
HAL Id: hal-00662875
https://hal.science/hal-00662875v1

Submitted on 25 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Temporal Logic for Dynamic Reconfigurations of
Components

Julien Dormoy, Olga Kouchnarenko, Arnaud Lanoix

To cite this version:
Julien Dormoy, Olga Kouchnarenko, Arnaud Lanoix. Using Temporal Logic for Dynamic Reconfigu-
rations of Components. FACS 2010, 7th Int. Ws. on Formal Aspects of Component Software, 2010,
Portugal. �hal-00662875�

https://hal.science/hal-00662875v1
https://hal.archives-ouvertes.fr

Using Temporal Logic for
Dynamic Reconfigurations of Components

Julien Dormoy1, Olga Kouchnarenko1, and Arnaud Lanoix2

1 University of Franche-Comté, Besançon, France
{jdormoy,okouchnarenko}@lifc.univ-fcomte.fr

2 Nantes University, Nantes, France
arnaud.lanoix@univ-nantes.fr

Abstract. Dynamic reconfigurations increase the availability and the
reliability of component-based systems by allowing their architectures to
evolve at run-time. This paper deals with the formal specification and
verification of dynamic reconfigurations of those systems using architec-
tural constraints and temporal logic patterns.
The proposals of the paper are applied to the Fractal component model.
Given a Fractal reference implementation of a component-based system,
we specify its dynamic reconfigurations using a temporal pattern logic for
Fractal, called FTPL, characterizing the correct behaviour of the system
under some architectural constraints. We study system reconfigurations
on which we verify these requirements, in particular by reusing the FPath
and FScript tools.

1 Introduction

Component-based development provides significant advantages like portability,
adaptability, re-usability, etc. when developing, e.g., Java Card smart card ap-
plications or when composing components or services within Service Component
Architecture (SCA). The adaptability means that component-based systems
must be adapted, or even adapt themselves [12] to their environments during
their lifetime, and there is a need to support dynamic reconfigurations, includ-
ing unanticipated ones [17]. To take up this challenge, this paper deals with the
formal specification and verification of dynamic reconfigurations of component-
based systems, and uses temporal patterns to monitor them.

The present paper makes the following contributions. The first contribution
is a formal definition of the semantics of component-based systems with re-
configurations. To specify system reconfigurations, the second contribution is
the definition of a linear time temporal logic based on architectural constraints
which are first order configuration properties, and on event properties. For tem-
poral operators, its expressive power is related to the well known linear time
temporal logic (LTL) [16]. The third contribution is the application of the paper
proposals to the Fractal component model. For the Fractal component model,
run-time verification issues are addressed to monitor reconfigurations during
system lifetime.

More precisely, this paper follows the line of reasoning suggested in [9], where
the system consistency during its dynamic reconfigurations relies on integrity
constraints—predicates on assemblies of architectural elements and component
states. To go further, we propose to support dynamic reconfigurations by using
more complex architectural constraints and linear temporal logic patterns. These
temporal patterns have been inspired by the pragmatic work of the SanTos
Specification Pattern Project [10], and works on temporal extension of JML [18,
6, 11] helping Java programmers in writing formal specifications. We refer to this
temporal extension as FTPL, for Temporal Pattern Language, prefixed by an
‘F’ to denote its adaptation to Fractal-like component systems and to first-order
integrity constraints over them.

The proposals of the paper are applied to the Fractal component model.
Given a Fractal reference implementation of a component-based system, we
specify its dynamic reconfigurations using FTPL, characterizing the correct be-
haviour of the system under some architectural constraints. We monitor system
reconfigurations by reusing the FPath and FScript tool supports.

The remainder of the paper is organised as follows. After giving a motivating
example in Sect. 2, we formally define the semantics of component-based sys-
tems with reconfigurations in Sect. 3. To support system reconfigurations, Sect. 4
introduces a linear time temporal logic based on architectural constraints and
events. Then, the proposals of the paper are applied to and illustrated on the
Fractal component model in Sect. 5. Finally, Section 6 concludes before dis-
cussing related work.

2 Motivating Example

To motivate and to illustrate our approach, let us consider an example of a
HTTP server from [8]. The architecture of this server is displayed in Fig. 1.

HttpServer

httpRequest

RequestReceiver

request getHandler

RequestHandler
(deviation, load)

handler getDispatcher

getCache

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache

FileServer1

server1

FileServer2

server2

Fig. 1. HTTP Server architecture

The RequestReceiver component reads HTTP requests from the network
and transmits them to the RequestHandler component. In order to perform
a request, RequestHandler can either use the cache (with the component

CacheHandler) or transmit the request to the RequestDispatcher component.
This component uses a set of file servers (like the FileServer1 and FileServer2

components) to answer the request.
This architecture provides a cache (CacheHandler component) and a load

controller (RequestDispatcher component) in order to control the response time
of the HTTP server. To keep the response time as short as possible whatever
the number of requests is, in [8] the authors propose to dynamically reconfigure
the HTTP server. For that, some requirements have been identified:

1. The CacheHandler component is used only if the number of similar HTTP
requests is high.

2. The quantity of allocated memory for the CacheHandler component must
depend on the overall load of the server.

3. The validity of data in the cache must also depend on the overall load of the
server.

4. The number of used file servers depends on the overall load of the server.

In order to take these requirements into account, the RequestHandler and
CacheHandler components are equipped with some parameters. The number of
requests (load) and the percentage of similar requests (deviation) are two parame-
ters defined for the RequestHandler component. The memory size (memorySize)
and the data validity duration (validityDuration) are two parameters defined for
the CacheHandler component.

