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X - 2 RENARD: HIERARCHICAL REGIONAL ESTIMATION

Abstract. Regional Frequency Analysis (RFA) has a long history in Hy-3

drology, and numerous distinct approaches have been proposed over the year4

to perform the estimation of some hydrologic quantity at a regional level.5

However, most of these approaches still rely on strong hypotheses that may6

limit their application and complicate the quantification of predictive un-7

certainty. The objective of this paper is to propose a general Bayesian hi-8

erarchical framework to implement RFA schemes that avoid these difficul-9

ties. The proposed framework is based on a two-level hierarchical model. The10

first level of the hierarchy describes the joint distribution of observations. An11

arbitrary marginal distribution, whose parameters may vary in space, is as-12

sumed for at-site series. The joint distribution is then derived by means of13

an elliptical copula, therefore providing an explicit description of the spa-14

tial dependence between data. The second level of the hierarchy describes15

the spatial variability of parameters using a regression model that links the16

parameter values with covariates describing site characteristics. Regression17

errors are modeled with a Gaussian spatial field which may exhibit spatial18

dependence. This framework enables performing prediction at both gauged19

and ungauged sites and, importantly, rigorously quantifying the associated20

predictive uncertainty. A case study based on annual maxima of daily rain-21

fall demonstrates the applicability of this hierarchical approach. Although22

numerous avenues for improvement can already be identified (amongst which23

the inclusion of temporal covariates to model time variability), the proposed24
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model constitutes a general framework for implementing flexible RFA schemes25

and quantifying the associated predictive uncertainty.26
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X - 4 RENARD: HIERARCHICAL REGIONAL ESTIMATION

1. Introduction

1.1. Standard implementations of regional frequency analysis

The purpose of Regional Frequency Analysis (RFA) is to estimate the distribution of27

some hydrologic variable (e.g. annual maximum rainfall or runoff) using data from several28

sites. Compared with standard at-site frequency analysis, RFA attempts to improve the29

precision of estimates by sharing the information stemming from similar sites. Moreover,30

RFA enables estimation at ungauged or poorly gauged sites by transferring the information31

arising from neighboring gauging stations.32

Numerous approaches have been proposed to implement RFA schemes. Amongst them,33

the index flood method proposed by Dalrymple [1960] is still widely used in engineering34

practice. It is based on a scale invariance hypothesis: within an homogeneous region,35

distributions from all sites are assumed identical, up to a scale factor, termed the index36

flood. The implementation of the index flood method can be summarized in three steps37

[e.g., Hosking and Wallis , 1997]: (i) delineation of an homogeneous region; (ii) estimation38

of the common regional distribution, based on scaled at-site data (i.e. divided by the index39

flood); (iii) transfer of information to ungauged or poorly gauged site using a regression40

model linking the index flood values with site characteristics.41

The index flood method is widely used due to its ease of implementation and its robustness.42

However, its basic implementation is affected by several limitations:43

• The delineation of homogeneous regions, where the scale invariance assumption holds,44

is far from obvious.45

• The scale invariance assumption might simply be too restrictive is some cases.46
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• In most cases, the index flood is defined as the mean or the median of at-site data,47

but the physical reasons behind this choice are unclear.48

• The regional distribution is estimated by pooling scaled at-site data, and treating49

them as is they were independent, which is rarely the case.50

• Standard regression methods like ordinary least squares might be statistically in-51

efficient because index flood values are statistics (as opposed to observations), and are52

therefore affected by estimation errors that may be dependent in space and whose prop-53

erties may vary from site to site.54

• The previous points make the quantification of the total predictive uncertainty chal-55

lenging.56

A wealth of research has been carried out over the years, either to improve the imple-57

mentation of the index flood method, or to generalize it by abandoning some of its most58

restrictive assumptions (in particular, scale invariance). A non-exhaustive list of exam-59

ples includes the work by Ouarda et al. [2001] on the concept of homogeneous region,60

the studies by Stedinger [1983] and Hosking and Wallis [1988] on estimating the regional61

distribution with spatially dependent data, or the extension to peak-over-threshold series62

of Madsen and Rosbjerg [1997] and Ribatet et al. [2007].63

The transfer of information from gauged to ungauged site and the quantification of the64

associated predictive uncertainty has been a topic of particular attention [e.g., Stedinger65

and Tasker , 1985, 1986; Reis et al., 2005; Kjeldsen and Jones , 2009a; Micevski and Kucz-66

era, 2009]. Indeed, this transfer relies on a regression model linking the index flood values67

(estimated at gauged sites) and site characteristics. Stedinger and Tasker [1985, 1986]68

introduced the Generalized Least Squares (GLS) approach to account for both the het-69
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eroscedastic and spatially dependent nature of sampling errors (i.e., errors in estimating70

the index flood at gauged sites) and the existence of regression errors. Robson and Reed71

[1999] and Kjeldsen and Jones [2009a] further generalized the GLS approach by consid-72

ering spatially dependent regression errors.73

Despite these advances, GLS-based transfer of information from gauged to ungauged site74

still relies on the following two-step procedure:75

1. Local estimation: an index flood is first chosen (e.g. the at-site mean or median),76

and is estimated at each gauged site. This estimation is affected by sampling errors,77

which are spatially dependent and whose variance varies from site to site. Consequently,78

the covariance matrix Σ̂ of sampling errors is also estimated;79

2. Regional estimation: A regression model is estimated to link the index flood value80

with site/catchment characteristics. Importantly, the estimation of the regression model81

accounts for the existence of sampling errors in a GLS framework, and is hence performed82

conditionally on Σ̂. Also note that estimating a regression model is not restricted to esti-83

mating the regression coefficients, but also involves estimating the properties of regression84

errors, i.e. their covariance matrix Γ̂. This is of primary importance since this matrix85

plays an important role in the predictive uncertainty at ungauged sites.86

Such a two-step procedure might be problematic in the context of quantifying the total87

predictive uncertainty. Indeed, estimates at step 2 are conditional on estimates at step 1.88

In particular, the covariance matrix Σ̂ is an estimate, and may itself be in error (see e.g.89

the discussion in Stedinger and Tasker [1985] and Kroll and Stedinger [1998] on desirable90

properties of Σ̂). Such error may then propagates to step 2. Consequently, it would91

be desirable to avoid separating the inference process in two separate steps: this can be92
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achieved using hierarchical models (see following section 1.2).93

In addition to these issues related to the estimation procedure, the assumptions underlying94

index flood approaches remain questionable. Indeed, the scale invariance assumption is95

convenient because it merges all spatial variability into a single parameter (the index-flood96

parameter). However, this assumption forces the coefficient of variation of data to remain97

constant throughout an homogeneous region: this might be too restrictive in some regions,98

or it might force to drastically reduce the spatial extent of the region to ensure the scale99

invariance hypothesis is met. Several alternatives have therefore been proposed to move100

beyond this restrictive framework, in particular region of influence approaches [Burn, 1990]101

and recent developments [Kjeldsen and Jones , 2009b], normalized quantile regression [Fill102

and Stedinger , 1998] or empirical Bayes procedures [Kuczera, 1982a, b, 1983] (see also the103

discussion provided by Griffis and Stedinger [2007]).104

1.2. Bayesian hierarchical models

An alternative approach, based on Bayesian hierarchical models, has been explored105

more recently. In particular, Wikle et al. [1998] proposed a general hierarchical frame-106

work to describe the spatial variability of the distribution of some environmental variable.107

The principle of a hierarchical model is to use several modeling layers. For instance, a108

first layer may assume that the data follow some distribution with unknown parameters,109

while a second layer may model the variability of those parameters in space, using some110

regression model. This closely corresponds to the successive steps involved in the stan-111

dard implementation of RFA approaches. However, the main advantage of a hierarchical112

model is that all unknown quantities can be inferred simultaneously, therefore accounting113

for possible interactions between estimation errors made at different layers and yielding114
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a more rigorous quantification of the predictive uncertainty. In other words, hierarchical115

models allow describing the local variability of data together with their regional coherence,116

without separating the inference process in several steps. Moreover, such models are more117

general than the model underlying the index flood approach, since they do not require118

assuming scale invariance.119

Several applications of Bayesian hierarchical models in a hydrological context have been120

proposed in the literature. For instance, Cooley et al. [2007] described the spatial variabil-121

ity of extreme rainfall, while Aryal et al. [2009] extended this description to both spatial122

and temporal variability. Similarly, Lima and Lall used Bayesian hierarchical models to123

describe daily rainfall occurrences [Lima and Lall , 2009] or runoff extremes [Lima and124

Lall , 2010] in a regional context. In addition to these hydrological applications, similar125

Bayesian hierarchical models have been used in other fields, e.g. for extreme wind speed126

modeling [Coles and Casson, 1998; Casson and Coles , 1998, 2000].127

Despite improving the standard implementation of RFA approaches, all Bayesian hierar-128

chical models described above rely on an assumption of conditional independence: data129

are assumed spatially independent given the values of their distribution’s parameters.130

This would be a valid assumption if most spatial covariation in the data was explained131

by the spatial covariation in the parameters. However, it is questionable since spatial132

dependence between data in the one hand and parameters in the other hand arise from133

distinct processes, as noted by Cooley et al. [2007]: in a nutshell, data dependence can be134

interpreted as weather spatial dependence, while dependence between parameters (also135

termed process dependence) relates to climate spatial dependence. Weather should ex-136

hibit spatial dependence (at least within a short distance range), even if the climate were137
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perfectly known.138

Examples of spatial hierarchical models explicitly accounting for intersite dependence in139

the observations are very few. Perreault [2000] proposed such a model to detect a re-140

gional step-change in annual runoff. Alternatively, Micevski et al. [2006] and Micevski141

[2007] proposed a Bayesian hierarchical regional flood model accounting for data depen-142

dence. However, in both cases, the explicit description of data dependence was rooted to143

a particular distributional assumption: Gaussian data were assumed by Perreault [2000],144

whileMicevski et al. [2006] andMicevski [2007] used a mixture of log-normal distributions.145

