of prior information also appears to be an important 

factor, with markedly higher autocorrelations for scheme OI-CS than for scheme OI. Nevertheless, 

given appreciable remaining autocorrelation, the remnant error model may need autoregressive 

components. 

5 Discussion 

5.1 Quantification of predictive uncertainty 

Section 4.2 indicated that the predictive distribution of runoff was fairly reliable for schemes OI-

CS and OIS-CS. It can be seen that scheme OI-CS slightly under-estimates predictive uncertainty 

(see Figure 7 and Section 4.2) while scheme OI yields significantly larger estimated input errors 

and predictive uncertainty. This suggests that the CS prior constrains the input error estimates and 

reduces their ability to interact with structural errors, and compensate for un-accounted errors. 

Arguably the most reliable predictive distribution is obtained with the OIS-CS scheme (Section 

4.2), which includes the CS prior and an explicit characterization of structural errors using 

stochastic-parameters. Importantly, the OIS scheme, which omits prior information on the rainfall 

errors, leads to an ill-posed inference (Section 4.1). This is consistent with previous findings that 

priors on rainfall and runoff uncertainty control the well-posedness of Bayesian hierarchical 

inferences in hydrology [Renard et al., 2010]. However, further work is warranted to improve the 

predictive precision of the OIS-CS scheme. If, as it appears for this case study, structural 

uncertainty is the dominant uncertainty, improving the predictive precision will likely require 

tightening the characterization of structural errors, as well as improving the hydrological model. 

5.2 Decomposition of predictive uncertainty 

The empirical results in Section 4.3 suggest that decomposing predictive uncertainty into its 

contributing sources is possible when independent estimates of rainfall and runoff data uncertainty 

are available and used in the BATEA inference. The reliability of this decomposition can be 

examined by considering (i) the reliability of the total predictive distribution, in combination with 
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(ii) the reliability of the individual data and structural components. However, scrutinizing 

individual components of a predictive distribution is considerably more challenging than 

scrutinizing the full predictive uncertainty, as discussed next. 

The reliability of this decomposition can be examined by considering (i) the reliability of the total 

predictive distribution, in combination with (ii) the reliability of the individual data and structural 

components. However, scrutinizing “partial” uncertainties is considerably more challenging than 

scrutinizing the full predictive uncertainty, as discussed next. 

Direct scrutiny of the estimated contribution of rainfall uncertainty to the uncertainty in the 

predicted runoff requires accurate areal rainfall estimates. Since this is rarely available, the 

adequacy of the decomposition can be investigated indirectly by scrutinizing the inferred 

distribution of latent variables. In this study, this posterior diagnostic was carried out only partially, 

by comparing the inferred/predicted rainfall errors with those suggested by the R3D raingauge 

network. Due to the short length of the dense-gauged R13H rainfall time series for this catchment, 

it was used entirely to construct the rainfall error model for the calibration period, and was not used 

to check the rainfall PD in the validation period. In applications where longer periods of densely 

gauged rainfall are available, it could be partitioned between calibration and validation.  

Future avenues for scrutinizing the rainfall component include comparing inferred rainfall errors 

with the errors suggested by other sources, such as radar. Although radar estimates are affected by 

complex measurement errors [e.g. Kirstetter et al., 2010], they can provide spatial information that 

is not captured by sparse raingauge networks. For instance, comparing the location of the main 

mass of a rainstorm with the location of the raingauges may shed light at least on the sign of the 

error (i.e., whether the raingauge network has under- or over-estimated the areal rainfall). 

Direct validation of the estimated structural uncertainty requires highly accurate forcing-response 

data, so that structural errors can be isolated. This is seldom achievable in practice, except in 

densely gauged experimental catchments. However, indirect strategies are possible. For instance, 

assessing the stability of structural error estimates when different rainfall and runoff data are used 

provides a useful measure of the interactions between data and structural errors.  

5.3 On the treatment of structural error 

The treatment of structural error remains a topic of active research [e.g., see the discussion by 

Beven, 2005; Doherty and Welter, 2010]. This study does not aim to compare or improve methods 

for representing structural errors. Instead, it uses two particular structural error methods as part of a 
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study pursuing error decomposition by exploiting independently derived data error models. We 

view this as a logical first step before structural error characterization is tackled. 

Many other distinct strategies have been proposed to represent structural errors, including stochastic 

state errors [Moradkhani et al., 2005a], model-averaging schemes [e.g., Duan et al., 2007; 

Marshall et al., 2007], multi-model frameworks [e.g., Clark et al., 2008] and other approaches 

[e.g., Bulygina and Gupta, 2009; Jacquin and Shamseldin, 2007]. Which of these approaches – if 

any – provides an adequate description of structural errors remains an open question. In particular, 

some authors have argued that the epistemic nature of structural uncertainty makes it poorly suited 

to a statistical treatment [e.g., Beven, 2008]. Our view is that, in a particular modeling context, such 

as hydrological modeling, such proposition  prove or refute a priori. Yet the extent to which a 

statistical scheme succeeds in representing structural error can be scrutinized a posteriori by 

inspecting total and partial predictive uncertainties, applying residual and other diagnostics, etc. 

