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Optimized analytic reconstruction for SPECT

We develop optimized analytic reconstruction for the single-photon emission computed tomography (SPECT). This reconstruction is based on : (1) Novikov's exact and Chang's approximate inversion formulas for the attenuated ray transform, (2) filtering techniques, and (3) Morozov type discrepancy principle. Our numerical examples include comparisons with the standard least square and expectation maximization iterative SPECT reconstructions.

Introduction

In the single-photon emission computed tomography (SPECT) one considers a body containing radioactive isotopes emitting photons. The emission data p in SPECT consist in the radiation measured outside the body by a family of detectors during some fixed time. The basic problem of SPECT consists in finding the distribution f of these isotopes in the body from the emission data p and some a priori information concerning the body. Usually this a priori information consists in the photon attenuation coefficient a in the points of body, where this coefficient is found in advance by the methods of the transmission computed tomography.

In addition, it is assumed that:

f (x) ≥ 0, a(x) ≥ 0, x ∈ R d , supp a ⊆ D, supp f ⊆ D, (1.1) 
where f and a are the aforementioned density of radioactive isotopes and photon attenuation coefficient, D is some known compact domain containing the body; the aforementioned emission data p are defined on the detector set Γ, where Γ is identified with some discrete subset of the set T of all oriented straight lines in R d ; p(γ) is the number of photons coming from (the domain containing) the body along oriented straight line γ to the detector associated with γ, where γ ∈ Γ ⊂ T . In some approximation where

P a f (γ) = γ exp [-Da(x, γ)]f (x)dx, (1.3)
where γ is the direction of γ, dx is standard Euclidean measure on γ,

Da(x, θ) = +∞ 0 a(x + tθ)dt, x ∈ R d , θ ∈ S d-1 , (1.4) C = C 1 t, where t is the detection time, C 1 is independent of t.
The transform P a f of (1.2), (1.3) is the attenuated ray transform of f ; the transform Da of (1.3), (1.4) is the divergent beam transform of a.

Although the SPECT problem p, a -→ Cf arises for a body contained in R d , d = 3, this problem can be restricted to each fixed 2D plane Ξ intersecting the body and identified with R 2 .

We recall that T ≈ R × S 1 , where T is the set of all oriented straight lines in R 2 . If γ = (s, θ) ∈ R × S 1 , then γ = {x ∈ R 2 : x = tθ + sθ ⊥ , t ∈ R} (modulo orientation) and θ gives the orientation of γ, where θ ⊥ = (-θ 2 , θ 1 ) for θ = (θ 1 , θ 2 ) ∈ S 1 .

After the restriction to 2D plane we assume that: (1.1) is fulfilled for

D = B R = {x ∈ R 2 : |x| ≤ R}, where R is radius of image support; Γ is a uniform n × n sampling of T R = {γ ∈ T : γ ∩ B R = 0} = {(s, θ) ∈ R × S 1 : |s| ≤ R}.
(1.5)

In addition, the standard value for n is 128.

In the present article we consider the following problem.

Problem 1. Find (as well as possible) Cf from p and a, where Cf , a and p are the functions of (1.2) considered in the framework of the 2D restriction as described above.

More precisely, we continue studies on numerical realizations of explicit analytic reconstruction formulas for Problem 1. In particular, the main result of the present article consists in some optimized analytic reconstruction (for Problem 1) based on Novikov's exact and Chang's approximate formulas for finding f on R 2 from P a f on T and a on R 2 and on Morozov type discrepancy principle, see Sections 2, 3, 4. Related numerical examples are given in Section 5 containing also comparative studies with some well-known iterative methods. One can see that our optimized analytic reconstruction is rather efficient as regards smallness of its reconstruction error in L 2 norm.