We consider that the HTTP server can be reconfigured during the execution
by the following reconfigurations

1. AddCacheHandler and RemoveCacheHandler which are respectively used to
add and remove the CacheHandler component,

2. AddFileServer and removeFileServer which are respectively used to add and
remove the FileServer2 component,

3. MemorySizeUp and MemorySizeDown which are respectively used to increase
and to decrease the MemorySize value,

4. DurationValidityUp and DurationValidityDown to respectively increase and de-
crease the ValidityDuration value.

3 Architectural (Re-)Configuration Model

This section gives means for specifying component-based systems with recon-
figurations. A model we propose here is inspired by the model in [13, 15] given
for Fractal. Both models are graphs allowing one to represent component-based
architectures and reconfiguration operations and to reason about them. Un-
like [13, 15], in our model, only the basic and generic concepts are considered to
allow their application to various hierarchical component models: components as
runtime entities, required and provided interfaces as interaction points between
components, bindings to link component interfaces. Components are either prim-
itive components or composite components, and primitive components can have
some attributes used as configuration parameters.

Basically, a component-based system with reconfigurations is characterized
by a set of configurations and a set of actions that allow the modification of
configurations.

3.1 Component-based architectures

In general, the system configuration is the specific definition of the elements
that define or prescribe what a system is composed of. We define a configuration
to be a set of architectural elements (components, interfaces and parameters)
together with a relation to structure and to link them. We consider a graph-
based representation as proposed in [13, 15].

Definition 1. A configuration c is a tuple 〈Elem,Rel〉 where:

– Elem is a set of architectural elements, and
– Rel ⊆ Elem× Elem is a relation between architectural elements.

In our model, the architectural elements are the core entities of a component-
based system: components, required or provided interfaces, and parameters.

Definition 2. The set of architectural elements Elem is defined by:

Elem = Component ⊎ Interface ⊎ Parameter ⊎ Type

where

– Component is a non-empty set of the core entities, i.e components;
– Interface = Required ⊎ Provided is a set of the (required and provided)

interfaces;
– Parameter is a set of component parameters;
– Type is a set of data types associated with parameters.

Each data type is a set of data values. For the sake of readability, we identify
data type names with the corresponding data domains.
The architectural relation Rel then expresses various links between architectural
elements. For example, it allows specifying that a component has an interface or
a parameter, or that a component contains other (sub-)components, or that an
interface is linked to another one.

Definition 3. The architectural relation Rel is defined by:

Rel =
ProvidedBy ⊎ RequiredBy ⊎ ParameterOf ⊎
TypeOf ⊎ V alueOf ⊎ ChildOf ⊎ Binding ⊎ Delegate

where

– ProvidedBy : Provided → Component is a total surjective function which
gives the component having a provided interface;

– RequiredBy : Required → Component is a total function which gives the
component with a required interface;

– ParameterOf : Parameter → Component is a total function which gives
the component of a considered parameter;

– TypeOf : Parameter → Type is a total function which gives the type
associated with a considered parameter;

– V alueOf : Parameter →
⋃

type∈Type type such that ∀p ∈ Parameter :
V alueOf(p) ∈ TypeOf(p), is a total function which gives the current value
of a considered parameter;

– ChildOf ⊆ Component × Component is a irreflexive and antisymetric re-
lation linking composite components to their sub-components 3 such that:
• ∀ c, c′ ∈ Component. ((c, c′) ∈ ChildOf ⇒ ∀ p ∈
Parameter. (ParameterOf(p) 6= c)), i.e, composite components have
no parameter;

• Let ChildOf+ be the transitive closure of ChildOf . Then, ∀c, c′ ∈
Component. ((c, c′) ∈ ChildOf+ ⇒ c 6= c′), i.e., ChildOf is an acyclic
relation;

– Binding : Provided → Required is a partial function such that ∀ ip ∈
Provided, ir ∈ Required. (Binding(ip) = ir ⇒ ProvidedBy(ip) 6=
RequiredBy(ir) ∧ ∃ c ∈ Component. ((c, ProvidedBy(ip)) ∈ ChildOf ∧
(c, RequiredBy(ir)) ∈ ChildOf)), i.e., two linked interfaces do not belong to
the same component, but the corresponding components are sub-components
of the same composite component;

– Delegate : Interface → Interface is a partial injec-
tive function to specify the delegation from a sub-component
interface to the composite interface such that ∀ i, i′ ∈
Interface. (Delegate(i) = i′ ⇒ (ProvidedBy(i′), P rovidedBy(i)) ∈
ChildOf ∨ (RequiredBy(i′), RequiredBy(i)) ∈ ChildOf), i.e., when
delegating, the component providing i is a sub-component of the component
providing i′, or the component requiring i is a sub-component of the
component requiring i′.