5.4 Limitations and future work 

While we are optimistic with respect to the practical feasibility of the Bayesian approach in the 

context of hydrologic prediction, several significant challenges remain to be tackled. 

First, immediate limitations with respect to data availability are noted. In particular, CS requires a 

distributed raingauge network to calibrate the CS parameters and variograms. Applications where 

no reliable information exists to inform the data error models are unlikely to be suitable for a 

decomposition of sources of error. This provides a strong argument in favor of continuing 

measurement and experimental campaigns, and improving operational networks. 

Second, the geostatistical rainfall model used in this paper can be improved to overcome the lack of 

reliability for small rainfall (see Section 3.2.4). For example, an approximate classification of 

rainfall events into more homogenous rainfall types (e.g. localized convective storms vs. frontal 

rainfall events) could be performed, and the geostatistical properties (e.g. variograms) estimated 

separately for each type. Similarly, orographic effects could be included through a regression with 

respect to elevation. 

Third, while the error model in eqn (16) is geared primarily towards characterizing the errors in the 

larger rainfall events, the limitations of the multiplicative error model are noted. It is unable to 

handle errors in zero rainfalls (i.e. for a localized storm not recorded by the raingauge network) and 

appears poorly suited for errors in small rainfalls (see Section 3.2.3).  
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Finally, applications at a subdaily scale would require additional development of the rainfall and 

runoff error models, in particular including autocorrelation [McMillan et al., 2011]. 

Other areas in need of further research attention include: 

1) Generalization of the rating curve error model to rigorously distinguish between random and 

systematic rating curve errors, and to account for their likely autocorrelation at short time-scales. 

Several options are emerging, including Bayesian approaches [e.g., Moyeed and Clarke, 2005], 

dynamic schemes [Dottori et al., 2009] and other methods [e.g., McMillan et al., 2010]. 

2) Further appraisal of the stochastic-parameter approach and the development of more informative 

structural error models. The work by Reichert and Mieleitner [2009], who used an Uhlenbeck 

process to characterize the time structure of stochastic parameters in lieu of the epoch-dependence 

assumption [Kuczera et al., 2006], is an important advance in this direction. 

3) A more flexible remnant error model, in particular, allowing for autocorrelation and 

heteroscedasticity [e.g., see the recent work by Schoups and Vrugt, 2010; Smith et al., 2010]. 

4) A better understanding of structural errors. In particular, the use of structural errors to diagnose, 

compare or improve hydrological models remains an important area of future research [e.g. 

Reichert and Mieleitner, 2009; Smith et al., 2008]. 

5) The computational implementation is an area of ongoing work [e.g., Kuczera et al., 2010a, and 

others; Vrugt et al., 2008]. Moreover, given the emerging evidence that in many cases the 

geometrical complexity of parameter distributions is an artifact of the numerical implementation of 

the hydrological model, the use of efficient gradient-based schemes for optimization and 

uncertainty analysis is of interest [e.g., Kavetski and Clark, 2010; Kavetski et al., 2006d]. 

The utility of these developments should be scrutinized using stringent posterior diagnostics. In 

particular, the predictive QQ plot [e.g., Laio and Tamea, 2007; Thyer et al., 2009] and similar 

reliability checks, in combination with appraisals of the predictive precision, provide an objective 

yardstick to empirically evaluate the practical performance of the inference, and make quantitative 

judgments on their suitability for operational purposes. 

6 Conclusions 

The application of the Bayesian framework in a real-data case study confirms earlier findings that 

prior information on data uncertainty is not merely beneficial, but essential for a meaningful and 

reliable quantification and decomposition of the predictive uncertainty. In particular: 
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1) Simultaneous inference of forcing and structural errors within the hierarchical framework is ill-

posed unless informative priors on forcing and response uncertainties are specified; 

2) Ignoring sources of error may lead to unreliable predictions. Conversely, including additional 

error models improved the reliability of the total uncertainty estimates. We stress that this 

improvement was demonstrated in the validation period and thus unlikely to be due to potential 

over-fitting; 

3) Including informative priors on rainfall uncertainty demonstrably improves the reliability of 

runoff predictions (scrutinized in a validation time period) and paves the way for a quantitative 

decomposition of the total predictive uncertainty into its contributing causes. 

In this study, where the GR4J model was calibrated to a 3-gauge daily rainfall observation network 

in the Yzeron catchment (France), structural uncertainty appears to dominate data uncertainty. This 

conclusion is likely to be catchment- and model- dependent. In addition, further work is needed to 

further develop and test techniques for analyzing and communicating partial uncertainties. 