Novikov formula

We consider the following exact inversion formula

Cf = N a g, (2.1) where g = CP a f is defined as in (1.3) for d = 2 and γ = (s, θ) ∈ R × S 1 , N a q(x) = 1 4π S 1 θ ⊥ ∇ x K(x, θ)dθ, (2.2a) K(x, θ) = exp [-Da(x, -θ)] qθ (xθ ⊥ ), (2.2b) qθ (s) = exp A θ (s)) cos (B θ (s)) H(exp (A θ ) cos (B θ ) q θ (s)+ exp A θ (s)) sin (B θ (s)) H(exp (A θ ) sin (B θ ) q θ (s), (2.2c) A θ (s) = 1 2 P a(s, θ), B θ (s) = H A θ (s), q θ (s) = q(s, θ), (2.2d)
where q is a test function, Da is defined by (1.4), P = P 0 is the classical two-dimensional ray transformation (i.e. P 0 is defined by (1.3) with a ≡ 0), H is the Hilbert transformation defined by the formula

H u(s) = 1 π p.v. R u(t) s -t dt, (2.3)
where u is a test function,

x = (x 1 , x 2 ) ∈ R 2 , θ = (θ 1 , θ 2 ) ∈ S 1 , θ ⊥ = (-θ 2 , θ 1 ), s ∈ R, dθ is arc-length measure on the circle S 1 .
In a slightly different form (using complex notations) formula (2.1) was obtained in [START_REF] Novikov | An inversion formula for the attenuated x-ray transformation Ark[END_REF]. Some new proofs of this formula were given in [Na] and [BS]. Formula (2.1) was successfully implemented numerically in [START_REF] Kunyansky | A new SPECT reconstruction algorithm based on the Novikov's explicit inversion formula Inverse Problems[END_REF] and [Na] via a direct generalization of the (classical) filtered back-projection (FBP) algorithm. However, this generalized FBP algorithm turned out to be considerably less stable, in general, than its classical analogue. Some possibilities for improving the stability of SPECT imaging based on (2.1), (2.2) with respect to the Poisson noise in the emission data g were proposed, in particular, in [START_REF] Kunyansky | A new SPECT reconstruction algorithm based on the Novikov's explicit inversion formula Inverse Problems[END_REF] (preprint version), [GJKNT], [START_REF] Guillement | A noise property analysis of single-photon emission computed tomography data[END_REF] and [START_REF] Guillement | On Wiener type filters in SPECT Inverse[END_REF]. Some fast numerical implementation of formula (2.1) was proposed in [BM].

In the present article we suggest new stabilization of the generalized FBP algorithm implementing formula (2.1). This new stabilization involves Morozov's discrepancy principle and Chang's formula, see Sections 3 and 4.

Chang formula

We consider the following approximate inversion formula

Cf ≃ Ch a g, (3.1) 
where g = CP a f is defined as in (1.3) for d = 2 and γ = (s, θ) ∈ R × S 1 ,

Ch a q(x) = 1 4πw 0 (x) S 1 θ ⊥ ∇ x Hq θ (xθ ⊥ )dθ, (3.2a) w 0 (x) = 1 2π S 1 exp[-Da(x, θ)]dθ, (3.2b) q θ (s) = q(s, θ), (3.2c)
where q is a test function, H is defined by (2.3), Da is defined by (1.4), x ∈ R 2 , θ = (θ 1 , θ 2 ) ∈ S 1 , θ ⊥ = (-θ 2 , θ 1 ), s ∈ R, dθ is arc-length measure on S 1 . Formula (3.1) is known as Chang's approximate inversion formula for the transformation P a , see [Ch], [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion Inverse Problems[END_REF], [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF]. This formula is approximate for the continuous case but its result is sufficiently stable for reconstruction from discrete and noisy data p of (1.2) on the basis of classical FBP algorithm. It is known that this formula is efficient as the first approximation in SPECT reconstructions, see [Ch], [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion Inverse Problems[END_REF], [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF].