Example 1. Figure 2 illustrates main lines of Definition 3 on the example from
Section 2. In this figure, the architectural elements are depicted as boxes and
circles, whereas architectural relations are represented by arrows. For example,
the request architectural element (at the bottom on the left) is an interface pro-
vided by RequestReceiver. The RequestReceiver architectural element is a sub-
component of the HttpServer composite component which provides the httpRe-

quest interface. The request interface delegates results passing to the httpRequest
interface.

3.2 Dynamicity of Component Architectures

To support system evolution, some component models provide mechanisms to dy-
namically reconfigure the component-based architecture, during their execution.
These dynamic reconfigurations are then based on architectural modifications,
among the following primitive operations:

3 For any (p, q) ∈ ChildOf , we say that p has a sub-component q, i.e. q is a child of p.

Http
Server

Request
Receiver Request

Handler

Cache
Handler

Request
Dispatcher

File
Server1File

Server2

httpRequest

request getHandler handler

getDispatcher

getCache

dispatcher

cache

getServerServer1Server2

load

deviation

memory
Size

validity
Duration

ProvidedBy

RequiredBy

Delegate

ChildOf

ParameterOf

ChildOf

ChildOf

ChildOf

ChildOf
ChildOf

ProvidedBy

ProvidedBy

ProvidedBy

ProvidedBy

ProvidedBy

ProvidedBy

RequiredBy
RequiredBy

RequiredBy

ParameterOf

ParameterOf

ParameterOf

Binding

Binding

Binding

Binding

Binding

Integer

TypeOf

TypeOf

TypeOf

TypeOf

Fig. 2. Graph representation of the HTTP Server example

– instantiation/destruction of components;
– addition/removal of components;
– binding/unbinding of component interfaces;
– starting/stopping components;
– setting parameter values of components;

or combinations of them. Notice that reconfigurations are not the only manner
to make a component architecture evolve. The normal running of different com-
ponents also changes the architecture by modifying parameter values or stopping
components, like in the example.

Considering the component-based architecture model given in Sect. 3.1, an
operation which makes the component architecture evolve by a reconfigura-
tion action or by running, is modelled by a graph transformation operation
adding or removing nodes and/or arcs in the graph of the configuration. An
evolution operation op transforms a configuration c = 〈Elem,Rel〉 into another
one c′ = 〈Elem′, Rel′〉. It is represented by a transition from c to c′, noticed

c
op
→ c′. Among the evolution operations (running operations and reconfigura-

tions), we particularly focus on the reconfiguration ones, which are either the
above-mentioned primitive architectural operations or their compositions. The
remaining running operations are all represented by a generic operation, called
the run operation; it is also the case for sequences of running operations.

Definition 4. The set of evolution operations Rrun is defined by:

Rrun = R∪ {run}

with

– R is a finite set of reconfiguration operations;

– run is an action renaming one or more running operations.

Given a component architecture and the set Rrun of reconfiguration oper-
ations, the behaviour of the component architecture is defined as a transition
system labelled over Rrun.

Definition 5. The evolution of a component architecture is defined by the tran-
sition system 〈C,Rrun,→〉 where:

– C = {c, c1, c2, . . .} is a set of configurations,
– Rrun is a finite set of evolution operations,
– → ⊆ C ×Rrun × C is the reconfiguration relation.

Given the evolution of a component architecture, we can now define the useful
notions of path, trace, etc.

Definition 6. Given the model M = 〈C,Rrun,→〉, an evolution path (or a path
for short) σ of M is a (possibly infinite) sequence of configurations c0, c1, c2, . . .

such that ∀i ≥ 0.∃ri ∈ Rrun.ci
ri→ ci+1 ∈→)).

We use σ(i) to denote the i-th configuration of a path σ. The notation
σi denotes the suffix path σ(i), σ(i + 1), . . ., and σ

j
i denotes the segment path

σ(i), σ(i + 1), σ(i + 2), ..., σ(j − 1), σ(j). The segment path is infinite in length
when the last state of the segment is repeated infinitely often.

c1 c2 c'2 c3 c4 c'4 c5 c6
Remove
Cache
Handler

Add
Cache
Handler

Add
File
Server

Memory
SizeUp

Duration
Validity
Uprunrun

Fig. 3. Example

Example 2. A possible evolution path of the HTTP server is given in Fig. 3. In
this path,

– c1 is a configuration of the HTTP server without the CacheHandler and
FileServer2 components;

– c2 is obtained from c1: the load value was changed following the running of
the RequestHandler component;

– c′2 is the same configuration as c2. Without the CacheHandler component,
the RemoveCacheHandler reconfiguration cannot terminate, it is then roll-
backed without any modification;

– c3 is obtained from the configuration c2 by adding CacheHandler, following
the AddCacheHandler reconfiguration operation;

– c4 is the configuration c3 in which the memorySize value was increased;
– c′4 is the same configuration as c4. The result of the running is not observable;
– c5 is obtained from c4 by adding the FileServer2 component;
– c6 is like the configuration c5 but the durationValidity value was increased.

4 Temporal Logic for Dynamic Reconfigurations

This section presents the syntax and the semantics of the temporal logic for
dynamic reconfigurations. This logic, called FTPL, is inspired by the temporal
logic in [18] designed to help Java programmers in writing formal specifications.