Unfortunately, Gaussian-related assumptions may be too restrictive for other hydrologic146

variables or in other geographical contexts.147

1.3. Objectives

Building on previous work described in the preceding sections, this paper aims to derive148

a general Bayesian hierarchical framework for RFA. In particular, this framework should149

enable an explicit description of spatial dependence between data, without relying on150

Gaussian-related distributional assumptions. This is achieved by means of the elliptical151

copula family [Genest and Favre, 2007], which constitutes a convenient tool to model152

dependence in a highly dimensional and non-Gaussian context.153

The paper is organized as follows. Section 2 describes the two-level hierarchical framework,154

with level 1 modeling the joint distribution of observations and level 2 modeling the155

variation of the distribution’ parameters in space. Section 3 describes the inference of the156

hierarchical model and its use for prediction at both gauged and ungauged sites. Section157

4 illustrates the application of the proposed framework for the regional estimation of158
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extreme rainfall. Avenues for further improvement are identified and discussed in section159

5, before summarizing the main results in section 6.160

2. A Bayesian hierarchical modeling framework

2.1. Data level

Let Y (s, t) denote the variable of interest at site s and time t. For instance, Y (s, t) may161

represent the annual maximum daily rainfall at site s and year t. Let us further assume162

that observations are available at sites s̃1,..., s̃M and times t=1:T. The (T×M) observation163

matrix is denoted by ỹ = (ỹ(s̃1), ..., ỹ(s̃M)), with ỹ(s̃i) = (ỹ(s̃i, t))t=1:T denoting the time164

series of observations at a given site s̃k. The shorthand notation ỹ(t) = (ỹ(s̃i, t))i=1:M is165

also used to denote the (spatial) vector of observations at a given time t. Note that this166

notation assumes that all sites share the same observation period. Although considering167

non-concomitant observation periods would not affect the modeling hypotheses, it would168

certainly create tedious notation and complicate the model implementation (see discussion169

in section 5.1).170

2.1.1. At-site distribution171

At an arbitrary site s within the area of study, and at any time t, Y (s, t) is assumed to be172

a realization from a given distribution whose parameters vary in space (see left-hand-side173

of Figure 1):174

Y (s, t) ∼ p(θ(s)) (1)

RFA involves estimating the parameter vector θ(s) at any (gauged or ungauged) site s.175

In order to avoid confusion with other parameters that will be introduced later on, the176

term ”D-parameters” is systematically used to denote the parameters θ(s) = (θk(s))k=1:D177

D R A F T August 11, 2011, 6:16am D R A F T

Author-produced version of the article published in Water Resources Research (2011) vol. 47, doi : 0.1029/2010WR010089. 
The original publication is available at http://www.agu.org/journals/wr/



RENARD: HIERARCHICAL REGIONAL ESTIMATION X - 11

of the parent distribution. Note that D-parameters are allowed to vary in space but not in178

time. An extension of the framework for allowing time-varying D-parameters is possible179

but is left for future work, since this paper mainly focuses on spatial aspects.180

2.1.2. Joint distribution181

In a spatial context, the derivation of the likelihood of observations ỹ requires knowing182

the multivariate distribution of the spatial observation vector ỹ(t) at any time t. An183

assumption often made (explicitly or implicitly) by some regional estimation methods is184

that the data are spatially independent. In this case, the multivariate pdf is simply equal185

to the product of marginal pdfs in (1). Implications of this assumption are discussed186

by e.g. Stedinger [1983], Hosking and Wallis [1988], Madsen and Rosbjerg [1997] and187

Renard and Lang [2007]. In particular, these authors demonstrate that the variance (i.e.188

the uncertainty) of estimated quantities is underestimated when data do not support the189

independence assumption.190

One of the main objectives of the framework presented in this paper is to overcome this191

limitation, by explicitly modeling spatial dependence. The approach taken to achieve192

this objective has to account for two important points: (i) it has to be applicable for an193

arbitrary choice of marginal distribution in (1); (ii) since regional analysis may involve194

hundreds of sites, it has to remain practical with high-dimensional data.195

Point (i) above makes copulas a natural candidate to model dependence in the context196

of this framework. Indeed, the copula theory is based on the description of the depen-197

dence structure independently of marginal distributions [e.g., Favre et al., 2004]. Point198

(ii) suggests focusing on the elliptical copula family, because of its ability to describe high-199

dimensional datasets. A thorough description of the elliptical copula family can be found200
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X - 12 RENARD: HIERARCHICAL REGIONAL ESTIMATION

in the paper by Genest and Favre [2007], and a summary of the main characteristics of201

two particular members (the Gaussian and the Student copulas) is given in Appendix A.202

A M -dimensional elliptical copula is parameterized by a (M×M) symmetric dependence203

matrix Σ describing pairwise dependences. Additional parameters η may be used for204

some members of the family (e.g. the Student copula) to describe the strength of tail205

dependence. The multivariate distribution is finally derived by combining this depen-206

dence structure with the marginal distributions given by equation (1) (see Appendix A207

for details). An example of application of an elliptical copula (the Gaussian copula) to208

regional frequency analysis is given by Renard and Lang [2007].209

Formally, it is assumed that the multivariate distribution of data from any set of210

M sites can be derived from an M -dimensional elliptical copula, with pairwise de-211

pendence matrix Σ, additional dependence parameters η and marginal distributions212

{p(θ(s1)), ..., p(θ(sM))}:213

(Y (s1, t), ..., Y (sM , t)) ∼ ECM(Σ,η, {θ(s1), ...,θ(sM)}) (2)

The symbol ECM stands for ”M-dimensional Elliptical Copula”, and analytical formulas214

for the corresponding joint pdf are given in Appendix A .215

In order to simplify the model, it is further assumed that the dependence between data216

from two sites solely depends on the inter-site distance. An analogy can be drawn with217

the common treatment of stationary and isotropic spatial random fields in geostatistics218

[e.g., Chiles and Delfiner , 1999]. It follows that the elements of the pairwise dependence219

matrix Σ can be expressed as a function of the inter-site distance, parameterized by some220

vector ψ (see Figure 1):221
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Σ(i, j) = Ψ(∥si − sj∥ ;ψ) (3)

Note that the inter-site distance is not necessarily Euclidean in the bi-dimensional xy-222

space (geographical coordinates). For instance, a distance in the tri-dimensional space223

xy+elevation may be useful if inter-site dependence is lower for sites having contrasted224

elevations. More generally, the distance may depend on covariates other than geographi-225

cal coordinates [e.g., Cooley et al., 2007; Blanchet and Davison, 2011]. However, for the226

sake of simplicity, this is not made explicit in the notation of equation (3). This topic is227

further discussed in section 5.8.228

A valid dependence-distance function Ψ(.;ψ) must ensure the positive-definiteness of the229

dependence matrix Σ. Such a function can be chosen amongst the numerous covariogram230

models (e.g., exponential, spherical, Gaussian) existing in geostatistics. By analogy with231

the covariogram used in geostatistics, the dependence-distance model in (3) is termed232

”dependogram”. Note that a distinct naming convention is used because the elements233

of the matrix Σ are not equal to the covariances between data pairs, but rather to the234

dependence coefficients of the elliptical copula.235

It is stressed that the use of an elliptical copula to model spatial dependence is mo-236

tivated by practical considerations. Although the elliptical family is quite flexible (in237

particular, it encompasses tail-dependent and tail-independent models), there can be no238

guarantee that an elliptical copula will be able to model the data at hand. In particu-239

lar, a multivariate distribution derived from an elliptical copula is not compatible with240

the family of multivariate extreme value distributions [Mikosch, 2005]. It follows that241

the use of the elliptical copula model in extrapolation to estimate low probabilities (e.g.,242
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Pr(Y (s1, t) > u ∩ ... ∩ Y (sM , t) > u) for some large u) is likely to yield inaccurate re-243

sults. However, the aim of the framework presented in this paper is not to estimate the244

probability of extreme multivariate events, but rather to estimate the distribution of the245

variable of interest at any site, while accounting for the existence of dependences at ob-246

served levels. The implications of the elliptical copula assumption are more thoroughly247

discussed in section 5.2.248

2.2. Process level

Section 2.1 described the construction of the multivariate distribution of data by spec-249

ifying the following three components: (i) the at-site distribution (1); (ii) the elliptical250

copula (2) used to model spatial dependence; (iii) the dependogram (3). The second level251

of the hierarchical framework aims to describe the variation of the D-parameters in space,252

by means of a Gaussian spatial process whose mean depends on covariates describing the253

site (or catchment) characteristics (see right-hand-side of Figure 1).254

2.2.1. D-parameter regression model255

Let θ(s) = (θk(s))k=1:D be the D-parameter vector. A regression model is used to256

describe the spatial variation of each D-parameter θk(s) as follows:257

gk(θk(s)) = hk(xk(s);βk) + ϵk(s) (4)

Equation (4) uses the following components:258

1. One-to-one function gk is termed the ”link function” by analogy with generalized259

linear models [e.g., Dobson, 2001]. The identity function may be used in most cases.260

However, alternative functions might be useful for some D-parameters, e.g. a logarithm261
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RENARD: HIERARCHICAL REGIONAL ESTIMATION X - 15

function to ensure positivity or a logit function for a D-parameter comprised between zero262

and one.263

2. Vector xk(s) represents the set of covariates used to describe the characteristics264

of site (or catchment) s (e .g., elevation, distance to sea, catchment size, etc.). As in265

any regression framework, the choice of relevant covariates is of primary importance, and266

preliminary analyzes are often useful e.g. to eliminate highly correlated covariates.267

3. Function hk(.;βk) is the regression function, parameterized by a vector of regression268

parameters βk. The most common choice of regression function is the linear function269

hk(xk(s);βk) = xk(s)βk, but alternative functions may be used.270

4. ϵk(s) is the residual of the regression. It stems from the imperfect nature of the271

regression model, and is therefore termed ”regression error”. In the hierarchical model-272

ing context described in this paper, regression errors are treated as latent variables, i.e.273

unobserved variables that need to be inferred.274

2.2.2. Regression errors275

Regression errors ϵk = (ϵk(s))s=1:M are commonly assumed to be spatially independent276