Optimization

The exact formula (2.1) is sufficiently stable on sufficiently low frequency part of p and a but is rather unstable on other part of these data, see [START_REF] Kunyansky | A new SPECT reconstruction algorithm based on the Novikov's explicit inversion formula Inverse Problems[END_REF], [GJKNT]. Therefore, some reasonable low frequency approximation to Cf can be found as

Cf ≈ Cf α = N a α (Wp) α or (4.1a) Cf ≈ Cf α = (N a (Wp) α ) α , (4.1b)
where N a denotes the generalized FBP algorithm implementing (2.2), α is optimization parameter, W is some moderate filter (for example, space-variant Wiener type filter of [START_REF] Guillement | On Wiener type filters in SPECT Inverse[END_REF]), a α , (Wp) α , (N a (Wp) α ) α denote the low-frequency parts of a, Wp, N a (Wp) α , respectively, obtained via some standard 2D space-invariant low-frequency filtering dependent on α. In addition, according to the Morozov principle we choose α as a parameter minimizing the discrepancy

d α = P a Cf α -Wp L 2 (Γ) . (4.2)
Numerical examples illustrating the reconstruction (4.1) with α found via the Morozov discrepancy principle are given in Section 5, see figure 3 and formula (5.6). As far as we know, these very natural numerical studies were not yet given in the literature.

In addition, the approximate formula (3.1) is sufficiently stable even on reasonably high frequency part of p and a. Therefore, the optimized approximate reconstruction (4.1) can be considerably improved as

Cf ≈ Cf α = N a α (Wp) α + Ch a (Wp -(Wp) α ) or (4.3a) Cf ≈ Cf α = (N a (Wp) α ) α + Ch a (Wp -((Wp) α ) α ), (4.3b)
where we use notations similar to notations of (2.1), (3.1), (4.1) and where we choose α as a parameter minimizing the discrepancy (4.2) with Cf α of (4.3). Numerical examples illustrating the reconstruction (4.3) with α found via the aforementioned Morozov-type discrepancy principle are given in Section 5, see figure 4 and formula (5.7). Note also that some optimized analytic reconstruction based on (2.1), (3.1) can be constructed as

Cf ≈ Cf β = (1 -β)Cf 1 + βCf 2 , (4.4)
where Cf 1 = Cf α is based on (4.1), Cf 2 = Ch a Wp and β is a parameter minimizing d β of (4.2) with Cf β of (4.4). This reconstruction Cf β is numerically simpler than the aforementioned reconstruction Cf α of (4.3). However, the reconstruction result for Cf α of (4.3) is better than for Cf β of (4.4), see formulas (5.7),(5.9). , where A sym l 1 ,l 2 is the approximately optimal space-variant Wiener-type filter of Section 5.3 of [START_REF] Guillement | On Wiener type filters in SPECT Inverse[END_REF]. In addition, ζ(Wp, g, Γ) = 0.110 (5.5) which is about three times smaller than ζ of (5.4).

Numerical examples

Figures 3,4 show the reconstructions Cf α of (4.1a), (4.3a) and their central horizontal profiles, where W = A sym 8,8 and α is found, for each of these reconstructions, as a parameter minimizing d α of (4.2). In addition, η(Cf α , Cf, X) = 0.445 for Cf α of (4.1a),

(5.6) η(Cf α , Cf, X) = 0.367 for Cf α of (4.3a), (5.7)

where Cf is, actually, shown in figure 1(b), η is defined by (5.2).

We have also that:

η(Cf 2 , Cf, X) = 0.393 (5.8)
for Cf 2 = Ch a Wp of (4.4), where W = A sym 8,8 ;

η(Cf β , Cf, X) = 0.391 (5.9)

for Cf β of (4.4), where W = A sym 8,8 and β is found as a parameter minimizing d β of (4.2). An efficiency of (3.1), confirmed by (5.8), is explained in particular in [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF]. (5.11) where η, Cf, X are the same that in (5.6)-(5.9). For description of EM method in emission tomography, see [HL], [SV] and references therein.