The use of rainfall conditional simulation as part of hydrological model calibration represents a 

significant advance in the treatment of rainfall uncertainty in hydrological calibration. Whereas 

earlier work, including data assimilation approaches, previous applications of BATEA and 

analogous hierarchical Bayesian methods, used largely heuristic “rule-of-thumb” considerations in 

the specification of rainfall uncertainty, this study demonstrates that conditional simulation can 

provide more reliable and precise estimates of the uncertainties in individual rainfall 

measurements, and how these uncertainties vary in time. This demonstrably improves the statistical 

reliability of the model predictions when compared against methods that disregard such 

information. Perhaps more importantly, approximate decompositions of predictive uncertainty 

become possible, including separate estimation of structural errors of the hydrological model. 

More generally, this study takes an important step towards more reliable uncertainty quantification 

and decomposition, which would be beneficial for many key scientific and operational purposes in 

hydrological and environmental, including (i) improved probabilistic forecasts and predictions, (ii) 

meaningful hydrological model evaluations un-obscured by data errors, and (iii) more efficient 

research and operational resource allocation to reduce predictive uncertainty. 

Given the manifest significance of a robust quantitative understanding of data and modeling 

uncertainties in environmental studies, further development and implementation of instrumental 

and statistical procedures is needed to estimate the accuracy and precision of environmental data at 
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the data-collection and post-processing stages. The Bayesian paradigm, with its philosophy of 

using and refining the knowledge of all uncertain quantities – be it model parameters, true forcings, 

or some error properties of the latter – provides a very appealing platform for the systematic 

integration of these insights into environmental model inference and prediction. 

Acknowledgments 

This work is supported by a FAST grant from the Department of Innovation, Industry, Science and 

Research (Australia), the Ministry of Higher Education and Research (France) and the Ministry of 

Foreign and European Affairs (France). The helpful comments by Jasper Vrugt, Keith Beven and 

three anonymous reviewers substantially improved this paper and are gratefully acknowledged. 

References 

Beven, K. J. (2005), On the concept of model structural error, Water Sci. Technol., 52(6), 167-175. 

Beven, K. J. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36. 

Beven, K. J. (2008), On doing better hydrological science, Hydrol. Process., 22(17), 3549-3553, 
doi: 10.1002/hyp.7108. 

Bulygina, N., and H. Gupta (2009), Estimating the uncertain mathematical structure of a water 
balance model via Bayesian data assimilation, Water Resour. Res., 45(12), W00B13, doi: 
10.1029/2007wr006749. 

Clark, M. P., and A. G. Slater (2006), Probabilistic quantitative precipitation estimation in complex 
terrain, Journal of Hydrometeorology, 7(1), 3-22. 

Clark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. 
E. Hay (2008), Framework for Understanding Structural Errors (FUSE): A modular framework to 
diagnose differences between hydrological models, Water Resources Research, 44. 

Cowles, M. K., and B. P. Carlin (1996), Markov chain Monte Carlo convergence diagnostics: A 
comparative review, J. Am. Stat. Assoc., 91(434), 883-904. 

Cressie, N., C. A. Calder, J. S. Clark, J. M. V. Hoef, and C. K. Wikle (2009), Accounting for 
uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling, 
Ecological Applications, 19(3), 553-570. 

Di Baldassarre, G., and A. Montanari (2009), Uncertainty in river discharge observations: a 
quantitative analysis, Hydrol. Earth Syst. Sci., 13(6), 913-921. 

Doherty, J., and D. Welter (2010), A short exploration of structural noise, Water Resour. Res., 
46(5), W05525. 

Dottori, F., M. L. V. Martina, and E. Todini (2009), A dynamic rating curve approach to indirect 
discharge measurement, Hydrol. Earth Syst. Sci. Discuss., 6(1), 859-896. 

Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian (2007), Multi-model ensemble hydrologic 
prediction using Bayesian model averaging, Adv. Water Resour., 30(5), 1371-1386. 

Author-produced version of the article published in 
Water Resources Research (2011) vol. 47, doi : 10.1029/2011WR010643 

The original publication is available at http://www.agu.org/journals/wr/ 



Evensen, G. (1994), Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model 
Using Monte-Carlo Methods to Forecast Error Statistics, Journal of Geophysical Research-Oceans, 
99(C5), 10143-10162. 

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004), Bayesian data analysis, 2 ed., 696 
pp., Texts in Statistical Science, Chapman & Hall 

Gneiting, T., F. Balabdaoui, and A. E. Raftery (2007), Probabilistic forecasts, calibration and 
sharpness, J. R. Stat. Soc. Ser. B-Stat. Methodol., 69, 243-268. 

Goldstein, M., and J. Rougier (2009), Reified Bayesian modelling and inference for physical 
systems, J. Stat. Plan. Infer., 139(3), 1221-1239. 

Goovaerts, P. (2000), Geostatistical approaches for incorporating elevation into the spatial 
interpolation of rainfall, J. Hydrol., 228(1-2), 113-129. 