[e.g., Stedinger and Tasker , 1985, 1986; Reis et al., 2005]. However, recent work by277

Kjeldsen and Jones [2009a] suggests that regression errors can be significantly dependent,278

especially for nearby sites and/or regression models with poor predictive ability. Ignoring279

spatial dependences between regression errors possibly affects regional frequency analysis280

in two distinct ways: (i) it may impact the accuracy and/or precision of estimates for the281

regression parameters; (ii) it may impact the predictive variance (i.e. the uncertainty in282

quantities estimated at ungauged sites) by not taking advantage of the regression errors283

estimated as nearby sites. Consequently, following Kjeldsen and Jones [2009a], regression284
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X - 16 RENARD: HIERARCHICAL REGIONAL ESTIMATION

errors are assumed to be a realization from a spatial Gaussian field with mean zero and285

covariance matrix Γk:286

(ϵk(s1), ..., ϵk(sM)) ∼ NM(0;Γk) (5)

A covariogram model is used to relate pairwise covariances to inter-site distances:287

Γk(i, j) = Υk(∥si − sj∥ ;υk) (6)

In a Bayesian hierarchical context, the Gaussian distribution used to describe regression288

errors is termed the hyper-distribution. Parameters υk defining the covariance matrix are289

termed the hyper-parameters (see Figure 1). Note that as in previous section 2.1.2, the290

inter-site distance is not necessarily Euclidean and can be interpreted in a wider sense.291

Moreover, note that regression errors ϵk(s) and ϵq(s) related to two distinct D-parameters292

θk(s) and θq(s) will be described by independently using equations (5-6) twice. This293

implies that an assumption of independence between regression errors ϵk(s) and ϵq(s) is294

effectively made. This assumption will be further discussed subsequently (see sections 4295

and 5.3).296

2.3. Remarks

In the hierarchical framework presented in previous sections, two distinct dependence297

structures are used: the dependogram (3) aims at describing dependence between obser-298

vations, while the covariogram (6) aims at describing dependence between the parameters299

of their distribution (or more accurately, between the errors of the regression linking the300

D-parameters with catchment/site characteristics). As explained in the introduction, the301

former structure relates to weather spatial dependence, while the latter relates to climate302
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spatial dependence [see also the discussion in Cooley et al., 2007]. These dependence303

structures play distinct roles in the context of regional frequency analysis: climate spa-304

tial dependence allows transferring information from gauged to ungauged sites, while the305

main effect of weather dependence is to diminish the information content of data collected306

at nearby sites. Consequently, both dependence structures are likely to have an impact307

on predictions and should therefore be accounted for. Note that the assumption of con-308

ditional independence frequently made in similar Bayesian hierarchical frameworks (see309

introduction) corresponds to forcing the dependence matrix Σ in equation (3) to unity.310

Moreover, the regression model of equation (4) yields several interesting particular cases311

when the regression errors are forced to zero:312

1. A purely local D-parameter (i.e. whose value is site-specific) can be obtained with313

the regression model θk(s̃) = β
(s̃)
k . This corresponds to introducing as many regression314

parameters β
(s̃)
k as there are sites, and use them to model a site effect. An obvious315

drawback of this approach is that the estimation at ungauged site s is not directly possible316

since the site effect β
(s)
k is unknown.317

2. A regional D-parameter (i.e. having an identical value for all sites within the region)318

corresponds to the regression model θk(s̃) = βk. This is a rather strong assumption,319

which may yield an underestimation of the predictive uncertainty. Indeed, in the absence320

of regression errors, the uncertainty in the estimation of θk is identical for all sites (gauged321

or not).322

3. The strong assumption that parameter θk(s̃) is identical for all sites can be relaxed323

by using a regression model gk(θk(s̃)) = hk(xk(s̃);βk). This corresponds to the ”covariate324

modeling” approach proposed by several authors [e.g., Katz et al., 2002; Maraun et al.,325
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2009]. However, the possible underestimation of predictive uncertainty in the absence of326

regression errors still holds.327

Lastly, the Bayesian hierarchical framework shares several similarities with the GLS328

approach proposed by Stedinger and Tasker [1985, 1986] and its latest developments by329

Kjeldsen and Jones [2009a]. Indeed, GLS also uses two spatial dependence structures: (i)330

the covariance matrix of sampling estimation errors (e.g., errors in estimating an index331

flood at gauged sites), which results from the spatially dependent nature of data; (ii) the332

covariance matrix of regression errors (termed model errors in the GLS approach). The333

framework presented in this paper therefore borrows from GLS the objective of modeling334

the spatial variability in the distinct sources of errors affecting RFA. However, it differs335

in its implementation. GLS first estimates the spatial variability of sampling errors, and336

then uses this estimation to fit the regression in a second step. By contrast, the proposed337

framework performs the inference in a single step, which facilitates the quantification of338

the total predictive uncertainty (see discussion in the introduction section). Moreover, the339

regression is applied on each parameter, while in general GLS is rather applied to a single340

hydrologic quantity (e.g. an index flood or a quantile, but see Tasker and Stedinger [1989]341

and Griffis and Stedinger [2007] for exceptions). This is a more general approach, at least342

in principle; however what level of model complexity can be identified given the limited343

information content of data remains an open question (this will be further discussed in344

section 5.5).345

3. Estimation and prediction
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3.1. Posterior distribution

The application of the hierarchical framework described in section 2 requires estimating346

the following unknown quantities:347

1. The dependogram parameters ψ348

2. Additional parameters of the elliptical copula η349

3. The regression parameters βk, for k = 1:D350

4. The regression errors ϵk, for k = 1:D (latent variables)351

5. The covariogram parameters υk, for k = 1:D (hyper-parameters)352

The posterior distribution of these quantities, given observations ỹ and covariates x,353

can be derived as follows:354

p(ψ,η,βk=1:D, ϵk=1:D,υk=1:D|ỹ,x)

∝ p(ỹ|ψ,η,βk=1:D, ϵk=1:D,υk=1:D,x)p(ψ,η,βk=1:D, ϵk=1:D,υk=1:D|x) (7a)

= p(ỹ|ψ,η,βk=1:D, ϵk=1:D,x)p(ψ,η,βk=1:D)p(ϵk=1:D,υk=1:D) (7b)

= p(ỹ|ψ,η,βk=1:D, ϵk=1:D,x)p(ψ,η,βk=1:D)p(ϵk=1:D|υk=1:D)p(υk=1:D) (7c)

The following assumptions have been made to derive this posterior distribution:355

1. Equation (7a) is a direct application of Bayes theorem.356

2. Equation (7b) assumes: (i) the prior distribution does not depend on covariates x ;357

(ii) prior independence between ψ,η,βk=1:D in the one hand, and ϵk=1:D,υk=1:D in the358

other hand. This assumption aims at isolating the hierarchical components of the model,359

i.e. ϵk=1:D and υk=1:D. Moreover, it is noted that the likelihood of observations can360

be derived without using the hyper-parameters υk=1:D. Indeed, regression errors ϵk=1:D361
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suffice to apply the regression model (4) and hence to derive D-parameters (see detailed362

derivation of the likelihood in following equation (9)).363

3. Equation (7c) is an application of conditional probability rules.364

The posterior distribution (7) is made up of the following components:365

1. The terms p(ψ,η,βk=1:D) and p(υk=1:D) are priors for the inferred parameters and366

hyper-parameters, respectively.367

2. The term p(ϵk=1:D|υk=1:D) represents the hierarchical part of the model. Assuming

regression errors ϵk related to different D-parameters θk are mutually independent yields:

p(ϵk=1:D|υk=1:D) =
D∏

k=1

fN(ϵk(s̃1), ..., ϵk(s̃M)|0,Γk(υk)) (8)

where Γk(υk) is the covariance matrix derived from the covariogram model (6) and368

fN(z|µ,Γ) represents the pdf of a multivariate normal distribution with mean µ and369

covariance matrix Γ. Note that the assumption that there is no cross-correlation between370

regression errors related to different D-parameters may be restrictive. This assumption371

will be evaluated in the case study (section 4) and will be further discussed in section 5.3.372

3. The term p(ỹ|ψ,η,βk=1:D, ϵk=1:D,x) is the likelihood of observations. Its derivation373

requires further explanation. At a given time step t, the likelihood of (spatial) observations374

ỹ(t) can be computed as follows:375

p(ỹ(t)|ψ,η,βk=1:D, ϵk=1:D,x) =

fEC (ỹ(t)|Σ(ψ),η, {[θk(xk(s̃1),βk, ϵk(s̃1))]k=1:D, ..., [θk(xk(s̃M),βk, ϵk(s̃M))]k=1:D}) (9)
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In equation (9), Σ(ψ) is the dependence matrix of the elliptical copula, derived from376

the dependogram model (3). For a given observation site s̃j, the kth D-parameter377

θk(xk(s̃j),βk, ϵk(s̃j)) is derived by applying the regression equation (4), i.e.:378

θk(xk(s̃j),βk, ϵk(s̃j)) = g−1
k (hk(xk(s̃j),βk) + ϵk(s̃j)) (10)

Lastly, fEC(z|Σ,η, {θ(s1), ...,θ(sM)}) represents the multivariate pdf of a M -dimensional379

vector z derived from the elliptical copula with pairwise dependence matrix Σ, additional380

dependence parameters η and marginal distributions {p(θ(s1)), ..., p(θ(sM))}, as detailed381

in Appendix A.382

Assuming temporal independence between observations ỹ(t), the likelihood of the whole383

observation matrix ỹ is simply obtained as follows:384

p(ỹ|ψ,η,βk=1:D, ϵk=1:D,x) =
T∏
t=1

p(ỹ(t)|ψ,η,βk=1:D, ϵk=1:D,x) (11)

3.2. Inference

The posterior distribution (7) poses a computational challenge because its dimension385

grows with the number of sites. This is due to the explicit modeling of regression errors386

through latent variables. Consequently, the number of quantities to be inferred from the387

posterior can amount to hundreds. This is typical of hierarchical models with latent vari-388

ables used to describe unobserved processes [e.g., Clark , 2005]. A Markov Chain Monte389