4.1 Syntax of the Logic

Let us first give the FTPL syntax. Figure 4 describes the syntax of the temporal
logic for dynamic reconfigurations. The language consists of different layers:

– the configurations properties,

– the reconfiguration operations,

– the trace properties,

– the temporal properties.

<TempProp> ::= after <Events> <TempProp>

| before <Events> <TraceProp>

| <TraceProp> until <Events>

| <TraceProp> unless <Events>

| between <Events> <Events> <TraceProp>

| <TraceProp>

<TraceProp> ::= always ConfigProp
| eventually ConfigProp
| never ConfigProp
| <TraceProp> ∧ <TraceProp>

| <TraceProp> ∨ <TraceProp>

<Events> ::= <Event> , <Events>

| <Event>

<Event> ::= ReconfigOp called

| ReconfigOp normal

| ReconfigOp exceptional

| ReconfigOp terminates

Fig. 4. Syntax of the temporal logic for reconfigurations

4.2 Semantics of FTPL

Let us now give the FTPL semantics. It is defined by induction on the form of
the formulas w.r.t. Fig. 4.

Configuration properties Basically, there is a need to express properties on the
configurations, i.e constraints on the architectural elements and the relations
between them. These constraints are specified using first order logic formulas,
sets and relational operations on the primitive sets and relations given in Sect. 3.

Given the model M , we say that a configuration property cp is valid on a
configuration c = 〈Elem,Rel〉, written M, c |= cp, when the evaluation of cp on
the configuration c = 〈Elem,Rel〉 is true. When M is understood, we simply
write c |= cp.

The configuration properties are expressed at different specification levels. At
the component model level, the constraints are common to all the component
architectures. In addition, some constraints must be expressed to restrict a family
of component architectures (a profile level), or to restrict a specific component
architecture (an application level).

Example 3. Let CacheConnected be a configuration property defined by

∃cache, getCache ∈ Interface.(ProvidedBy(cache) = CacheHandler ∧
RequiredBy(getCache) = RequestHandler ∧Binding(cache) = getCache).

It expresses that the component CacheHandler is connected to RequestHandler.
For the evolution path from Fig. 3 we have: c3 |= CacheConnected whereas
c2 6|= CacheConnected.

Event properties We want to observe reconfiguration action effects, for example
when a reconfiguration is called or when it terminates, to specify and verify
properties over them. Given a reconfiguration operation r in R, we consider the
following events:

– r called denoting that the reconfiguration r has been invoked,
– r normal denoting that the reconfiguration r has terminated normally,
– r exceptional denoting that the configuration r has rollbacked.

Definition 7. Let σ be an evolution path in M , and r a reconfiguration oper-
ation in R. Given an event property φ depicted in Fig.4, <Event>, its validity
on the i-th configuration of σ, denoted σ(i) |= φ, is inductively defined on the
form of φ by:

σ(i) |= r called iff ∃σ(i+ 1).(σ(i)
r
→ σ(i+ 1) ∈→)

σ(i) |= r normal iff i > 0 ∧ σ(i− 1) |= r called ∧ σ(i− 1) 6= σ(i)
σ(i) |= r exceptional iff i > 0 ∧ σ(i− 1) |= r called ∧ σ(i− 1) = σ(i)
σ(i) |= r terminates iff σ(i) |= r normal

∨ σ(i) |= r exceptional

Given an evolution path σ, and a list of event properties E = e1, . . . , en as
depicted in Fig.4, <Events>, we say that E is valid on the i-th configuration of
σ, denoted σ(i) |= E, iff at least one event of the list E is valid on σ(i).

Example 4. Let us consider again the evolution path displayed in Fig. 3. We
have: c3 |= MemorySizeUp called, c5 |= AddFileServer normal and c2 |=
RemoveCacheHandler exceptional.

Trace Properties A trace property expresses a constraint which must be true
when the component-based architecture changes, i.e on the evolution path.

Definition 8. Let σ be an evolution path, and cp a configuration property. Given
a trace property trp depicted in Fig.4, <TraceProp>, its validity on σ, denoted
σ |= trp, is inductively defined on the form of trp by:

σ |= always cp iff ∀i.(i > 0 ⇒ σ(i) |= cp)
σ |= eventually cp iff ∃i.(i > 0 ∧ σ(i) |= cp)
σ |= never cp iff ∀i.(i > 0 ⇒ σ(i) 6|= cp)
σ |= trp1 ∧ trp2 iff σ |= trp1 ∧ σ |= trp2
σ |= trp1 ∨ trp2 iff σ |= trp1 ∨ σ |= trp2

Intuitively,

– always cp is valid on an evolution path σ iff cp is valid on each configuration
of σ;

– eventually cp is valid on an evolution path σ iff cp is valid on one configu-
ration of σ, at least;

– never cp is valid on an evolution path σ iff no configuration of σ satisfies
cp,

– the semantics of conjunction and disjunction is classical.

Let us remark that architectural invariants as presented in [13, 15], can be
handled within the FTPL framework by using always cp, where cp represents
the considered architectural invariant.

Temporal Properties Temporal properties are based on all the properties above,
i.e. they exploit architectural constraints, event properties and trace properties,
together with some temporal patterns, like in [18]. Let us recall that the SanTos
Specification Pattern Project [10] has identified these temporal patterns as useful
in practice.

