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Abstract—When one chooses a main axis of structural de-
compostion for a software, such as function- or data-oriented
decompositions, the other axes become secondary, which can
be harmful when one of these secondary axes becomes of
main importance. This is called the tyranny of the dominant
decomposition.

In the context of modular extension, this problem is known
as the Expression Problem and has found many solutions, but
few solutions have been proposed in a larger context of modular
maintenance.

We solve the tyranny of the dominant decomposition in main-
tenance with invertible program transformations. We illustrate
this on the typical Expression Problem example. We also report
our experiments with Java and Haskell programs and discuss
the open problems with our approach.

Keywords-modular maintenance; restructuring; invertible pro-
gram transformations; tyranny of the dominant decomposition;

I. INTRODUCTION

Evolvability is a major criteria of quality for enterprise soft-

ware. Evolvability is directly impacted by the design choices

on the software architectures [1]. However, it is generally

impossible to find software architectures that are evolvable

with respect to all concerns. So, one of these concerns has to

be privileged at the expense of other ones. This is sometimes

called the tyranny of the dominant decomposition [2]. At

the micro-architecture level, there are many ways to provide

modular extensions which are orthogonal to the main axis

of decomposition of a code structure, such as using open

classes [3] in which one can add methods without modifying

the source code of those classes (see a review of several

solutions in [4]). However, these solutions generally break

the regularity of the initial architecture (architectural degen-

eration), which results in a decrease in the maintainability

(Sec. II). This reveals a tension between modular extension

and modular maintenance.

In this paper, we use invertible program transformations

between pairs of “dual” code structures to solve the tyranny of

the dominant decomposition. We illustrate this with two code

structures, data- and operation-oriented, for which we have

built transformations with refactoring tools (Sec. III and V).

We also give the challenges to be solved to make this approach

fully automatic and scalable (Sec. VI), based on our experience

with Java and Haskell program transformations (Sec. IV).

II. THE MODULAR MAINTENANCE PROBLEM

In this section, we illustrate the fact that with fixed code

structures, maintenance cannot be modular with respect to

independent features (for instance, the set of operations on

a data type is independent of the set of possible cases in that

data type). We illustrate this in an object oriented setting on

a Java program, but the problem is not restricted to object

oriented architectures.

A. Each Architecture Privileges Modular Maintenance on a

Given Axis

When choosing a class structure (or more generally a

module structure) for a given program, one has to choose

between several possibilities with different advantages and

disadvantages [1]. We illustrate this with two possible class

structures for a simple evaluator which have dual advantages

and disadvantages : Composite (or Interpreter) and Visitor

design patterns (Figs. 1 and 2). This program is the same

that is often used to illustrate the expression problem [5], here

given in Java.

The data type Expr represents the expression language to be

evaluated. It is represented by an abstract class. The type Expr

has a subtype for literals (Num for integers) and another for

an operator (Add for additions). Two operations (methods) are

defined on the type Expr : eval to evaluate expressions and show

to transform them into strings. Their behavior is defined by

case on subtypes. We call the code that defines the behavior of

these two operations the business code. In the following, we

are interested in the location of the business code in the class

structure (which determines the modularity of maintenance

tasks).

In the Composite architecture (Fig. 1), the business code

which deals with a given subtype is delimited by the cor-

responding class. The diagram in Fig. 3(a) shows a matrix

indexed on subtypes and operations. The concrete classes form

a partition of the matrix according to the subtypes covered by

the business code they contain. For instance, the class Add

contains the business code for the two operations but only the

part which concerns the subtype Add.

In this architecture, the maintenance concerning a given

subtype is modular: when the requirements or the internal

representation of a subtype changes, all the changes in the



☎

abstract class Expr {
abstract I n t ege r eva l ( ) ;
abstract S t r i n g show ( ) ;

}

☎

class Num extends Expr {
i n t n ;
Num ( i n t n ){ th is . n=n ; } ;

I n t ege r eva l ( ) { return n ; }

S t r i n g show ( ) { return I n t ege r . t o S t r i n g ( n ) ; }
}

☎

class Add extends Expr {
Expr e1 , e2 ;

Add ( Expr e1 , Expr e2 ){
th is . e1 = e1 ;
th is . e2 = e2 ;

}

I n t ege r eva l ( ) { return e1 . eva l ( ) + e2 . eva l ( ) ; }

S t r i n g show ( ) {
return ” ( ” + e1 . show ( ) + ” + ” + e2 . show ( ) + ” ) ” ;}

}

Fig. 1. Data decomposition (Composite/Interpreter pattern) in Java – program
Pdata .

business code are located in the corresponding class. On

the other hand, the maintenance of a given operation is not

modular: when the requirements for an operation changes, the

changes in the business code can be spread over the subclasses.