Carlo (MCMC) sampler is used to address this difficulty. It is stressed that MCMC sam-390

pling from high-dimensional posteriors is challenging but by no means insurmountable.391

Successful examples are provided by e.g. Crainiceanu et al. [2003]; Vrugt et al. [2008];392
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Thyer et al. [2009]; Reichert and Mieleitner [2009] in Hydrology, not to mention numer-393

ous applications in other fields [e.g., Clark , 2003, in ecology][Storz and Beaumont , 2002,394

in genetics,etc.].395

The MCMC sampler used in this paper is made up of two stages. Stage one makes use of396

an adaptive block Metropolis algorithm with univariate Gaussian jump distributions (i.e.397

components of the parameter vector are updated one at a time). The adaption strategy398

adjusts the jump variances to produce an adequate jump rate [see Renard et al., 2006, for399

a detailed description]. This first sampler is used to perform a preliminary exploration400

of the posterior distribution properties (notably in terms of posterior covariance). In401

the second stage, a standard Metropolis sampler [Metropolis and Ulam, 1949; Metropolis402

et al., 1953] is used, with a Gaussian jump distribution whose covariance matrix is speci-403

fied using the preliminary exploration performed at stage one. Convergence is assessed by404

evolving four parallel chains and verifying that the Gelman-Rubin criteria [Gelman et al.,405

1995] are close to one for all inferred quantities.406

Note that additional computing efficiency might be achieved in some cases by using con-407

jugate priors. However, this possibility is not investigated in this paper.408

3.3. Prediction at gauged site

Once inference has been performed using the MCMC strategy outlined above, the next409

step is to use the model to predict some quantity of interest. In this section, focus is410

on prediction at a gauged site s̃. A typical quantity of interest is the p-quantile of the411

distribution of observations at site s̃, which can be directly derived from D-parameters412

θ(s̃).413

In a Bayesian context, another interesting byproduct of the posterior distribution is the414
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predictive distribution of a (future) observation. In general, if Θ denotes the vector of all415

parameters subject to inference, the pdf of this predictive distribution, evaluated at some416

value w, is mathematically defined as follows [Gelman et al., 1995]:417

p(w|ỹ) =
∫
p(w|Θ)p(Θ|ỹ)dΘ (12)

In practice, this integration is not performed analytically but is approximated using the418

MCMC replicates from the posterior (7). The approximation algorithm simply consists419

in generating a value from the at-site distribution (1) for each MCMC replicate. The420

resulting sample is a realization from the predictive distribution and can therefore be421

used to estimate its characteristics (mean, variance, probability interval, etc.).422

Let us assume that MCMC sampling generated a set of nsim replicates from the posterior423

distribution, (ψ(j),η(j),β
(j)
k=1:D, ϵ

(j)
k=1:D,υ

(j)
k=1:D)j=1:nsim

. These replicates can be used to424

make a prediction at gauged site s̃ using the following algorithm:425

Do j = 1 : nsim426

1. compute D-parameters from the regression model (4), θ
(j)
k (s̃) = g−1

k

(
hk(xk(s̃),β

(j)
k ) + ϵ

(j)
k (s̃)

)
427

for k = 1 : D428

2. compute derived quantity z(j) = z(θ(j)(s̃)) (e.g., the T-year quantile) or generate a429

value from the at-site distribution w(j) ∼ p(θ(j)(s̃))430

The samples (z(j))j=1:nsim
and (w(j))j=1:nsim

can be considered as realizations from the431

posterior distribution of the quantity of interest and from the predictive distribution,432

respectively.433

3.4. Prediction at ungauged site
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The fundamental difference with the prediction approach presented in previous sec-434

tion 3.3 is that the regression error ϵk(s) has not been inferred for an ungauged site s.435

However, the properties of the hyper-distribution (5) have been inferred. Since the hyper-436

distribution is the joint distribution of a vector of regression errors, it can be used to437

indirectly infer the properties of the regression error ϵk(s) for the target ungauged site s.438

More precisely, the predictive distribution of the regression error ϵk(s), given observed439

data ỹ and covariates x, can be computed as follows:440

p(ϵk(s)|ỹ,x) =
∫
p(ϵk(s), ϵk(s̃1), ..., ϵk(s̃M),υk|ỹ,x)dϵk(s̃1)...dϵk(s̃M)dυk (13a)

=

∫
p(ϵk(s)|ϵk(s̃1), ..., ϵk(s̃M),υk, ỹ,x)p(ϵk(s̃1), ..., ϵk(s̃M),υk|ỹ,x)dϵk(s̃1)...dϵk(s̃M)dυk

(13b)

The second term in equation (13b) is the posterior distribution of (ϵk(s̃1), ..., ϵk(s̃M),υk).441

It can therefore be directly approximated using the MCMC replicates. The first term442

represents the distribution of the regression error ϵk(s) for the target ungauged site s,443

conditional on regression errors at gauged sites ϵk(s̃1)...ϵk(s̃M) and hyper-parameters υk.444

Following equation (5), the joint distribution of ϵk(s) and ϵk(s̃1)...ϵk(s̃M) (conditional445

on υk) is a multivariate Gaussian distribution with mean zero and covariance matrix446

Γk = Γk(υk) derived from the covariogram (6). Let us partition this covariance matrix as447

follows:448

Γk =

(
σ2
k Λk

Λt
k Ωk

)
(14)

where σ2
k is the marginal variance of regression errors, Ωk = Ωk(υk) is the M × M449

covariance matrix of regression errors at gauged sites ϵk(s̃1)...ϵk(s̃M), and Λk = Λk(υk)450
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is the 1×M vector of covariances between ϵk(s) and ϵk(s̃1)...ϵk(s̃M). Using a well-known451

formula for conditional Gaussian distributions, it follows that the conditional distribution452

in equation (13b) is a univariate Gaussian distribution with mean µk,cond and variance453

σ2
k,cond:454

p(ϵk(s)|ϵk(s̃1), ..., ϵk(s̃M),υk, ỹ,x) = N(µk,cond; σ
2
k,cond)

µk,cond = ΛkΩ
−1
k (ϵk(s̃1), ..., ϵk(s̃M))t

σ2
k,cond = σ2

k −ΛkΩ
−1
k Λt

k (15)

The conditional distribution in equation (15) complements the regression to transfer455

information from gauged to ungauged sites. Indeed, the vector Λk acts as a weight vector456

favoring gauged sites nearby the target ungauged site s. If ϵk(s) is independent from all457

ϵk(s̃j)’s, the conditional distribution is equal to the marginal distribution of regression458

errors, i.e. a Gaussian distribution with mean µk,cond = 0 and variance σ2
k,cond = σ2

k. In459

this case, the transfer of information to ungauged site s does not favor any particular460

gauged site s̃.461

The explanations given above lead to the following algorithm for prediction at an ungauged462

site s :463

Do j = 1 : nsim464

1. compute Ω
(j)
k = Ωk(υ

(j)
k ); Λ

(j)
k = Λk(υ

(j)
k ); σ

2(j)
k = σ2

k(υ
(j)
k ).465

2. compute µ
(j)
k,cond and σ

(j)
k,cond according to equation (15).466

3. generate regression error ϵ
(j)
k (s) from the conditional distribution (15) for k = 1 : D467

(Gaussian distribution with mean µ
(j)
k,cond and standard deviation σ

(j)
k,cond).468
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4. compute D-parameters from the regression model (4), θ
(j)
k (s) = g−1

k

(
hk(xk(s),β

(j)
k ) + ϵ

(j)
k (s)

)
469

for k = 1 : D470

5. compute derived quantity z(j) = z(θ(j)(s)) or generate a value from the at-site471

distribution w(j) ∼ p(θ(j)(s))472

4. Case study: Mediterranean extreme rainfall

The application of the Bayesian hierarchical approach is illustrated with a case study473

involving extreme rainfall data. The main objectives of this application are to demon-474

strate the feasibility of a Bayesian hierarchical approach and to assess the impact of some475

modeling hypotheses (in particular the choices of the data dependence model and the476

regression model). Note that a synthetic case study was also performed to verify the477

internal consistency of the modeling framework (not shown).478

4.1. Data

Annual maxima from 87 series of daily rainfall are used in this study (Figure 2). Rain-479

gauges, whose elevations range from 1 to 1102 m., are located in the French Mediterranean480

area. This region is characterized by intense rainfall in autumn and is delimited by three481

mountainous areas: the Pyreneans (South-West), the Alps (East) and the Cevennes (Cen-482

ter). The thin lines in Figure 2 represent six homogeneous regions defined by Pujol et al.483

[2007].484

Sixty raingauges are used for estimation, the remaining 27 series being used for model485

validation. Data are available over the period 1955-2004. Years with more than 15 days486

of missing values are treated as missing data. Since the treatment of missing data during487

estimation is not obvious, the 60 estimation series were chosen to ensure the completeness488
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of annual maxima series over the period 1955-2004 (this point is discussed in more details489

in section 5.1).490

4.2. Model specification

4.2.1. Data level491

Let (y(s̃i, t))i=1:60,t=1:50 denote the observed annual maxima. At any site s, the random492

variable (Y (s, t)) is assumed to follow a Generalized Extreme Value (GEV) distribution493

with parameters (µ(s), λ(s), ξ(s)). The pdf of a GEV distribution with location parameter494

µ, scale parameter λ and shape parameter ξ is:495

p(y|µ, λ, ξ) = 1

λ

[
1− ξ

(
y − µ

λ

)] 1
ξ
−1

exp

{
−
[
1− ξ

(
y − µ

λ

)]1/ξ}
λ > 0, ξ ̸= 0, 1− ξ

(
y − µ

λ

)
> 0 (16)

The joint distribution of observations ỹ(t) is derived using three distinct assumptions on496

the dependence structure. The first assumption corresponds to using a Gaussian copula497