Gotzinger, J., and A. Bardossy (2008), Generic error model for calibration and uncertainty 
estimation of hydrological models, Water Resources Research, 44. 

Hall, J., E. O'Connell, and J. Ewen (2007), On not undermining the science: coherence, validation 
and expertise. Discussion of Invited Commentary by Keith Beven Hydrological Processes, 20, 
3141-3146 (2006), Hydrol. Process., 21(7), 985-988. 

Herschy, R. (1994), The Analysis of Uncertainties in the Stage Discharge Relation, Flow Meas 
Instrum, 5(3), 188-190. 

Huard, D., and A. Mailhot (2008), Calibration of hydrological model GR2M using Bayesian 
uncertainty analysis, Water Resources Research, 44. 

Jacquin, A., and A. Y. Shamseldin (2007), Development of a possibilistic method for the 
evaluation of predictive uncertainty in rainfall-runoff modeling, Water Resources Research, 43. 

Journel, A. G., and C. J. Huijbregts (1978), Mining geostatistics, 600 pp., Academic Press, London 

Kavetski, D., and M. P. Clark (2010), Ancient numerical daemons of conceptual hydrological 
modeling: 2. Impact of time stepping schemes on model analysis and prediction, Water Resour. 
Res., 46(10), W10511. 

Kavetski, D., S. Franks, and G. Kuczera (2002), Confronting Input Uncertainty in Environmental 
Modelling in Calibration of Watershed Models, in Water Science and Application Series 6, edited 
by Q. Y. Duan, H. V. Gupta, S. Sorooshian, A. Rousseau and R. Tourcotte, pp. 49-68, American 
Geophysical Union, Washington DC. 

Kavetski, D., G. Kuczera, and S. W. Franks (2006a), Calibration of conceptual hydrological 
models revisited: 1. Overcoming numerical artefacts, J. Hydrol., 320(1-2), 173-186. 

Kavetski, D., G. Kuczera, and S. W. Franks (2006b), Bayesian analysis of input uncertainty in 
hydrological modeling: 1. Theory, Water Resources Research, 42(3). 

Kavetski, D., G. Kuczera, and S. W. Franks (2006c), Bayesian analysis of input uncertainty in 
hydrological modeling: 2. Application, Water Resources Research, 42(3). 

Kavetski, D., G. Kuczera, and S. W. Franks (2006d), Calibration of conceptual hydrological 
models revisited: 2. Improving optimisation and analysis, J. Hydrol., 320(1-2), 187-201. 

Author-produced version of the article published in 
Water Resources Research (2011) vol. 47, doi : 10.1029/2011WR010643 

The original publication is available at http://www.agu.org/journals/wr/ 



Kennedy, M. C., and A. O'Hagan (2001), Bayesian Calibration of Computer Models, Journal of the 
Royal Statistical Society. Series B (Statistical Methodology), 63(3), 425-464. 

Kirstetter, P. E., G. Delrieu, B. Boudevillain, and C. Obled (2010), Toward an error model for radar 
quantitative precipitation estimation in the Cevennes-Vivarais region, France, J. Hydrol., 394(1-2), 
28-41, doi: 10.1016/j.jhydrol.2010.01.009. 

Krajewski, W. F., G. J. Ciach, and E. Habib (2003), An analysis of small-scale rainfall variability 
in different climatic regimes, Hydrol. Sci. J.-J. Sci. Hydrol., 48(2), 151-162. 

Krzysztofowicz, R. (1999), Bayesian theory of probabilistic forecasting via deterministic 
hydrologic model, Water Resources Research, 35(9), 2739-2750. 

Krzysztofowicz, R. (2002), Bayesian system for probabilistic river stage forecasting, J. Hydrol., 
268(1-4), 16-40. 

Kuczera, G., and B. J. Williams (1992), Effect of Rainfall Errors on Accuracy of Design Flood 
Estimates, Water Resources Research, 28(4), 1145-1153. 

Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a Bayesian total error analysis 
of conceptual rainfall-runoff models: Characterising model error using storm-dependent 
parameters, J. Hydrol., 331(1-2), 161-177. 

Kuczera, G., D. Kavetski, B. Renard, and M. Thyer (2010a), A limited-memory acceleration 
strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models, Water 
Resources Research., 46. 

Kuczera, G., B. Renard, M. Thyer, and D. Kavetski (2010b), There are no hydrological monsters, 
just models and observations with large uncertainties!, Hydrological sciences Journal, 55(6). 

Laio, F., and S. Tamea (2007), Verification tools for probabilistic forecasts of continuous 
hydrological variables, Hydrol. Earth Syst. Sci., 11(4), 1267-1277. 

Lang, M., K. Pobanz, B. Renard, E. Renouf, and E. Sauquet (2010), Extrapolation of rating curves 
by hydraulic modelling and its relative impact on flood frequency analysis with historical data, 
Hydrological sciences Journal., 55(6). 