The program with the Visitor architecture (Fig. 2) has dual

properties with respect to modularity. Its class structure makes

that all the business code related to a given operation are

located in a single class. For instance, the class EvalVisitor

contains all the business code for the method eval. The matrix

of Fig. 3(b) pictures that the classes with the business code

do not cover subtypes anymore but operations.

In this architecture, the maintenance of a given operation is

modular: when the requirements for an operation changes, all

the changes in the business code are located in a single class.

On the other hand, the maintenance of a given subtype is not

modular: when a subtype changes, the changes in the business

code can be spread over the visitor classes.

This duality illustrates the tyranny of the dominant decom-

position in action: whatever program structure is chosen, some

maintenance will be non modular. In the following, we call this

the modular maintenance problem.

B. The Modular Maintenance Problem: Functional Program-

ming Style

The opposition between data oriented architectures and op-

eration oriented architectures is not specific to object oriented

programs. In functional languages, functions are frequently

defined by pattern matching on the structure of data. This

corresponds to an operation oriented architecture: maintaining

☎

abstract class Expr {
I n t ege r eva l ( ){ return ( accept (new E v a l V i s i t o r ( ) ) ) ; }

S t r i n g show ( ){ return ( accept (new ShowVis i tor ( ) ) ) ; }

abstract <T> T accept ( V i s i t o r <T> v ) ;
}

☎

class Num extends Expr {
i n t n ;
Num ( i n t n ){ th is . n=n ; } ;

<T> T accept ( V i s i t o r <T> v ){ return v . v i s i t ( th is ) ; }
}

☎

class Add extends Expr {
Expr e1 , e2 ;

Add ( Expr e1 , Expr e2 ){
th is . e1 = e1 ;
th is . e2 = e2 ;

}
<T> T accept ( V i s i t o r <T> v ){ return v . v i s i t ( th is ) ; }

}

☎

abstract class V i s i t o r <T> {
abstract T v i s i t (Num n ) ;
abstract T v i s i t (Add a ) ;

}

☎

class E v a l V i s i t o r extends V i s i t o r <In teger> {
I n t ege r v i s i t (Num a){ return a . n ; }

I n t ege r v i s i t (Add a ) {
return a . e1 . accept ( th is ) + a . e2 . accept ( th is ) ; }

}

☎

class ShowVis i tor extends V i s i t o r <St r ing> {
S t r i n g v i s i t (Num a){ return I n t ege r . t o S t r i n g ( a . n ) ; }

S t r i n g v i s i t (Add a ) {
return ” ( ” + a . e1 . accept ( th is ) +

” + ” + a . e2 . accept ( th is ) + ” ) ” ; }
}

Fig. 2. Functional decomposition (Visitor pattern) in Java – program Pfun .
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Fig. 3. Coverage of classes with respect to operations and data type.



existing functions is modular but maintaining an existing case

in the data type is not modular (the changes in business code

can be spread over several functions).

An alternative way to define functions is to use traversal

operators (fold catamorphisms) which take as parameter one

function for each case in the data type. Since these parameter

functions are specialized for given cases, it is relevant to

group them into modules containing business code for specific

cases of the data type. This corresponds to a data oriented

architecture: maintaining a case in the data type is modular

but maintaining a function is not modular (the changes in the

business code are spread over several modules) [6].

C. Modular Extensibility (The Expression Problem)

A problem closely related to the modular maintenance

problem exists with extensions: in the Composite architecture

(we return to an object oriented setting), adding a new subtype

is modular (the business code is added in the new class) but

adding a new operation is not (the business code is spread

over several classes), and inversely in the Visitor architecture.

This is known as the Expression Problem [5].