[e.g., Renard and Lang , 2007] with dependence matrix Σ:498

(Y (s̃1, t), ..., Y (s̃M , t)) ∼ GCopM(Σ, {µ(s̃i), λ(s̃i), ξ(s̃i)}i=1:M) (17)

The second assumption corresponds to using a Student copula with dependence matrix499

Σ and tail dependence coefficient ν:500

(Y (s̃1, t), ..., Y (s̃M , t)) ∼ SCopM(Σ, ν, {µ(s̃i), λ(s̃i), ξ(s̃i)}i=1:M) (18)

Lastly, the third assumption corresponds to assuming spatial independence between501

data. It can be viewed as a special case of Equation (17) with the dependence matrix Σ502
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forced to unity.503

In both the Student and Gaussian copula cases, the dependogram is formulated as a504

weighted sum of two exponential functions (with ψ1 < ψ2) [e.g., Kjeldsen and Jones ,505

2009a]:506

Σ(i, j) = ψ0exp(−ψ1 ∥s̃i − s̃j∥) + (1− ψ0)exp(−ψ2 ∥s̃i − s̃j∥) (19)

4.2.2. Process level507

The variation of D-parameters (µ(s), λ(s), ξ(s)) in space is described using several mod-508

eling assumptions. First, an index-flood-like approach, assuming scale invariance, is used.509

This assumption induces strong constraints on the parameters of at-site distributions.510

More precisely, a GEV distribution complying with the scale invariance assumption can511

be reparameterized as follows [e.g., Ribatet et al., 2007]:512

Y (s, t) ∼ GEV (δ(s)µ, δ(s)λ, ξ) (20)

Equation (20) states that (i) the shape parameter is constant throughout the region; (ii)513

the ratio between the location and the scale parameters is constant throughout the region,514

which implies that annual maxima from all sites have the same coefficient of variation. In515

other terms, the whole spatial variability of annual maxima is accounted for by the index516

flood parameter δ(s), with other parameters µ, λ, ξ being assumed regional.517

Two distinct regression models are used in this index flood approach. The first model,518

M1, does not use any covariate and simply describes the spatial variation of the index519

flood D-parameter δ(s) using a Gaussian spatial field:520
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log(δ(s̃i)) = ϵ(s̃i); (ϵ(s̃1), ..., ϵ(s̃M)) ∼ N(0,Γ) (21)

The second model, M2, uses the raingauge elevation as covariate. Preliminary inves-521

tigations indicate that the effect of elevation depends on the region. Consequently, the522

model uses region-specific relationships between the index flood D-parameter δ(s̃i) and523

elevation:524

log(δ(s̃i)) = β
(j)
0 + β

(j)
1 ∗ elevation(s̃i) + ϵ(s̃i)

(ϵ(s̃1), ..., ϵ(s̃M)) ∼ N(0,Γ) (22)

where the superscript (j) is used to denote the region of site s̃i. In order to ensure the525

identifiability of the model, the following additional constraint is applied:526

6∑
j=1

β
(j)
0 = 0 (23)

In a second step, the index-flood approach described above is made less restrictive527

by abandoning the scale invariance assumption. More precisely, the following at-site528

distribution is assumed:529

Y (s, t) ∼ GEV (µ(s), λ(s), ξ) (24)

Compared to the index-flood equation (20), equation (24) does not assume a constant530

ratio between the location and the scale parameters throughout the region. However, it531

still assumes a constant shape parameter. The spatial variation of the location µ(s) and532

scale λ(s) D-parameters is described using region-specific relationships with elevation:533
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log(µ(s̃i)) = β
(j)
0 + β

(j)
1 ∗ elevation(s̃i) + ϵµ(s̃i)

(ϵµ(s̃1), ..., ϵµ(s̃M)) ∼ N(0,Γµ)

log(λ(s̃i)) = α
(j)
0 + α

(j)
1 ∗ elevation(s̃i) + ϵλ(s̃i)

(ϵλ(s̃1), ..., ϵλ(s̃M)) ∼ N(0,Γλ) (25)

The model defined by equations (24)-(25) is noted M3.534

In all models M1-M3, the covariance matrixes Γ in equations (21), (22) and (25) are535

parameterized as follows:536

Γ(i, j) = σ2 [υ0exp(−υ1 ∥s̃i − s̃j∥) + (1− υ0)exp(−υ2 ∥s̃i − s̃j∥)] (26)

Finally, vague priors are specified for all parameters by using uniform distributions with537

large support. The only exception is the shape parameter, for which a Gaussian prior with538

mean zero and standard deviation 0.3 is specified: this is similar to the ”Geophysical prior”539

used by Martins and Stedinger [2000]. Prior specification is further discussed in section540

5.6.541

4.3. Estimation and prediction

In this section, inference is performed using the regression model M3 coupled with a542

Gaussian copula assumption for describing data dependence (equation (17)). This model543

is noted M3-GCop.544

4.3.1. Parameter estimates545
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Figure 3a shows the posterior pdf of the regional shape parameter ξ. The median546

value of about -0.12 corresponds to an heavier tail than the Gumbel distribution: this547

is consistent with previous studies in the same area [Neppel et al., 2007]. Moreover, this548

estimation is quite precise: this is a consequence of the hypothesis that this parameter is549

constant throughout the region.550

Figure 3b-c shows the posterior pdfs of a few regression errors, for both location (b)551

and scale (c) regressions (latent variables in the vocabulary of hierarchical modeling).552

Recall that those errors are assumed mutually independent in the inference framework (see553

section 3). This assumption can be evaluated here by computing the correlation between554

series of estimated regression errors ϵ̂µ(s̃1), ..., ϵ̂µ(s̃M) and ϵ̂λ(s̃1), ..., ϵ̂λ(s̃M) (maximum-555

posterior estimates are used). A correlation of about 0.52 is found, which suggests that556

the assumption that both error processes are not cross-correlated might not be realistic.557

This is further discussed in section 5.3.558

The standard deviations of regression errors are represented in Figure 3d. Those terms559

(hyper-parameters in the vocabulary of hierarchical modeling) are of primary importance560

since they control the predictive uncertainty at ungauged sites. In this case study, the561

estimated hyper-standard deviations are similar for both location and scale regressions.562

They roughly correspond to a standard error of 15% in the regressions.563

4.3.2. Data and parameter dependences564

Figure 4 shows the estimated dependence-distance relationships, for both the data de-565

pendence model (19) and the regression errors dependence model (26). The dependence566

between data (Figure 4a) is precisely estimated, and confirm that data are not spatially567

independent. Conversely, the dependence between regression errors (Figure 4b-c) appears568
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more difficult to estimate, with large posterior intervals denoting a lower precision. How-569

ever, the strength of dependence is rather limited here, with the correlograms dropping570

to near-zero values at relatively short distances of about 10-20 km.571

4.3.3. Prediction572

The 100-year daily rainfall is predicted on a 40*50 grid (yielding 10*10 km cells) using573

the procedure detailed in section 3.4. Since the highest raingauge has an elevation of only574

1102 m, high-elevation areas from the Alps and the Pyreneans (whose maximal elevations575

reach 4810 m and 3404 m, respectively) were excluded from the prediction (white areas576

in Figure 5). The left panel of Figure 5 shows the 100-year daily rainfall estimated on577

the grid using the posterior median. An area with higher R0.99 values (reaching 400 mm578

at some grid points) is located on the Cevennes mountain range: this area is well-known579

to be affected by the highest rainfall intensities in France. Moreover, the rainfall quantile580

abruptly drops to smaller values (≈ 100-150 mm) downwind of the Cevennes.581

The Bayesian framework used in this paper enables a direct assessment of the uncertainties582

affecting predictions. The right panel of Figure 5 shows the uncertainty in predicted 100-583

year daily rainfall, measured by the posterior coefficient of variation. This uncertainty584

appears relatively uniform over the region, and mostly corresponds to 15-20% coefficients585

of variations. Note however the high-uncertainty area appearing on the foothill of the586

Alps (East): this is due to the low number of calibration sites in this region (only three587

sites), which does not enable a precise estimation of the elevation effect.588

4.4. Impact of the data dependence model

In this section, the impact of the model used to describe spatial dependence between589

data is evaluated. To this aim, inference is performed with the three dependence models590
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described in section 4.2.1, coupled with the regression model M3. The three resulting591

models are noted M3-Inde (independence assumption), M3-GCop (Gaussian copula as-592

sumption) and M3-SCop (Student copula assumption).593

4.4.1. Parameter estimates594

The regional shape parameter is only moderately impacted by the data dependence595

model (Figure 6a). The posterior pdf of model M3-SCop is slightly shifted and is more596

variable compared with models M3-Inde and M3-GCop. A similar observation can be597

made for the hyper-standard deviation of location regression errors (Figure 6b). Posterior598

pdfs for the hyper-standard deviation of scale regression errors (Figure 6c) have a similar599

variance but a slightly different mode.600

4.4.2. Data and parameter dependences601

Figure 7a shows the estimated dependence between data. The dependogram drops602

immediately to zero for M3-Inde due to the spatial independence assumption. Dependo-603

grams for M3-GCop and M3-SCop are virtually indistinguishable. However, the Student604

copula also depends of an additional parameter controlling the strength of asymptotic605

dependence. The posterior pdf of this parameter is shown in Figure 7a, and corresponds606

to a rather limited tail dependence.607

Stronger differences are observed for the dependence between regression errors (Figure608

7b-c). In particular, the dependogram for M3-GCop drops faster to zero for location609

regression errors (Figure 7b). Moreover, the choice of the data dependence model appears610

to impact the uncertainty in the estimation of the regression errors correlograms (for both611

location and scale regressions, Figure 7b-c): M3-Inde yields wider posterior intervals than612

M3-SCop and M3-GCop.613
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4.4.3. Prediction614

Results described in previous sections 4.4.1 and 4.4.2 show that the impact of the model615

for data dependence is quite complex. A more integrated assessment can be made by616

comparing the prediction of 100-year quantiles obtained with the three models. Figure 8617

maps the relative difference (in percent) between (i) M3-Inde (top panels) and M3-SCop618