Definition 9. Let σ be an evolution path, E, E1 and E2 be lists of events, trp
a trace property and tpp a temporal property, as depicted in Fig. 4.

σ |= after E tpp iff ∀i.(i > 0 ∧ σ(i) |= E ⇒ σi |= tpp)

σ |= before E trp iff ∀i.(i > 0 ∧ σ(i) |= E ⇒ σi−1
0 |= trp)

σ |= trp until E iff ∃i.(i > 0 ∧ σ(i) |= E ∧ σi−1
0 |= trp)

σ |= trp unless E iff ∀i.(i > 0 ∧ σ(i) 6|= E ⇒ σ |= trp)

∨ ∃i.(i > 0 ∧ σ(i) |= E ∧ σi−1
0 |= trp)

σ |= between E1 E2 trp iff ∃i, j.(i > 0 ∧ j > i ∧ σ(i) |= E1

∧ σ(j) |= E2 ∧ σ
j−1
i |= trp)

Intuitively,

– the property after E tpp is valid on an evolution path σ iff the validity of the
event property E on a configuration of σ implies the validity of the temporal
property tpp on the suffix of σ starting at this configuration;

– before E trp is valid on an evolution path σ iff for each configuration of
σ, the validity of E on it means that the trace property trp is valid on the
prefix of σ before the considered configuration;

– trp until E is valid on an evolution path σ iff there is a configuration of σ
satisfying the event property E, and the trace property trp is valid on the
prefix of σ ending before this event occurs;

– trp unless E is valid on an evolution path σ iff either the event property E

is not valid on σ implying that the trace property trp is valid on σ, or there is
a configuration of σ satisfying the event property E, and the trace property
trp is valid on the prefix of σ before the corresponding event occurs;

– between E1 E2 trp is valid on an evolution path σ iff both event properties
E1 and E2 are valid on σ, and the trace property trp is valid on the segment
of σ consisting of the configurations in-between the configuration where E1

holds (including it), and the configuration where E2 holds (excluding it).

4.3 Application to the HTTP Server Example

Let us now illustrate the FTPL language use by expressing some properties for
the example of HTTP server from Sect. 2.

Let us consider a temporal property saying that after the invocation of the
reconfiguration operation AddCacheHandler, the CacheHandler component is
always connected to RequestHandler, i.e. the CacheConnected configuration
property from Example 3 holds on the path configurations after the invocation.
This property is valid on the evolution path σ depicted in Fig. 3:

σ |= after AddCacheHandler called always CacheConnected.

The following property expresses an architectural constraint saying that at
least there is always one file server component connected.

always
(

∃getServer ∈ Interface.(RequiredBy(getServer) =

RequestDispatcher ∧ ∃i ∈ Interface.Binding(i) = getServer)
)

Let us now specify that the deviation must always be lower than 50 until the
AddCacheHandler reconfiguration operation terminates normally:

(always

∃deviation ∈ Parameter.(ParameterOf(deviation) = RequestHandler

∧ deviation < 50)) until AddCacheHandler normal

The following property says that between the exceptional termination of
either the MemorySizeUp reconfiguration or the DurationValidityUp reconfig-
uration, and the normal termination of the AddCacheHandler reconfiguration
operation, the number of used file servers is greater than 1:

between
(

MemorySizeUp exceptional, DurationValidityUp exceptional
)

(

addCacheHandler normal
)

(

∃getServer ∈ Interface.(RequiredBy(getServer) = RequestDispatcher ∧

∃i, i′ ∈ Interface.(i 6= i′ ∧Binding(i) = getServer ∧Binding(i′) = getServer)
)

These examples show that architectural invariants and properties on imme-
diate predecessors or target configurations of reconfiguration operations can be
expressed by FTPL formulas. Further, they show that FTPL is more expressive
than the proposals in [9]. Indeed, FTPL allows expressing event properties and
temporal properties involving different kinds of properties satisfying temporal
patterns which have been shown useful for practical applications.

4.4 On the Expressiveness of FTPL

Before considering FTPL temporal properties, let us recall that configuration
properties are first order logic formulas.

Let us now consider temporal patterns. As explained in Sect.4, FTPL has
been inspired by proposals in [10], and works on a temporal extension of JML [18,
6, 11], called JTPL. The semantics of JTPL temporal formulas and translation
rules into JML annotations are detailed in [18] for safety properties and in [6]
for liveness properties.

Let LTLk() denote a function translating the FTPL properties of the kind
k into LTL properties. We adapt the above-mentioned works and propose the
following translation of FTPL patterns into LTL formulas. In this translation cp

is a configuration property, trp, trp1 and trp2 are trace properties, E, E1 and
E2 are lists of event properties, and tpp is a temporal property. In FTPL, there
is a way to decide whether a list of event properties is valid on a configuration
or not. The following functions suppose that the same decision procedure exists
in LTL.