There are many ways to extend the data-type or the set of

operations indifferently in a modular way (see [4] for a review

of some solutions). However, after the modular addition of

an operation, the code is not modular anymore with respect

to subtypes (see Fig 4), and after the modular addition of

a subtype, the code is not modular anymore with respect

to operations. For this reason, (language-based) solutions for

modular extension conflict with modular maintenance.
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Fig. 4. Architecture after two modular extensions. We consider the two initial
architectures described before (Fig. 3), extended with a subtype named Mult,
then extended with an operation named check.

III. INVERTIBLE PROGRAM TRANSFORMATIONS TO SOLVE

THE MODULAR MAINTENANCE PROBLEM

Chains of refactoring operations can be used to change

the structure of programs while preserving their external

behavior [7]. We propose to use invertible chains of refactoring

operations to solve the problems of modular maintenance and

modular extension.

First, the two programs Pdata and Pfun of the previous

section can be transformed one into the other by a behavior

preserving program transformation, and inversely (we have

implemented such invertible transformations for Java and for

its Haskell functional counterpart, see Sec. IV).

Such transformations solve the problem of modular main-

tenance: when one faces an evolution task (which requires

either to add a new subtype/operation or to modify an existing

subtype/operation) to be performed which is not modular in

the available form of the program, he applies the convenient

transformation to get the program into the convenient form,

then he implements the evolution in a modular way (see Fig 5).

In the case of an extension, the resulting architecture is not

degenerated.
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Fig. 5. Scenario for 4 evolutions with architecture transformations. The
initial code is extended with the subtype Mult and with the operation check,
then maintenance tasks are performed on the subtype Add and on the operation
show. Structure transformations are performed so that all the evolutions are
modular.

Once the evolution is implemented, one can either leave the

program in the last form, or apply the inverse transformation

to recover the initial structure with the implemented changes

propagated.



IV. EXPERIMENT: IMPLEMENTATION OF ARCHITECTURE

TRANSFORMATIONS WITH REFACTORING TOOLS

We have made conclusive experiments with Java and

Haskell.

In Java, we have put to test Composite ↔ Visitor trans-

formations with Eclipse [8] and IntelliJ IDEA [9] refactoring

tools. We describe in [10] the abstract algorithms we use, some

variants we propose and the specificities due to the use of

these tools. The whole transformation is not automated yet

(we plan to automate this algorithm by using the tools API in

conjunction with pattern detection tools such as [11]).

In Haskell, we have performed transformations between

function oriented and data oriented architectures with the

Haskell Refactorer [12]. We describe in [6] the abstract algo-

rithms we have designed. The transformations are automated

for several examples of programs. They are concretely defined

by scripts much of which is reusable for other programs. We

have customized the API of the Haskell Refactorer to be able

to automate the transformation steps (see [6], [13]).

A. Results

Here is what we have observed from our experiments:

• The external behavior is preserved by transformations, as

well as type safety.

• We find back the initial source code after performing a

transformation and its inverse, except for the layout and

the comments which have been disturbed.

• In the Java experiment, the visibility for the composite

class elements has to change when passing from Com-

posite to Visitor structures. This is not related to the

transformation but rather to the nature of the Visitor

pattern.

• On small/medium-size programs (we used programs with

6 subtypes and 6 operations), Java refactoring tools

were fast enough, while the Haskell Refactorer was very

slow: the Composite→Visitor takes about 3 minutes (plus

several hours to chain the operations manually) while the

Haskell Refactorer could take 30 seconds for an elemen-

tary renaming (but transformations are automated).

• Our algorithms are sensitive to variations in the initial

structure.

• A few refactoring operations were needed but not covered

by the tools. For Java, we have made some refactoring

steps manually to validate the transformation algorithms.

For Haskell, we have added five operations into the tool

to be able to automate the full transformations.

V. ASSESSMENT

The results above show that our proposal is workable only

with efficient tools. We expose the challenges to be solved to

provide such tools in Section VI. In the rest of this section,

we discuss more generally the pros and cons of our proposal.

Our approach does not rely on a particular programming

language (we have dealt with two different languages). It

applies as soon as two alternative programming structures can

be expressed in a language. It results that:

• Our solution can be applied to legacy systems.