(bottom panels) estimates in the one hand; and (ii) M3-GCop estimates in the other619

hand. The Gaussian Copula is therefore considered as a benchmark model, and the two620

other dependence assumptions are compared to this benchmark.621

Overall, assuming spatial independence between data yields only minor change in R0.99622

estimates (top left panel). Exceptions are located in the Cevennes (R0.99 values are ≈623

10-15% higher), and on the foothill of the Alps (R0.99 values are ≈ 10-35% higher in the624

North, and ≈ 10-35% lower in the South). Simarly, changes in the uncertainty of R0.99625

estimates are minor (top right panel). However, uncertainty reductions dominate, with626

decreases in the range 0-25%. This is consistent with the expected behavior when spatial627

dependence is ignored (see discussion in section 2.1.2): the variance of estimates may be628

underestimated, i.e. this decrease in uncertainty may be unduly optimistic. Note that629

once again, the foothill of the Alps is an exception to this overall decrease.630

Overall, replacing the Gaussian copula model by a Student copula also yields minor change631

in R0.99 estimates (bottom left panel), except in the Alps region where strong increases are632

observed (≈ 40%, culminating at ≈ 100% for a couple of pixels). In terms of uncertainty633

(bottom right panel), increases now dominate, but are still moderate (in the range 0-20%),634

with the Alps showing an opposite behavior (uncertainty reductions in the range 20-40%).635

4.5. Impact of the regression model
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In this section, the impact of the regression model is evaluated. Inference is performed636

with the three regression models described in section 4.2.2, coupled with the Gaussian637

copula model for data dependence. The three resulting models are noted M1-GCop (scale638

invariance assumption, no elevation effect), M2-GCop (scale invariance assumption with639

elevation effect) and M3-GCop (elevation effect, scale invariance is not assumed).640

4.5.1. Parameter estimates641

The assumption of scale invariance notably impacts the shape parameter estimates642

(Figure 9a), with a marked shift between scale-invariant models M1-GCop and M2-GCop643

in the one hand, and model M3-GCop in the other hand. Conversely, the completeness644

of the regression model seems to be the primary factor of influence for the hyper-standard645

deviations (Figure 9b-c): model M1-GCop, which ignores the elevation effect, yields a646

markedly higher hyper-standard deviation than models M2-GCop and M3-GCop, which647

use elevation as covariate. This is an expected result, since improving the regression model648

results in decreasing the standard deviations of regression errors. Note that in Figure 9b-649

c, the posterior pdfs for M1-GCop and M2-GCop are related to the regression for the650

index flood parameter δ(s), as defined in equation (21). Since this regression acts on both651

the location and scale D-parameters (see Equation (20)), those pdfs are repeated in both652

panels b and c.653

4.5.2. Data and parameter dependences654

Figure 10a shows that data dependence is virtually identical with all regression models.655

This is consequence of using a copula formalism, with dependence being modeled inde-656

pendently of marginal distributions. Since the regression model only applies on marginal657

distributions, it does not impact the estimation of dependence between observed data.658
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Conversely, the dependence between regression errors is strongly impacted by the choice659

of a regression model (Figure 10b-c). The amount of dependence is markedly higher with660

simple model M1-GCop because the whole spatial variability in the distribution of an-661

nual maxima is accounted for by the regression errors. Models M2-GCop and M3-GCop662

yield lower dependences, suggesting that the elevation effect explains a major part of663

the spatial variability. This result is consistent with the findings of Kjeldsen and Jones664

[2009a] who observed a decrease in the dependence between regression errors when the665

regression model is improved. Lastly, model M3-GCop yield higher uncertainties than666

model M2-GCop. This might be due to the estimation of two distinct regression models667

for location and scale D-parameters in model M3-GCop, while model M2-GCop uses a668

single regression acting on the index flood parameter δ(s).669

4.5.3. Prediction670

Maps of 100-year quantiles are compared in a similar way to section 4.4.3. Figure 11671

maps the relative difference (in percent) between (i) M1-Gcop (top panels) and M2-672

GCop (bottom panels) estimates in the one hand; and (ii) M3-GCop estimates in the673

other hand. The regression model M3 is therefore considered as a benchmark model, and674

the two other regression models are compared to this benchmark.675

The simple index-flood model M1 (which ignores the elevation effect) yields marked dif-676

ferences with the benchmark model M3 in terms of R0.99 values (upper left panel): higher677

values are observed in the Cevennes (up to ≈ +100%) and in the Alps (up to ≈ +30%),678

while lower values are observed in the south-eastern corner of the domain (up to ≈ -679

50%). Marked differences also appear for the uncertainty in R0.99 estimates (upper right680

panel), with an overall increase exceeding ≈ 50%, except in the Alps where the uncer-681
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tainty decreases (up to ≈ 50%). Note however that the difference between M1 and M3682

uncertainties is not uniform and follows and interesting spatial pattern: uncertainties are683

similar for both models nearby calibration sites, while M1 estimates become far more684

uncertain than M3 estimates in poorly-gauged areas. This is a consequence of regression685

errors showing a significant amount of spatial dependence with model M1 (see section686

4.5.2 and Figure 10b-c). This spatial dependence improves the efficiency of the tranfer of687

information from gauged sites to nearby ungauged sites. However, when moving further688

away from the calibration sites, this dependence vanishes and the uncertainty becomes689

primarily controlled by the hyper-standard deviation of regression errors. This hyper-690

standard deviation is markedly higher for model M1 (see section 4.5.1 and Figure 9b-c),691

which explains its higher uncertainty in poorly-gauged areas.692

Qualitatively similar results are found for the index-flood model M2 (which includes an693

elevation effect). However, differences with the model M3 in terms of R0.99 values are694

smaller (in the range ≈ ±20%, lower left panel). The uncertainty in R0.99 estimates is695

also larger with model M2 than with model M3 (lower right panel), with increases in the696

range ≈ 30-40% being quite evenly distributed in space.697

4.5.4. Assessment of the scale invariance assumption698

The scale invariance assumption underlying models M1 and M2 can be appraised by699

computing the coefficients of variation (CV) of data from each site. As explained in section700

4.2.2, scale invariance implies that the CV remains constant throughout the studied area.701

Figure 12 shows the empirical CV computed on each site (sites are reordered by increasing702

CV). The dashed horizontal lines show a 90% posterior interval of the CV resulting from703

model M2-GCop. Numerous empirical CVs are well outside this interval, which casts704
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doubts on the validity of the scale invariance assumption. Conversely, model M3-GCop705

(vertical bars) is able to track more closely the varying CVs at different sites.706

4.6. Validation

The validation of predictions arising from the Bayesian hierarchical framework is per-707

formed by using tools and concepts borrowed from the field of probabilistic forecasting.708

Such tools are of particular interest when the quantification of uncertainty is a primary709

concern, which is the case in this paper. In particular, the reliability and the precision of710

predictions are evaluated: reliability refers to the ability to derive predictive distributions711

that are consistent with observations from validation sites, while precision refers to the712

amount of uncertainty in predictions. Both concepts are complementary: predictions can713

be reliable but not precise (uncertainties are large, but predictions remain consistent with714

observations) or alternatively precise but not reliable (e.g. due to an underestimation of715

uncertainties). An ideal predictive framework would yield predictions that are reliable716

and as precise as possible.717

4.6.1. Reliability of predictions718

The reliability of predictions can be assessed by comparing annual maxima from the719

27 validation sites with their predictive distribution (derived using the ”ungauged site”720

procedure described in section 3.4). More precisely, this comparison is based on the721

predictive QQ-plot used by e.g. Dawid [1984], Gneiting et al. [2007], Laio and Tamea722

[2007] or Thyer et al. [2009]. Let Fs be the cdf of the predictive distribution at site723

s, and {Y (s, t)}t=1:Ts
validation data at site s. Under the assumption that validation724

data are realizations from the predictive distribution, the p-values {Fs(Y (s, t))}t=1:Ts
are725

realizations from a uniform distribution on [0;1]. This can be evaluated with a QQ-plot726
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comparing the empirical cdf of p-values with the cdf of a uniform distribution. This727

comparison can be performed individually for each validation site, or by pooling p-values728

from all validation sites.729

Figure 13 shows the site-specific predictive QQ-plots for each model (first five panels), then730

compares the pooled-sites-predictive QQ-plots of the five models in a single plot (lower731

right panel). Overall, the reliability of the predictive distributions appears acceptable732

with all regression models, although some specific sites show signs of departure from the733

1:1 line. Moreover, when all sites are pooled together, all models yield nearly-diagonal pp-734

plots (lower right panel), suggesting that all methods provide equally reliable predictions.735

This result might appear surprising at first sight, given the differences between models736

highlighted in previous sections 4.4 and 4.5. However, there is no contradiction in this737

statement: in the framework of probabilistic prediction, several predictive distributions738

can be equally reliable but distinct from each other. In particular, the fact that the overall739

reliability is similar does not mean that, for a given site, the predictive distributions will740

themselves be similar. This is illustrated in Figure 14, where the model M2-GCop yields741

a predictive distribution markedly different from the other four models. Moreover, the742

probabilistic predictions may also differ in their precision (also termed ”sharpness” in the743

field of probabilistic prediction [see Gneiting et al., 2007, for further discussion]).744

4.6.2. Precision of predictions745

Given that all models were found equally reliable, one would favor the one yielding the746

most precise predictions. In order to evaluate the predictive precision, Figure 15 shows747

the posterior coefficient of variation of the estimated 100-year rainfall R0.99, as a function748

of the distance between the validation site and the nearest calibration site. In general,749
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index-flood models M1-GCop and M2-GCop appear less precise than models based on750

the regression M3. Also note that model M2-GCop yields very imprecise predictions751

(CV>0.3) for three validation sites, which are all located in the same region (South-752

Eastern Mediterranean coast).753

Moreover, an apparent trend suggests that the M1-predictions are more precise for val-754

idation sites located close to a calibration site than for isolated sites. For this model,755