Leaving aside the FTPL and LTL models, it is easy to see that FTPL trace
properties can be rewritten in LTL as follows:

LTLTrace(always cp) G(cp)
LTLTrace(eventually cp) F(cp)
LTLTrace(trp1 & trp2) LTLTrace(trp1) ∧ LTLTrace(trp2)
LTLTrace(trp1 | trp2) LTLTrace(trp1) ∨ LTLTrace(trp2)

For example, if in LTL atomic properties could be configuration properties,
the safety property specifying that always there is at least one file server com-
ponent connected, would be written in LTL as follows:

G(∃getServer ∈ Interface.(RequiredBy(getServer) =
RequestDispatcher ∧ ∃i ∈ Interface.Binding(i) = getServer))

For temporal properties, we have:

LTLTemp(after E tpp) G(E ⇒ LTLTemp(tpp))
LTLTemp(after E trp) G(E ⇒ LTLTrace(trp))
LTLTemp(before E trp) F(E) ⇒ LTLTraceB (E, trp)
LTLTemp(trp until E) F(E) ∧ LTLTraceB (E, trp)
LTLTemp(trp unless E) LTLTraceC (E, trp)
LTLTemp(between E1 E2 trp) LTLTemp(after E1 (trp until E2))
LTLTemp(trp) LTLTrace(trp)

where:

LTLTraceB (E, always cp) cp U E

LTLTraceB (E, eventually cp) ¬(¬cp U E)
LTLTraceC (E, always cp) G(cp) ∨ (cp U E)
LTLTraceC (E, eventually cp) F(cp) ∧ ¬(¬P U E)

Remark that a trace property is translated into LTL according to the tem-
poral context in which the property is used, that is why we define two auxiliary
functions LTLTraceB and LTLTraceC . The LTLTrace function translates a trace
property which either does not depend on a temporal property, or is inside an
after temporal property. The LTLTraceB function is used to translate a trace
property which is inside a before or an until temporal properties. Finally, the
LTLTraceC function translates a trace property bounded by a unless temporal
property.

For example, the property specifying that the deviation must always be lower
than 50 until the AddCacheHandler reconfiguration operation terminates nor-
mally can be written in LTL as follows:

F(AddCacheHandler normal) ∧ (
∃deviation ∈ Parameter.(ParameterOf(deviation) = RequestHandler

∧ deviation < 50) U AddCacheHandler normal)

5 Application to the Fractal Component Model

The Fractal component model [7] is one of the motivations of the present work
because of its native support for dynamic architectures. Fractal also provides
means for introspection and reconfigurations. Existing implementations for Frac-
tal and its extensions offer a framework to experiment with FTPL-based recon-
figurations. This section briefly describes some Fractal features and the existing
language support for reconfigurations, before reporting on our experiments.

5.1 Overview of Fractal, FPath and FScript

The Fractal model is a hierarchical and reflective component model intended
to implement, deploy and manage software systems [7]. A Fractal component
is both a design and a run-time entity that consists of a unit of encapsulation,
composition and configuration. A component is wrapped in a membrane which
can show and control a casually connected representation of its encapsulated
content. This content is either directly an implementation in case of a primitive
component, or sub-components for composite components.

FPath [9] is a domain-specific language inspired by the XPath language that
provides a notation and introspection mechanisms to navigate inside Fractal
architectures. FPath expressions use the properties of components (e.g. the value
of a component attribute or the state of a component) or architectural relations

between components (e.g. the subcomponents of a composite component) to
express queries about Fractal architectures.

FScript [9] is a language that allows the definition of reconfigurations of
Fractal architectures. FScript integrates FPath seamlessly in its syntax, FPath
queries being used to select the elements to reconfigure. To ensure the reliability
of its reconfigurations, FScript considers them as transactions and integrates a
back-end that implements this semantics on top of the Fractal model.

5.2 From the FTPL Model to Fractal

As explained above, the architectural model presented in Sec. 3 has been devel-
oped to capture the Fractal component model, among other component-based
models with reconfigurations, like CCM, GCM, etc. To illustrate our proposals,
in this section we give a part of the Http Server example encoded using our
model (Fig. 5) as well as its implementation in FractalADL (Fig. 6).

Component = { HttpServer,RequestReceiver,RequestHandler, . . . }
Required = { getHandler, getDispatcher, getCache, . . .}
Provided = { httpRequest, request, handler, . . .}
Parameter = { load, deviation, . . .}
Type = { Int, Real, }
ProvidedBy = { httpRequest 7→ HttpServer, request 7→ RequestReceiver,

handler 7→ RequestHandler, . . .}
RequiredBy = { getHandler 7→ RequestReceiver,

getDispatcher 7→ RequestHandler,

getCache 7→ RequestHandler, . . .}
ParameterOf = { load 7→ RequestHandler, deviation 7→ RequestHandler, . . .}
TypeOf = { load 7→ Int, deviation 7→ Int, . . .}
V alueOf = { load 7→ 100, deviation 7→ 50, . . . }
ChildOf = { (HttpServer,RequestReceiver),

(HttpServer,RequestHandler), . . . }
Binding = { getHandler 7→ handler, . . .}
Delegate = { request 7→ httpRequest }

Fig. 5. HttpServer example using Definitions 2 and 3

Let us recall that FractalADL4 is the architecture description language for
Fractal which allows implementing the Fractal component model.