• The programmer’s skill in the programming language is

sufficient to implement modular evolutions. Our approach

does not require that the programmer should master

specific composition mechanisms such as aspects, mixins,

open classes, or hyper-slices.

• Our solution does not induce runtime overhead.

On the other hand, a transformation tool capable of per-

forming the architecture transformation must be available for

the considered language (see Sec. VI).

Our solution is not limited to the data-centered versus the

function-centered structures (see Sec. VII-C). It is not even

limited to two structures (with the limitation that for each new

structure to be considered, a pair of transformations must be

available or defined).

Last, programmers already familiar with the initial program

structure may lose their marks in a second structure.

VI. CHALLENGES FOR TOOL SUPPORT

Using refactoring tools to implement architectures transfor-

mations make transformations easy to design and tune since

refactoring operations are rather high-level transformations.

Refactoring operations are also easily composed to make

more complex operations that can be used as components for

building our transformations. Moreover, chains of refactoring

operations are already used to describe the introduction of

design patterns into existing code [14].

On the other hand, other aspects of refactoring tools make

their use not entirely satisfactory in our context. We now

discuss the challenges to get over in order to make our solution

of industrial strength.

A. Soundness.

Using refactoring tools to implement architectures transfor-

mations has the advantage that the soundness of the transfor-

mation relies on the refactoring tool. However, it is frequent

to face bugs in refactoring tools (we have faced several bugs

in refactoring tools during our experiments). A single bug in a

chain of elementary transformations make all the process fail.

Proofs of correctness of refactoring operations exist [15],

[16], but we cannot expect refactoring tools to be proven

correct in near future. However, we can expect that popular

refactoring tools progressively become safer when bugs are

reported.

B. Layout Preservation, Invertibility

With current refactoring tools, it seems impossible to design

invertible architecture transformations that take layout and

comments into account. A solution is to provide invertible

versions of refactoring operations within the meaning of Bo-

hannon et al. [17]: non invertible operations, such as deletion,

can become invertible by keeping a trace of the program

before transformation. This suggests that it could be useful

to keep a reference architecture and to use alternate ones only

temporarily. That would also allow several maintainers to share

a common reference model in the case of teamwork.



C. Speed and Flexibility

To be workable, our proposal must be automated with

convenient tools. The underlying refactoring tool must be

sufficiently fast (which is the case for popular tools such

as Eclipse but not for academic, prototype tools such as the

Haskell Refactorer).

Moreover, to avoid time-consuming user interactions, trans-

formation tools must be capable of detecting structures in

programs and of adapting the chain of refactoring operations

to these structures. We can consider using pattern detection

tools bearing variations in pattern instances (such as [11]) and

either to adapt the chain of refactoring operations to these

variations upstream or to use tools that infer such chains

of refactoring operations. For instance, in [18], the target

structure is described by logic constraints.

D. Failures and Pre-Conditions

Since each operation of the chain of refactorings requires

some preconditions to be satisfied, it may occur that the user is

advised that the transformation cannot be achieved only during

the transformation process. For this reason, providing pre-

conditions for our transformations is desirable (pre-conditions

for chains of refactoring operations are explored in Kniesel

and Koch [19]).

E. Macro-Architectures

In this paper, we have dealt with source-code level archi-

tectures (micro-architectures). But alternate structures are also

useful at the system level (macro-architectures) [20]. This sug-

gests that transformations between dual macro-architectures

as well as refactoring tools for composition/coordination lan-

guages should be explored.

VII. RELATED WORK

A. Program Restructuring and Refactoring to Patterns

Work on refactoring have always considered that the aim

of refactoring is to improve code structure (and so evolvabil-

ity) [21], [22]. Since most of that work takes place in an object-

oriented context, it is natural that design patterns have been

considered as target code structures [23], [14]. Switching to

alternate patterns has also been considered recently [24].

All that work is a basis for our proposal, but we are

more demanding: we need invertible transformations, full

automation, etc. (see Sec. VI).

B. Views

Offering alternate views of software artifacts is not a new

idea and is useful in practice [25].

Wadler proposes a concept of views that allows to handle

datatypes with several interfaces for pattern matching [26].

This permits the programmer to use the more convenient

interface to implement an algorithm so that its design and

evolvability are improved. However, extension of the data-type

still requires cross-cutting changes in the algorithms. Also, the

underlying mechanisms can introduce a run-time overhead.