Figure 15 suggests that if a calibration site is available at about 10 km, the predictive756

uncertainty is divided by almost two compared with isolated sites. This confirms an757

observation previously made in section 4.5.3, and illustrates a positive outcome of mod-758

eling spatial dependence between regression errors. On the other hand, Figure 15 also759

shows that when the regression model is improved (M3), the predictive precision is as760

good as model M1 nearby calibration sites, despite the fact that spatial dependence be-761

tween regression errors is negligible (see section 4.5.2). Moreover, M3-predictions are762

more precise for isolated sites. This important observation suggests that improving the763

regression to make errors as spatially independent as possible is the most sensible strategy.764

765

5. Discussion

The case study described in section 4 demonstrates the feasibility of a Bayesian hier-766

archical approach to regional frequency analysis. Despite this encouraging preliminary767

investigation, numerous avenues for improvement can already be identified. This section768

discusses the main issues to be addressed.769

5.1. Treatment of missing data

D R A F T August 11, 2011, 6:16am D R A F T

Author-produced version of the article published in Water Resources Research (2011) vol. 47, doi : 0.1029/2010WR010089. 
The original publication is available at http://www.agu.org/journals/wr/



RENARD: HIERARCHICAL REGIONAL ESTIMATION X - 41

In the case study of section 4, calibration sites were selected in order to avoid missing770

values in the calibration dataset. This was made for the sake of simplicity, but it cannot771

be considered as an acceptable practical solution. Indeed, most regional analyses make772

use of at-site data with different lengths. Restricting the calibration dataset to years773

shared by all sites results in a loss of information. Moreover, data from poorly-gauged774

sites still yield a substantial information on the at-site distribution. Combining this in-775

formation with the regional information transfered from nearby sites is likely to improve776

the inference.777

The treatment of missing data is challenging due to the explicit modeling of spatial de-778

pendence between data. Indeed, the likelihood equation (9) requires writing the joint dis-779

tribution of a (spatial) vector ỹ(t) at any time t. A first possibility would be to consider780

that the size of vector ỹ(t) varies with t, depending on the available data. Unfortunately,781

this complicates the implementation of the model and increases its computational cost,782

due to the manipulation and inversion of the dependence matrix Σ, whose dimension783

would also vary with t in this case. An alternative and possibly more efficient approach784

would be to consider models for missing data and data augmentation algorithms [see e.g.785

Gelman et al., 1995].786

5.2. Sensitivity to the model for data dependence

As stressed in section 2.1.2, the use of an elliptical copula to model data dependence787

corresponds to a parametric assumption on the structure of dependence. As such, it might788

be an inappropriate model for some data, especially in the case of extreme data [Mikosch,789

2005]. This is a crucial issue if the dependence model is to be used for estimating rare790

multivariate events (e.g., Pr(annual maxima from all raingauges larger than 100 mm)).791
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The literature suggests that such estimations are highly sensitive to the choice of the792

dependence model [e.g. Coles et al., 1999; Renard and Lang , 2007]. However, the impact793

of the dependence model on the estimation at ungauged site is not as clear. Indeed,794

prediction at ungauged site does not directly use the data dependence model (see section795

3.4). Yet, the latter may indirectly influence predictions when inappropriate, by inducing796

bias in parameter estimates and/or inadequate quantification of uncertainties (posterior797

variance).798

The preliminary investigation carried out in section 4.4 suggests that the choice of a799

data dependence model is of second order importance compared with the choice of an800

appropriate regression model to describe spatial variability. However, this result is based801

on a single case study and can therefore not be considered as a generality. Consequently,802

the sensitivity of predictions to the data dependence model needs to be further evaluated.803

In particular, the impact of the spatial dependence model might be more pronounced for804

datasets showing a higher level of asymptotic dependence. Including multivariate extreme805

models recently proposed in the literature [e.g. Keef et al., 2009; Padoan et al., 2010] would806

also constitute an improvement.807

5.3. The role of spatial- and cross-dependence between regression errors

The framework developed in this paper follows the recent work by Kjeldsen and Jones808

[2009a] in assuming that regression errors are spatially dependent. The case study of809

section 4 illustrates the benefit of this assumption: when the regression model is poor810

and fails to capture key relationships with spatial covariates (model M1), spatial depen-811

dence between regression errors is significant and improves the predictive precision nearby812

calibration sites. However, this spatial dependence quickly vanishes when the regression813
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model is improved (models M2 and M3). This illustrates the relationship between the814

quality of the regression and the existence of spatial dependence in regression errors: in a815

nutshell, spatial dependence acts as a surrogate for the spatial variability ”missed” by the816

regression model. This suggests that improving the regression to make regression errors817

as spatially independent as possible is a better strategy than attempting to refine the818

description of spatial dependence. However, in cases where no satisfying regression can819

be uncovered, the explicit modeling of spatial dependence appears beneficial in terms of820

predictive precision.821

Moreover, cross-correlation between regression errors related to distinct D-parameters is822

neglected in this framework. Unfortunately, the case study suggests that such cross-823

correlation exists (see section 4.3.1). Its impact on predictions is unclear at this stage and824

requires further evaluation.825

An explicit modeling of cross-correlation was adopted by Tasker and Stedinger [1989],826

in the case of spatially independent regression errors. This paper somehow considers827

the opposite option: spatial dependence between regression errors is modeled, but their828

cross-correlation is ignored. Which of these two options should be favored is likely case-829

specific, and depends on the relative strength of spatial- and cross-correlation. Moreover,830

it is worth noting that both types of dependence can be constrained (to some extent) by831

improving the model. In the one hand, improving the regression model decreases spatial832

dependence as discussed above. In the other hand, cross-correlation can be decreased by833

reparameterizing the marginal distributions: for instance, the GEV distribution could be834

parameterized in terms of location, CV and shape parameters (instead of location, scale835

and shape, see the discussion in Stedinger and Griffis [2011]), which may limit cross-836
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correlation between location and scale regression errors. Which of these two strategies837

offers the most flexibility remains an open question, that will be addressed in future work.838

Lastly, the third strategy would be to explicitly model both spatial- and cross-correlation839

in regression errors. However, this would require a description of the dependence between840

spatial random fields, which is a challenging task. Solutions might exist and be borrowed841

from the field of geostatistics [e.g. using cokriging tools, see Goovaerts, 1998]. However,842

improving the model to make either spatial- or cross-correlation negligible seems easier to843

implement and might be an acceptable solution in many cases.844

5.4. Validation procedures

As any predictive statistical model, a model constructed within the hierarchical frame-845

work presented in this paper needs to be thoroughly validated based on data that were846

not used for estimation. In the case study of section 4, this was achieved by comparing847

the predictive distribution (derived in an ungauged site context) with validation data.848

Such a comparison assesses the overall reliability of the predictive distribution, and may849

detect systematic predictive biases (e.g. the predictive mean is significantly smaller that850

the mean of validation data). However, it might not be sufficient to assess the reliability851

of predicted extreme quantiles, which are of primary interest in frequency analysis. Con-852

sequently, more specialized validation procedures are needed to open predicted extreme853

quantiles to direct validation and scrutiny. The validation tools recently proposed by854

Garavaglia et al. [2011] might be of particular interest in this respect.855

5.5. Model complexity and identifiability
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The case study of section 4 compares several models differing in their flexibility (and,856

as a consequence, in their complexity). In particular, models M1 and M2 are based on857

the scale invariance assumption. This limits the complexity of the model by merging all858

spatial variability into a single D-parameter (the index-flood parameter δ(s)), the other859

D-parameters being assumed constant over the region. However, this assumption seems860

unrealistic in the studied region. The alternative model M3 describes the spatial varia-861

tions in two D-parameters, namely the location and the scale parameters, while the third862

D-parameter (shape) remains constant. This is similar to the approach evaluated by Ste-863

dinger and Lu [1995], and it was found to yield reliable and more precise predictions in864

this case study. Consequently, it would be tempting to go even further in terms of model865

complexity, by using three distinct regression models for the location, scale and shape866

parameters.867

However, as in any statistical model, a trade-off between descriptive and predictive power868

has to be found. Model complexity may come at the cost of reduced predictive ability.869

Moreover, non-identifiability issues may arise if the information content of the data does870

not support the inference of several spatial processes. Establishing an acceptable trade-off871

between the flexibility of the model and the level of complexity that can be identified from872

the data is a very challenging task. In particular, it is linked with the preceding discus-873

sion on validation procedures: introducing additional complexity is only beneficial if it874

demonstrably improves predictive reliability and/or precision, yet the power of validation875

procedures to detect model failures may be too limited, especially for extreme quantiles.876

Consequently, in the case study presented in this paper, developing more efficient valida-877

tion tools seems to be a prerequisite before attempting to model spatial variations in the878
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shape parameter.879

Lastly, it is stressed that the high dimensionality of models resulting from the hierarchi-880

cal framework presented herein does not necessarily lead to over-parameterized or non-881

identifiable models. In the context of Bayesian hierarchical modeling, the issue of model882

complexity is far from obvious [see Spiegelhalter et al., 2002, for a thorough discussion on883

this topic] and requires specialized criteria for model selection [e.g. Cooley et al., 2007].884

5.6. Prior specification

The case study of section 4 uses mostly non-informative priors. This is because the aim885

of this case study is to understand some properties of the proposed inference approach,886

rather than to seek an optimal estimation of rainfall extremes in this particular region.887

In this context, using precise priors might exert a strong, case-specific leverage on the888

conclusions. However, the specification of precise and accurate priors might indeed be889

beneficial to the inference. In particular, the following investigations would be of interest:890

• Prior specification depends on the particular choices of marginal distributions and891

regression functions. It is therefore difficult to derive general specification guidelines.892

In particular, the fact that D-parameters are not inferred directly, but are only defined893

through the regression function (4) complicates prior specification. Methods for expressing894

prior knowledge (either based on expertise or on external data not used for inference) in895

the form of a proper prior distribution need to be developed.896

• Using conjugate priors has the potential to ease computations by replacing (at least897

partly) MCMC sampling by explicit formulas. However, the choice of a conjugate fam-898

ily depends on the choice of marginal distributions and regression functions, making it899

difficult to provide general guidelines. The benefit of using conjugate priors could be900
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first evaluated for the hyper-parameters of the Gaussian hyper-distributions, for which901

conjugate families are known [e.g. Gelman et al., 1995].902

• The sensitivity of the inference to priors should be further evaluated, especially for903

complex models that are more prone to identifiability issues (see discussion in section 5.5).904