One can see that in our numerical examples Cf α of (4.3a) is the best as regards smallness of the reconstruction error in L 2 norm, whereas Cf rec obtained via 60 EM iterations is the best as regards the resolution. Possible optimizations of EM and SDLS reconstructions with respect to the iteration number will be not discussed in the present article. One can see that, for example, our optimized analytic reconstruction Cf α of (4.3) is quite competitive with classical iterative (SDLS and EM) methods as regards the reconstruction error in L 2 norm, see formulas (5.7), (5.10), (5.11). However, the classical EM method works better as regards the resolution, see figures 4 and 5(c), 5(d).

Thus, improving resolution properties of analytic reconstructions in SPECT is an open direction for researches.

  p(γ) is a realization of a Poisson variate p(γ) with the mean M p(γ) = g(γ) = CP a f (γ) for any γ ∈ Γ and all p(γ), γ ∈ Γ, are independent, (1.2)

  Figures 1(d) and 2(b) show the spectrums |ĝ| and |p|.

Figures 5

 5 Figures 5(a)-(d) show standard steepest descent least square (SDLS) and expectation maximization (EM) reconstructions Cf rec and their central horizontal profiles, obtained via 60 iterations of each of these methods from a and p shown in figures 1(a), 2(a). In addition, η(Cf rec , Cf, X) = 0.436 for the SDLS case, (5.10) η(Cf rec , Cf, X) = 0.421 for the EM case,(5.11) 
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 123 Figure 1. Attenuation map a (a), emitter activity f (b), noiseless emission data g = CP a f (c), spectrum |ĝ| (d). (See Section 1 and Subsection 5.2.)

All 2D images of this article are considered on n × n grids, where n = 128. We assume that X is uniform n × n sampling of the domain

and Γ is uniform n×n sampling of T R defined by (1.5), where R is radius of image support. We use also the following notations

where q 1 , q 2 are test functions on Γ ′ ⊆ Γ and

where u 1 , u 2 are test functions on X ′ ⊆ X.

Given f and a on X, we assume that P a f is defined on Γ and is numerical realization of (1.3) as in [START_REF] Kunyansky | A new SPECT reconstruction algorithm based on the Novikov's explicit inversion formula Inverse Problems[END_REF]. Given a on X and q on Γ, we assume that N a q and Ch a q are defined on X and denote the numerical realizations of (2.2) and (3.2) on the basis of generalized and classical FBP algorithms, respectively, see [START_REF] Kunyansky | A new SPECT reconstruction algorithm based on the Novikov's explicit inversion formula Inverse Problems[END_REF].

We assume that q = F g denotes the discrete Fourier transform of q.

All 2D images of the present article, except the spectrum of projections, are drawn using a linear greyscale, in such a way that the dark grey color represents zero (or negative values, if any) and white corresponds to the maximum value of the imaged function. For the spectrum of projections, a non-linear greyscale was used, because of too great values of the spectrum for small frequencies.

Elliptical chest phantom

We consider a version of the elliptical chest phantom (used for numerical simulations of cardiac SPECT imaging; see [HL], [Br], [START_REF] Guillement | A noise property analysis of single-photon emission computed tomography data[END_REF]). This version is, actually, the same that in [START_REF] Guillement | A noise property analysis of single-photon emission computed tomography data[END_REF], [START_REF] Guillement | On Wiener type filters in SPECT Inverse[END_REF] and its description consists in the following:

(1) The major axis of the ellipse representing the body is 30 cm.

(2) The attenuation map is shown in figure 1(a); the attenuation coefficient a is 0.04 cm -1 in the lung regions (modeled as two interior ellipses), 0.15 cm -1 elsewhere within the body ellipse, and zero outside the body.

(3) The emitter activity f is shown in figure 1(b); f is in the ratio 8:0:1:0 in myocardium (represented as a ring), lungs, elsewhere within the body, and outside the body.

(4) The attenuated ray transform g = CP a f and noisy emission data p of (1.2) are shown in figures 1(c), 2(a). In addition, the constant C was specified by the equation g L 1 (Γ) / g 2 L 2 (Γ) = (0.30) 2 (5.