We then use the FScript language to specify the reconfiguration operations
presented in Sec. 3, and the FScript tool support to execute them. FScript
is focused on the manipulation of architectural concepts and provides complete
control of the architecture of the systems modeled in Fractal. Concretely, FScript
takes an architecture of a current Fractal configuration and dynamically changes

4 http://fractal.ow2.org/fractaladl/

1 <d e f i n i t i o n name=”HttpServer ”>
2 < i n t e r f a c e name=”httpRequest ” r o l e=” s e r v e r ”

s i gna tu r e=” java . lang . Runnable”/>
3 <component name=”RequestRece iver ”>
4 < i n t e r f a c e name=” reques t ” r o l e=” s e rv e r ”

s i gna tu r e=” java . lang . Runnable”/>
5 < i n t e r f a c e name=”getHandler ” r o l e=” c l i e n t ”

s i gna tu r e=”Handler ”/>
6 <content c l a s s=”RequestReceiverImpl ”/>
7 </component>
8 <component name=”RequestHandler ”>
9 < i n t e r f a c e name=”handler ” r o l e=” s e rv e r ” s i gna tu r e=”Handler ”/>

10 <content c l a s s=”RequestHandlerImpl ”/>
11 <a t t r i b u t e s s i gna tu r e=”RequestHandlerAttr ibutes ”>
12 <a t t r i bu t e name=” load ” value=”100”/>
13 <a t t r i bu t e name=” dev i a t i on ” value=”50”/>
14 </ a t t r i b u t e s>
15 <c o n t r o l l e r desc=” p r im i t i v e ”/>
16 </component>
17 . . .
18 <binding c l i e n t=” t h i s . httpRequest ”

s e r v e r=”RequestRece iver . r eque s t ”/>
19 <binding c l i e n t=”RequestRece iver . getHandler ”

s e r v e r=”RequestHandler . handler ”/>
20 . . .
21 </ d e f i n i t i o n>

Fig. 6. HTTP Server example in FractalADL

it according to a FScript file in order to create a new target architecture. The
FScript implementation features guarantee that FScript reconfigurations always
terminate and keep the system in a consistent and usable state.

For example, we specify the AddCacheHandler reconfiguration in FScript as
presented in Fig. 7. This reconfiguration consists in creating a new instance of
CacheHandler (name) and in specifying its name (set-name). Then, the compo-
nent is integrated into the architecture (add) and the binding with the component
RequestHandler is set (bind). Finally, the component CacheHandler is started
(start).

1 action addCache(root)
2 {
3 newCache = new(" CacheHandler ");
4 set -name($newCache , "CacheHandler ");
5 add($root , $newCache);
6 bind($root/child :: RequestHandler/interface ::getcache , $newCache/

interface :: cache);
7 start($newCache);
8 }

Fig. 7. AddCacheHandler Reconfiguration specified in FScript

5.3 Dynamic Verification

We now report on our experiments evaluating the feasibility of a run-time moni-
toring of FTPL properties. The monitoring on the execution of the architectural
reconfiguration model depends on the property to be verified; It is either the sat-
isfiability of a configuration property on one configuration, or the satisfiability
of a temporal property on a sequence of component-based system architectures.

Verification of configuration properties. We use the FPath language support
to verify a configuration property on one configuration. Indeed, any first order
logic formula specifying a configuration property can be translated into an FPath
expression, the FPath language having the same expressive power [13].

For example, the CacheConnected configuration property from Example 3
can be expressed in FPath by:

$HttpServer/child :: RequestHandler/interface :: getCache/

→֒ binding :: cache/component :: CacheHandler

Verification of temporal properties. Once the configuration properties are han-
dled thanks to FPath, there is a need to deal with FTPL temporal properties.
In [5], it is shown that the monitoring works well on specific safety properties. In
FTPL the safety properties are properties containing only the keywords after,
before, unless and always; The safety properties are also properties contain-
ing the eventually keyword iff they contain the before keyword to bound the
eventually part. The other properties are liveness properties.

We have studied the feasibility of the safety properties monitoring by
developing a controller in Fractal. This controller supervises the properties
of interest each time a reconfiguration operation occurs. It retains the con-
figurations appearing during the system execution to build a history and
to use it for verification purpose. In order to make the monitoring eas-
ier, the controller divides the property into sub-properties and keeps each
sub-property until it manages to validate it. For example, for the property
after AddCacheHandler called always CacheConnected, the controller tries first
to find a configuration where the AddCacheHandler called event property holds.
Once such a configuration is found, the controller continues with the monitoring
of the CacheConnected configuration property for all the following configura-
tions.

The FTPL properties can be divided into two classes: the properties dealing
with the past and the properties dealing with the future. As it is possible to
determine what has happened in the past thanks to the history built by the
controller, all the past properties can be monitored. But, due to the run-time
verification, there are properties that cannot be ensured by the controller. For
any property about the future containing always, the controller only ensures
that the current configuration does not violate the property at the moment. For
any property about the future containing eventually key-word, the controller
cannot conclude neither.

As explained before, the controller is able to monitor the safety properties
about the past, where as for the properties about the future, it only ensures their
non-violation by the current configuration. In [5], the monitoring of safety prop-
erties necessitates time intervals bounded in the past as well as in the future. To
go further within the Fractal-based approach, and to handle liveness properties,
a solution would be to exploit a variant specification of the Loop clause [11], to
which liveness properties can be reduced.