Marshall, L., D. Nott, and A. Sharma (2007), Towards dynamic catchment modelling: a Bayesian 
hierarchical mixtures of experts framework, Hydrol. Process., 21(7), 847-861. 

McMillan, H., J. Freer, F. Pappenberger, T. Krueger, and M. Clark (2010), Impacts of uncertain 
river flow data on rainfall-runoff model calibration and discharge predictions, Hydrol. Process., 
24(10), 1270-1284. 

McMillan, H., B. Jackson, M. Clark, D. Kavetski, and R. Woods (2011), Rainfall uncertainty in 
hydrological modelling: An evaluation of multiplicative error models, J. Hydrol., 400(1-2), 83-94. 

Molini, A., L. G. Lanza, and P. La Barbera (2005), The impact of tipping-bucket raingauge 
measurement errors on design rainfall for urban-scale applications, Hydrol. Process., 19(5), 1073-
1088. 

Moradkhani, H., and S. Sorooshian (2008), General Review of Rainfall-Runoff Modeling: Model 
Calibration, Data Assimilation, and Uncertainty Analysis, in Hydrological Modelling and the 
Water Cycle: Coupling the Atmosheric and Hydrological Models, edited by S. Sorooshian, K. L. 
Hsu, E. Coppola, B. Tomassetti, M. Verdecchia and G. Visconti, pp. 1-24. 

Author-produced version of the article published in 
Water Resources Research (2011) vol. 47, doi : 10.1029/2011WR010643 

The original publication is available at http://www.agu.org/journals/wr/ 



Moradkhani, H., K. L. Hsu, H. Gupta, and S. Sorooshian (2005a), Uncertainty assessment of 
hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water 
Resources Research, 41(5). 

Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005b), Dual state–parameter 
estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28, 135-147. 

Moradkhani, H., K. Hsu, Y. Hong, and S. Sorooshian (2006), Investigating the impact of remotely 
sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting, 
Geophys. Res. Lett., 33(12). 

Moulin, L., E. Gaume, and C. Obled (2009), Uncertainties on mean areal precipitation: assessment 
and impact on streamflow simulations, Hydrol. Earth Syst. Sci., 13(2), 99-114. 

Moyeed, R. A., and R. T. Clarke (2005), The use of Bayesian methods for fitting rating curves, 
with case studies., Adv. Water Resour., 28, 807-818. 

Onibon, H., T. Lebel, A. Afouda, and G. Guillot (2004), Gibbs sampling for conditional spatial 
disaggregation of rain fields, Water Resources Research, 40(8). 

Oudin, L., C. Perrin, T. Mathevet, V. Andreassian, and C. Michel (2006), Impact of biased and 
randomly corrupted inputs on the efficiency and the parameters of watershed models, J. Hydrol., 
320(1-2), 62-83. 

Perrin, C., C. Michel, and V. Andreassian (2003), Improvement of a parsimonious model for 
streamflow simulation, J. Hydrol., 279(1-4), 275-289. 

Rajaram, H., and K. P. Georgakakos (1989), Recursive Parameter-Estimation of Hydrologic-
Models, Water Resources Research, 25(2), 281-294. 

Reggiani, P., M. Renner, A. H. Weerts, and P. van Gelder (2009), Uncertainty assessment via 
Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting 
system, Water Resources Research, 45. 

Reichert, P., and J. Mieleitner (2009), Analyzing input and structural uncertainty of nonlinear 
dynamic models with stochastic, time-dependent parameters, Water Resources Research, 45. 

Reichle, R. H. (2008), Data assimilation methods in the Earth sciences, Adv. Water Resour., 
31(11), 1411-1418, doi: 10.1016/j.advwatres.2008.01.001. 

Reichle, R. H., D. B. McLaughlin, and D. Entekhabi (2002), Hydrologic data assimilation with the 
ensemble Kalman filter, Monthly Weather Review, 130(1), 103-114. 

Reitan, T., and A. Petersen-Overleir (2009), Bayesian methods for estimating multi-segment 
discharge rating curves, Stochastic Environmental Research and Risk Assessment. In press. 

Renard, B., D. Kavetski, M. Thyer, G. Kuczera, and S. W. Franks (2010), Understanding predictive 
uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, Water 
Resources Research, 46. 

Rougier, J. C. (2007), Probabilistic Inference for Future Climate Using an Ensemble of Climate 
Model Evaluations, Clim. Change, 81, 247-264. 

Salamon, P., and L. Feyen (2009), Assessing parameter, precipitation, and predictive uncertainty in 
a distributed hydrological model using sequential data assimilation with the particle filter, J. 
Hydrol., 376(3-4), 428-442. 

Author-produced version of the article published in 
Water Resources Research (2011) vol. 47, doi : 10.1029/2011WR010643 

The original publication is available at http://www.agu.org/journals/wr/ 



Salamon, P., and L. Feyen (2010), Disentangling uncertainties in distributed hydrological modeling 
using multiplicative error models and sequential data assimilation, Water Resources Research. in 
press. 