Tarr et al. [2] propose to construct programs by com-

posing possibly overlapping compilation units (hyperslices),

each describing a concern. Hyperslices are useful for program

comprehension since the concerns are clearly separated, but

since they can be overlapping, evolutions can be difficult to

implement.

Mens et al. [27] propose a system where concerns are

described by a set of properties (a view). As for Tarr et al. [2],

these views help for program comprehension and help to check

that an evolution does not violate the properties of a concern,

but it does not make the evolution modular.

Shonle et al. [28] also allow to define patterns (views)

describing crosscutting parts of code of interest, but in addition

the programmer can implement concern-specific evolutions

based on these patterns.

We share with Black and Jones [29] a same theoretical

concept of views: alternate forms of a program which are

computed from that program, which external behavior are

equivalent, with different structural properties and that can be

transformed back to the initial structure. However, whereas

we defend the use of “dual” code structures expressible in

a same language, they propose to use language extensions

to support alternate code structures. For instance, whereas

we propose the Visitor code structure as a function oriented

alternate view for the data-oriented code structure, they prefer

to use a flattened class hierarchy (expressed in an extension of

the initial language) so that all the business code for a given

operation is grouped.

The number of proposals for concepts of views shows that

there is an inclination to provide multiple views of software

artifacts to improve separation of concerns. However, the

work cited in this section have a common property: they

are built on top on existing languages (language extensions,

pattern languages, additional composition mechanisms...). This

means that the programmer must be skilled not only in the

base programming language, but also in the technology that

provides views (to understand, use, define, modify or compose

views). We stand out from this by not requiring these skills

but by requiring that convenient transformations are provided

instead.

C. Transformations between other pairs of dual architectures

Our approach is not limited to function oriented versus data

oriented views. First, one can also provide a security view, a

transaction view, or any view which reifies a concern that is

subject to change. Second, views can be used to other aims

than modularity. It can be used to navigate between conflicting

design choices.

1) Add or remove structure: For instance, instead of chang-

ing the main axis of structure, one can need to add/remove

structure. Adding a function that factorizes some code allows

to hide a behavior, to name a concept, to remove code

duplicates, to move piece of code for a concern to a given

module/class. On the opposite, inlining/unfolding a function

enables to remove an indirection or a dependency to a module,

to ease an analysis. The same is true for class hierarchies



(class hierarchies make clean architectures but behavior code

is spread over several files), or for aspects (understanding

aspect interactions can be tricky). Is is also sometimes useful

to add/remove polymorphism or machinery such as iterators

to improve understanding and analysis.

2) Change internal behavior: More generally, software

engineering offers fundamental design choices that could be (at

least partially) supported by views. For instance, λ-lifting [30]

(resp. λ-dropping [31]) adds (resp. removes) extra function

parameters corresponding to free variables. The λ-lifted view

promotes function reuse, and the λ-dropped view promotes

efficiency. A same relationship exists between continuation

passing style and direct style [32].

Another design tradeoff exists between computation time

and storage in memory. This is exemplified by the choice

to use memoization. Second example: when implementing

a collection, one has the choice to compute the number of

elements in the data-structure on demand or to store it in the

data-structure and maintain it. In the latter case, yet another

tradeoff occurs between updating the stored size at each update

of the elements, or updating it only when the size is accessed.

Finally, a last tradeoff is related to when a computation

occurs. For example, two processes can communicate syn-

chronously or asynchronously, with or without buffers, etc.

These views are quite general and maybe impossible to

support automatically. But, when possible, views can reduce

the impact of making these design choices early, when future

changes in requirements are not known yet.

VIII. CONCLUSION

The contributions of this article are the following:

• We show how invertible program transformations make

continual modular maintenance along crosscutting con-

cerns feasible.

• We point some technical and scientific challenges to

make the approach workable, based on our experience

in building tools to support such transformations.

Applying invertible structure transformations with (yet to

provide) appropriate, fully automatic tools can enable to:

• Reduce structure degeneration with continual change.

• Reduce the impact of early design choices and reduce

the cost of maintenance or incremental development

for concerns which are transverse to the main axis of

decomposition.

• Reduce the need for specific programming skills (such as

aspects) for separation of concerns.
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