6 Conclusion

In this paper we have developed a theoretical framework for dynamic reconfigu-
rations of component-based systems. As a calculus for expressing and analysing
reconfiguration and integrity constraints, we have utilised linear temporal logic,
since formulas are interpreted over configuration sequences which naturally rep-
resent dynamic behaviour of component-based systems. For the Fractal compo-
nent model, we have studied the feasibility of monitoring dynamic reconfigura-
tions during system lifetime.

Related work Dynamic reconfiguration of distributed applications is an active
research topic [1, 2, 5, 15] motivated by practical applications like those modelled
in Fractal [7] or in ArchJava [3].

In the context of dynamic reconfigurations, ArchJava [3] gives means to re-
configure Java architectures, and the ArchJava language guarantees communica-
tion integrity at run-time. In the Fractal-based framework, in [14, 15] the authors
have defined integrity constraints as architectural invariants specifying the reli-
ability of component-based systems. There are tools to allow the user to ensure
the reliability of those reconfigurations at run-time. Those works exploit a graph-
based representation of component-based architectures. Our model in Sect. 3 is
closely related to the model proposed in [15] for the Fractal component systems
but unlike [15], our model lays down only general architectural constraints. In
this sense it can be considered as a generalisation of the Fractal-oriented model.
Moreover, our model seems to be general enough to give operational semantics
to other component-based systems. On the integrity and architectural constraint
side, the FTPL logic allows us to specify architectural constraints more complex
that architectural invariants in [9].

Among other applications, our proposals aims at an active monitoring of
component-based systems. The active monitoring involves interpreting a con-
figuration data set and acting on those data to (re-)configure the system ac-
cordingly. This may simply be a validation of the target configuration, or a
reconfiguration operation interruption. In [5, 4], Basin et.al have shown the fea-
sibility of monitoring temporal (safety) properties and, more recently, security
properties using a runtime monitoring approach for metric First-order tempo-
ral logic (MFOTL). The semantics of MFOTL has been defined with respect
to timed temporal structures. Like the model in [5], our model is a first-order
structure, but instead of considering a sequence of time stamps, we focus on

reconfiguration operations. Although our main motivation and hence the model
are different, their algorithms for monitoring temporal safety properties would be
adapted for performing dynamic reconfigurations of component-based systems.

References

1. M. Aguilar Cornejo, H. Garavel, R. Mateescu, and N. De Palma. Specification and
Verification of a Dynamic Reconfiguration Protocol for Agent-Based Applications.
Research Report RR-4222, INRIA, 2001.

2. N. Aguirre and T. Maibaum. A temporal logic approach to the specification of
reconfigurable component-based systems. Automated Software Engineering, 2002.

3. J. Aldric. Using types to enforce architectural structure. In In WICSA’08, February

2008, pages 23–34, 2008.
4. D. A. Basin, F. Klaedtke, and S. Müller. Policy monitoring in first-order temporal

logic. In CAV 2010, UK, July, 2010, volume 6174 of LNCS, pages 1–18, 2010.
5. D. A. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of

metric first-order temporal properties. In IARCS, FSTTCS 2008, India, volume 2
of LIPIcs, pages 49–60. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

6. F. Bellegarde, J. Groslambert, M. Huisman, J. Julliand, and O. Kouchnarenko.
Verification of liveness properties with JML. Technical report RR-5331, INRIA,
2004.

7. Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The fractal component model and its support in java. Softw.,

Pract. Exper., 36(11-12):1257–1284, 2006.
8. F. Chauvel, O. Barais, N. Plouzeau, I. Borne, and J.-M. Jézéquel. Composition et

expression qualitative de politiques d’adaptation pour les composants Fractal. In
GDR GPL 2009, Toulouse, France, January 2009.

9. P.-C. David, Th. Ledoux, M. Léger, and Th. Coupaye. FPath and FScript: Lan-
guage support for navigation and reliable reconfiguration of Fractal architectures.
Annales des Télécommunications, 64(1-2):45–63, 2009.

10. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In ICSE, pages 411–420, 1999.

11. A. Giorgetti, J. Groslambert, J. Julliand, and O. Kouchnarenko. Verification of
class liveness properties with java modelling language. IET Software, 2008.

12. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

13. M. Léger. Fiabilité des Reconfigurations Dynamiques dans les Architectures à Com-

posant. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 2009.
14. M. Léger, Th. Ledoux, and Th. Coupaye. Reliable dynamic reconfigurations in the

fractal component model. In ARM’07, pages 1–6. ACM, 2007.
15. M. Léger, Th. Ledoux, and Th. Coupaye. Reliable dynamic reconfigurations in a

reflective component model. In CBSE 2010, volume 6092 of LNCS, pages 74–92.
Springer-Verlag, 2010.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, 1992.
17. B. Redmond and V. Cahill. Supporting unanticipated dynamic adaptation of ap-

plication behaviour. In ECOOP 2002, Malaga, Spain, June 10-14, 2002, volume
2374 of Lecture Notes in Computer Science, pages 205–230. Springer, 2002.

18. K. Trentelman and M. Huisman. Extending jml specifications with temporal logic.
In AMAST 2002, volume 2422 of LNCS, pages 334–348, 2002.