Schoups, G., and J. A. Vrugt (2010), A formal likelihood function for parameter and predictive 
inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors, Water 
Resour. Res., 46(10), W10531, doi: 10.1029/2009wr008933. 

Seo, D.-J., H. D. Herr, and J. C. Schaake (2006), A statistical post-processor for accounting of 
hydrologic uncertainty in short-range ensemble streamflow prediction, Hydrology and Earth 
System Sciences - Discussion, 3, 1987-2035. 

Severino, E., and T. Alpuim (2005), Spatiotemporal models in the estimation of area precipitation, 
Environmetrics, 16, 773-802. 

Smith, P. J., K. J. Beven, and J. A. Tawn (2008), Detection of structural inadequacy in process-
based hydrological models: A particle-filtering approach, Water Resources Research, 44(1), doi: 
10.1029/2006WR005205. 

Smith, T., A. Sharma, L. Marshall, R. Mehrotra, and S. Sisson (2010), Development of a formal 
likelihood function for improved Bayesian inference of ephemeral catchments, Water Resources 
Research, 46, doi: W12551 

10.1029/2010wr009514. 

Spiegelhalter, D. J., A. Thomas, and N. G. Best (2003), WinBugs, Version 1.4, User Manual, 
Institute of Public Health, Cambridge, UK 

Spiegelhalter, D. J., N. G. Best, B. R. Carlin, and A. van der Linde (2002), Bayesian measures of 
model complexity and fit, J. R. Stat. Soc. Ser. B-Stat. Methodol., 64, 583-616. 

Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Srikanthan (2009), Critical 
evaluation of parameter consistency and predictive uncertainty in hydrological modelling: a case 
study using bayesian total error analysis, Water Resources Research, 45. 

Todini, E. (2008), A model conditional processor to assess predictive uncertainty in flood 
forecasting, International Journal of River Basin Management 6(2), 123-137. 

Tompson, A. F. B., R. Ababou, and L. W. Gelhar (1989), Implementation of the 3-Dimensional 
Turning Bands Random Field Generator, Water Resources Research, 25(10), 2227-2243. 

Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore (2008), Rainfall and sampling 
uncertainties: A rain gauge perspective, J. Geophys. Res.-Atmos., 113(D11). 

Vischel, T., T. Lebel, S. Massuel, and B. Cappelaere (2009), Conditional simulation schemes of 
rain fields and their application to rainfall-runoff modeling studies in the Sahel, J. Hydrol., 375(1-
2), 273-286. 

Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved 
treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization 
and data assimilation, Water Resources Research, 41(1). 

Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008), Treatment of 
input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte 
Carlo simulation, Water Resour. Res., 44. 

Author-produced version of the article published in 
Water Resources Research (2011) vol. 47, doi : 10.1029/2011WR010643 

The original publication is available at http://www.agu.org/journals/wr/ 



Weerts, A. H., and G. Y. H. El Serafy (2006), Particle filtering and ensemble Kalman filtering for 
state updating with hydrological conceptual rainfall-runoff models, Water Resources Research, 
42(9). 

Willems, P. (2001), Stochastic description of the rainfall input errors in lumped hydrological 
models, Stoch. Environ. Res. Risk Assess., 15(2), 132-152. 

Young, P. (1998), Data-based mechanistic modelling of environmental, ecological, economic and 
engineering systems, Environmental Modelling & Software, 13(2), 105-122. 

Young, P., P. McKenna, and J. Bruun (2001), Identification of non-linear stochastic systems by 
state dependent parameter estimation, International Journal of Control, 74(18), 1837-1857. 

 

 

Author-produced version of the article published in 
Water Resources Research (2011) vol. 47, doi : 10.1029/2011WR010643 

The original publication is available at http://www.agu.org/journals/wr/ 



Appendix A. Details of the TBM rainfall generator 

The models given in Table A 1 apply to the point-process generating (unobserved) instantaneous 

rainfall. Moreover, the variograms are those used to generate Gaussian random fields, and may 

differ from the empirical variograms of observed data. The following steps are necessary: 

Step 1: Pass from Gaussian to real space 

A Gaussian field U = U(x,y,t) generated using the variograms in Table A 1 is transformed into a 

real-space random field R = R(x,y,t) using the following transformations: 

  
10 if ( , , ) ( )

For the indicator field: ( , , )
1 otherwise

IU x y t
R x y t

  
 


ζ

 1For the non-zero field: ( , , ) ( ( ( , , )))WR x y t F U x y t   

where   is the standard Gaussian cdf and  is the cdf of the at-site distribution in Table A 1. WF

These transformations alter the correlations of the transformed field, which will not match those of 

the Gaussian field. The variograms  and I W   in real space are therefore derived as follows: 

 For the indicator field, an exact formula can be used, 

 *arcsin ( )/2
1

0

( )
( ) exp

1 cos

I d

I
I d d

t




 