5.7. Modeling variability in time

Since this paper mainly focuses on spatial variability, at-site distributions were assumed905

to be constant in time (see equation (1)). A natural extension of the framework would906

be to allow temporal variations in at-site distributions, by including covariates varying907

with time. The simplest application would be to include a linear trend in one (or possibly908

several) D-parameter(s). The covariate could be in this case the time itself, or a large-scale909

climatic index (e.g. NAO or PDO indexes). This would be an important development910

since the strong natural variability of at-site data (in particular, extreme data) limits the911

detectability of climatic effects. Studying the impact of climate variability/change at a912

regional scale is likely to improve this assessment [Renard et al., 2008; Aryal et al., 2009].913

5.8. Application to runoff or other hydrological variables

Although the hierarchical approach presented in this paper can in principle be applied to914

runoff data, it is likely to yield sub-optimal predictions if standard dependence models are915

used. This is because runoff data are structured by the hydrologic network. Consequently,916

euclidean distances (e.g. between gauging stations or between catchment centroids) are917

in general a sub-optimal predictor of intersite dependences. Moreover, predictions should918

be constrained to ensure the consistency between estimates at upstream and downstream919

nested catchments. Several authors proposed specialized approaches to model network920
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dependences [e.g. Gottschalk , 1993a, b; Sauquet et al., 2000; Sauquet , 2006; Skoien et al.,921

2006]. The applicability of such approaches within the Bayesian hierarchical framework922

presented in this paper will be evaluated in future work.923

More generally, the choice of a relevant distance to explain spatial dependences is a chal-924

lenging task, but is also a promising avenue to improve predictions. This choice heavily925

depends on the spatial properties of the hydrological variable. For rainfall, a xy-Euclidean926

distance (as used in the case study of section 4) may seem reasonable at first sight, al-927

though accounting for elevation may improve predictions. Alternatively, consider apply-928

ing the hierarchical approach presented in this paper to snow depth values: a meaningful929

dependence-distance relationship is very unlikely to be derived if elevation is neglected in930

the definition of the inter-site distance. Recent work by Blanchet et al. [Blanchet et al.,931

2009; Blanchet and Lehning , 2010; Blanchet and Davison, 2011] addresses this issue, and932

proposes practical solutions to derive meaningful distances. Those solutions might be933

extended to hydrological variables other than snow depth.934

6. Conclusion

Regional frequency analysis has a long history in Hydrology, and is widely applied935

in practice to estimate the distribution of a hydrologic variable at ungauged or poorly936

gauged sites. However, despite numerous methodological developments over the years937

[e.g. Stedinger , 1983; Stedinger and Tasker , 1985, 1986; Hosking and Wallis , 1988; Mad-938

sen and Rosbjerg , 1997; Reis et al., 2005; Ribatet et al., 2007; Kjeldsen and Jones , 2009a],939

most implementations still rely on several hypotheses that complicate the quantification940

of predictive uncertainty; moreover, unrealistic hypotheses may yield unreliable predic-941

tions. The objective of this paper was therefore to propose a general Bayesian hierarchical942
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framework to overcome some of these limitations, and to evaluate its applicability based943

on a case study. This framework builds on previous work by several authors [in particular,944

Wikle et al., 1998; Perreault , 2000; Micevski et al., 2006; Micevski , 2007; Cooley et al.,945

2007; Lima and Lall , 2009; Aryal et al., 2009; Lima and Lall , 2010], who explored the946

usefulness of spatial and temporal Bayesian hierarchical models. The main features of the947

proposed framework are the following:948

1. At-site data can be modeled with any distribution, with the sole requirement that949

the same distribution (but with different parameters) is used for all sites.950

2. Intersite dependence is explicitly modeled by means of an elliptical copula.951

3. The variation of parameters in space is described with a regression model linking952

parameter values and covariates.953

4. Regression errors are modeled by means of a Gaussian spatial field, which allows954

transferring estimates from gauged to ungauged sites, while quantifying the associated955

predictive uncertainty.956

A case study based on extreme rainfall data in Mediterranean France demonstrated the957

applicability of the framework and its reliable estimation of predictive uncertainty. Al-958

though numerous improvements remain to be implemented (see discussion section), these959

encouraging results warrant further research to develop this framework. In particular,960

the inclusion of temporal covariates would allow describing the evolution of hydrologic961

variables in both space and time. Importantly, this improved understanding of hydrologic962

variability would be achieved with a rigorous quantification of the associated uncertainties.963

Appendix A: The Gaussian and Student Elliptical copulas
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The following notation is used:964

1. F1(y), ..., FH(y) are the marginal cdfs of a H -dimensional random vector (Y1, ..., YH).965

2. f1(y), ..., fH(y) are the corresponding marginal pdfs.966

3. ϕ(y) is the cdf of the standard normal distribution.967

4. ψ(y) is the corresponding pdf.968

5. τν(y) is the cdf of the Student’s t distribution with ν degrees of freedom969

6. tν(y) is the corresponding pdf970

7. ΦΣ(y1, ..., yH) is the joint cdf of a H -dimensional Gaussian distribution, with mean971

0 and covariance matrix Σ972

8. ΨΣ(y1, ..., yH) is the corresponding joint pdf973

9. ΘΣ,ν(y1, ..., yH) is the joint cdf of a H -dimensional Student distribution, with mean974

0, covariance matrix Σ and ν degrees of freedom975

10. TΣ,ν(y1, ..., yH) is the corresponding joint pdf976

The Gaussian and the Student copulas build the joint cdf of the random vector977

(Y1, ..., YH) as follows:978

FGaussian(y1, ..., yH) = ΦΣ(u1, ..., uH) (A1)

FStudent(y1, ..., yH) = ΘΣ,ν(v1, ..., vH) (A2)

where ui = ϕ−1(Fi(yi)) and vi = τ−1
ν (Fi(yi)).979

The corresponding joint pdfs can be obtained by differentiating the above cdfs:980

fGaussian(y1, ..., yH) =
(
∏H

i=1 fi(yi))

(
∏H

i=1 ψ(ui))
×ΨΣ(u1, ..., uH) (A3)
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fStudent(y1, ..., yH) =
(
∏H

i=1 fi(yi))

(
∏H

i=1 tν(vi))
× TΣ,ν(v1, ..., vH) (A4)
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Figure 1. Schematic of the hierarchical modeling framework

Figure 2. Raingauges location. The thin lines represent six homogeneous regions

defined by Pujol et al. [2007].

Figure 3. Posterior pdfs of some inferred quantities: (a) regional shape parameter ξ; (b)

errors ϵµ in the regression for the location D-parameter (only 7 distributions are shown for

readability); (c) errors ϵλ in the regression for the scale D-parameter (d) hyper-standard

deviations σµ (solid black line) and σλ (dashed red line), corresponding to the standard

deviations of location/scale regression errors.

Figure 4. Estimated dependence structures. (a) Data dependence. The dots represent

estimated pairwise dependences for all available pairs of sites; (b) dependence in regression

errors ϵµ for the location D-parameter; (c) dependence in regression errors ϵλ for the scale

D-parameter.
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Figure 5. Estimation of the 100-year daily rainfall R0.99. Left: R0.99 point-estimates

(posterior median); Right: uncertainty in estimating R0.99 (measured by the posterior

coefficient of variation).

Figure 6. Posterior pdfs of some inferred quantities with three distinct models for data

dependence. (a) Regional shape parameter ξ; (b) hyper-standard deviations σµ (stan-

dard deviations of location regression errors); (c) hyper-standard deviations σλ (standard

deviations of scale regression errors).

Figure 7. Estimated dependence structures with three distinct models for data de-

pendence. Solid black line = M3-Inde; dashed red line = M3-GCop; dotted blue line =

M3-SCop. Shaded areas represent 90% posterior intervals. (a) Data dependence; (b) de-

pendence in regression errors ϵµ for the location D-parameter; (c) dependence in regression

errors ϵλ for the scale D-parameter.

Figure 8. Impact of the data dependence model on predictions of R0.99. Maps show

relative differences with the benchmark modelM3-GCop. Top panels =M3-Inde; bottom

panels = M3-SCop. Left = R0.99 point-estimates (posterior median); Right = uncertainty

in estimating R0.99 (measured by the posterior coefficient of variation).
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Figure 9. Posterior pdfs of some inferred quantities with three distinct regression

models. (a) Regional shape parameter ξ; (b) hyper-standard deviations σµ (standard

deviations of location regression errors); (c) hyper-standard deviations σλ (standard de-

viations of scale regression errors).

Figure 10. Estimated dependence structures with three distinct regression models.

Dotted blue line = M1-GCop; solid black line = M2-GCop; dashed red line = M3-GCop.

Shaded areas represent 90% posterior intervals. (a) Data dependence; (b) dependence in

regression errors ϵµ for the location D-parameter; (c) dependence in regression errors ϵλ

for the scale D-parameter.

Figure 11. Impact of the regression model on predictions of R0.99. Maps show relative

differences with the benchmark modelM3-GCop. Top panels =M1-GCop; bottom panels

= M2-GCop. Left = R0.99 point-estimates (posterior median); Right = uncertainty in

estimating R0.99 (measured by the posterior coefficient of variation).

Figure 12. Evaluation of the scale invariance hypothesis. Points = empirical coefficients

of variation of data; dashed horizontal lines = coefficient of variation estimated from M2-

GCop (90% posterior interval); vertical bars = coefficient of variation estimated from

M3-GCop (90% posterior intervals).
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Figure 13. Predictive QQ-plots at validation sites for each of the five studied models.

The lower right panel corresponds to merging data from all validation sites together.

Figure 14. Comparison of predictive distributions obtained at one particular validation

site.

Figure 15. Posterior coefficients of variation of R0.99 estimated at validation sites, as a

function of the distance between the validation site and the nearest calibration site.
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