   


ζ
t

d

 

 For the non-zero field, the transformation is assumed to affect only the sill of the variogram, 

*( ) Var[ ] ( )W Wd W   , 

where Var[W] is the variance of the at-site distribution (Table A 1). Simulation studies 

suggest that this is a reasonable hypothesis when the coefficient of variation of the at-site 

distribution is moderate. 
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Step 2: Convert partial variograms into the total variogram 

Given the variograms of the indicator field I and the non-zero field W, the variogram ( )d  of the 

rainfall field Z = I*W can be derived as follows [Lepioufle, 2009]: 

 ( ) 1 ( ) ( ) 2 ( ) ( )I I W I Trd d d d      ζ d  

where ( )Tr d  is the transition variogram between zero and non-zero rainfall. If I and W are 

independent, this variogram does not depend on the distance d and is equal to [Lepioufle, 2009]: 

2 Var[ ]
( )

2
W

Tr

W
d 


μ

 

Step 3: Convert simultaneous rainfall into cumulated rainfall  

The variogram ( )d  describes the instantaneous rainfall field, yet the observed data are rainfall 

cumulated over a given duration (e.g., one hour). It is therefore necessary to derive the variogram 

of the cumulated rainfall field.  

Let 1 1 2 2( , ) and ( , )x y x y 2 be two pixels in the simulation domain, and 1  and    two time points. 

 2
1 1 2 2 2 1 2 1( , );( , ) ( ) ( )Sh d x y x y x x y y   2 2  is the spatial distance between 

1 1 2 2( , ) and ( , )x y x y . The spatial variogram of the rainfall cumulated over a duration D can be 

derived as follows [e.g., Journel and Huijbregts, 1978]: 

   1 1 1 2 2 2 1 2 1 2 1 22 2
[0; ] [0; ]

1 1
( ) ( ( , , ); ( , , ) ) ( (0,0, ); (0,0, ) )D S T S T

D D

h d x y x y d d d d
D D

d               

Step 4: Estimation 

( )D h  is the spatial variogram of observed data cumulated over a duration D. The parameters in 

Table A 1 can therefore be estimated by fitting the variograms 
1
( ),..., ( )

kD Dh h   to the empirical 

variograms of observed data cumulated over durations D1…Dk. A simple least-square fitting 

criterion is used in this case study, with durations 1, 3, 6, 12 and 24 hours. The inferred parameters 

are given in Table A 2. 
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Figure 1. Derivation of partial predictive uncertainties from the MCMC analysis of the joint 

BATEA posterior. Here,  is the ith MCMC sample, i = 1:Nsim 

and 

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1( , , , ,i i i i i i i i

            

1 1
, )

)

1( , , ,            
    

 is a selected point-estimate of inferred quantities on which the 

PPDs are conditioned (in this study, the modal values are used). 

Figure 2. Data and model used in the case study. (a) Map of the Yzeron catchment; (b) rainfall 

(R3D) and runoff time series; (c) schematic of GR4J [adapted from Perrin et al., 2003]. 

Figure 3. Examples of conditional rainfall replicates (“CS replicates”) over the Yzeron catchment. 

Here, 3 replicates comprising 4 consecutive hourly steps are shown. 

Figure 4. Comparison of the CS replicates to catchment-average R3D rainfall estimates. (a) Time 

series, dots = R3D, lines = replicates; (b) standard deviation of replicates; (c) mean of replicates; 

(d) rainfall multiplier. 

Figure 5. Evaluation of the predictive distribution of daily rainfall obtained using CS against the 

three R3D raingauges (each symbol corresponding to a specific raingauge). P-values on the 

bisector line indicate statistically reliable predictions. (a) non-zero rainfalls smaller than 2 mm; (b) 

rainfalls larger than 2 mm. 

Figure 6. Heteroscedastic model of runoff measurement errors estimated from rating curve analysis 

of the Yzeron catchment. 

Figure 7. Evaluation of the predictive distributions of runoff estimated using different BATEA 

schemes. The PQQ plot for observed runoff in validation is shown for: (a) all runoffs; and (b) 

runoffs exceeding 2 mm. 

Figure 8. Total predictive uncertainty for the five largest events of the validation period. Each 

column depicts a different storm event. Shaded areas represent 50 and 90% predictive intervals 

(from darkest to lightest), the black line represents the predictive median. Observed runoff values 

are shown with dots. 

Figure 9. Decomposition of the predictive uncertainty estimated using the OIS-CS scheme. 

Observed runoff values are shown with dots. Shaded areas represent 50 and 90% predictive 

intervals (from darkest to lightest) for the total predictive distribution, thick lines represent 90%  

predictive intervals for the partial predictive distribution. The figure shows the contribution of 
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output and remnant errors (first row), structural errors (second row), and input errors (third row). In 

this case study, structural uncertainty appears dominant. 

Figure 10. Posterior diagnostics for the rainfall error model in the OIS-CS scheme. (a) QQ plot of 

estimated rainfall multipliers (posterior mode). The red line represents the truncated Gaussian 

distribution, grey bars represent 90% posterior intervals for each multiplier; (b) autocorrelation 

function of estimated rainfall multipliers; (c) prior vs. posterior estimates of true rainfall (90% 

intervals are shown); (d) uncertainty reduction factor (URF), defined as the ratio of posterior and 

prior standard deviations of individual rainfall multipliers. 

Figure 11. Posterior diagnostics for the structural error model in the OIS-CS scheme. (a) QQ plot of 

estimated θ1 values (posterior mode). The red line represents the truncated Gaussian distribution, 

grey bars represent 90% posterior intervals for each θ1 value; (b) autocorrelation function of 

estimated θ1 values; (c) content (thin black line) and stochastic capacity (thick red line) of the 

production store; (d) content (thin black line) and capacity (thick red line) of the routing store. 

Figure 12. Diagnostics of standardized residuals (which represent combined runoff and remnant 

errors). Dashed lines indicate significance limits (level  = 5%). 
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Table 1. Summary of calibration schemes and MCMC convergence results. 

Rainfall errors Runoff errors Stochastic parameter Remnant errors 
RR model 
parameters 

Case study details 

Convergence Name 

Model 
Prior 
p(R) 

Prior 

  Rp  Model 
Prior 

 Qp  Model 
Prior 

 p  Model 
Prior 

 p 
Prior  p 

Number 
of inferred 
quantities

Iteration 
(x 103) 

CPU time  
(hour)$ 

SLS n/a n/a n/a n/a n/a n/a n/a Eq. (8) Vague Vague 5 0.6 0.01 

OI Eq. (16) Vague Vague Eq. (17) Dirac£ n/a n/a Eq. (8) Vague Vague 173 259.5 3.28 

OI-CS Eq. (16) Eq. (15) Vague Eq. (17) Dirac£ n/a n/a Eq. (8) Vague Vague 173 10.5 0.23 

OIS Eq. (16) Vague Vague Eq. (17) Dirac£ Eq. (18) Vague Eq. (8) Vague Vague 268   

OIS-CS Eq. (16) Eq. (15) Vague Eq. (17) Dirac£ Eq. (18) Vague Eq. (8) Vague Vague 268 647.0 16.55 

£ Parameters a and b of eqn (17) are fixed at their estimated values. 

$ 2.4 GHz desktop CPU 
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Table 2. Rainfall and structural uncertainty estimated as part of the hydrological model 

inference using BATEA. The posterior medians are reported, followed by the corresponding 

posterior standard deviations. 

  Rainfall multipliers Stochastic 1  

  Mean Standard deviation Mean Shtandard deviation 

OI 0.20 ± 0.17 1.54 ± 0.15 - - 

OI-CS 1.18 ± 0.03 0.30 ± 0.03 - - 

OIS-CS 1.15 ± 0.03 0.27 ± 0.02 218 ± 23 84 ± 17 
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Table A 1. Geostatistical rainfall models used in this case study. The parameters are indicated in bold font. 

 Indicator field I(x,y,t) Non-zero rainfall field W(x,y,t) 

At-site 
distribution 

Binomial, Pr( ( , , ) 0) II x y t   ζ  Inverse Gaussian, 
2

3 2

( )
( ) exp

2 2
W W W

W
W

w
p w

w w
 

  
 

λ λ μ

μ
 

Spatio-temporal 
distance 

     2 2 2
1 1 1 2 2 2 1 1 2 2 1 2

2 2 2 2
2 1 2 1 2 1

( , , ); ( , , ) ( , ); ( , ) ;

( ) ( ) ( )

S T S I T

I

d x y t x y t d x y x y d t t

x x y y t t

  

     

α

α

     2 2 2
1 1 1 2 2 2 1 1 2 2 1 2

2 2 2 2
2 1 2 1 2 1

( , , ); ( , , ) ( , ); ( , ) ;

( ) ( ) ( )

S T S W T

W

d x y t x y t d x y x y d t t

x x y y t t

  

     

α

α

Variogram (in 
Gaussian space) 

Spherical, 

3

* 3

3
 if 

( ) 2 2

1 otherwise

I
I I I

d d
d

d


  



ρ
ρ ρ  Spherical, 

3

* 3

3
 if 

( ) 2 2

1 otherwise

W
W W W

d d
d

d


  



ρ
ρ ρ  

 

Table A 2. Estimated parameters and simulation grid for the geostatistical models. 

 Indicator field I(x,y,t) Non-zero field W(x,y,t) 

At-site distribution 0.58I   1.13; 0.36W W μ λ  

Spatio-temporal 
distance 

10I α km.h-1 10W α  km.h-1 

Variogram 
(in Gaussian space) I ρ 30 km W ρ 30 km 

Simulation grid 500 m;  500 m;  1 hourx y t  δ δ δ  
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