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In a liquid suspension, thermophoresis is the motion of a suspended particle under 

a temperature gradient. In a liquid binary mixture, thermodiffusion is the 

generation of a composition gradient upon application of a temperature gradient. 

In this paper, a quantitative connection is established between the two phenomena 

without making assumptions about their mechanisms. It is shown that Galilean 

invariance and the choice of a Galilean reference frame play a key role in that 

connection. Our results are not restricted to very dilute suspensions or mixtures. 

 

Keywords: thermophoresis; suspension; thermodiffusion; binary mixture; 

Galilean invariance 
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1. Statement of the issue 

 

The physics of liquid suspensions and that of binary mixtures are known to overlap. The 

classic works of Einstein [1], Smoluchowski [2] and Perrin [3], on Brownian motion and the 

atomic-molecular reality of matter, are about liquid suspensions but they borrow concepts 

from the thermodynamics of binary mixtures, or solutions. Those works dealt with isothermal 

suspensions, and the connection with isothermal mixtures continues to be fruitful much later 

[4,5]. In case that the temperature is not homogeneous, the physics of suspensions is 

concerned with the thermophoresis of suspended particles, i.e. their motion under the 

temperature gradient [6,7], whereas the physics of mixtures envisages the thermodiffusion, 
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also called thermal diffusion [8−10], of the two components; it is a partial demixtion induced 

by the temperature gradient, which is opposed by the remixing effect of ordinary diffusion. In 

the viewpoint of thermophoresis, the particles move through a quiescent medium unperturbed 

by the guest particles. In the viewpoint of thermodiffusion, the molecules of the suspending 

medium are treated on the same footing as the suspended particles. 

 It appears that the connection between thermophoresis and thermodiffusion has been 

much less investigated than the one between the isothermal phenomena, and is subject to 

confusions due to the disparate concepts involved in the two areas [11]. The purpose of the 

present paper is to dispel those confusions. We shall stay at the phenomenological level 

throughout, with no attempt at investigating the underlying transport mechanism(s) or making 

any assumption thereabout. The paper is structured as follows. Section 2 expounds the 

statistical tools needed to describe the transport of particles in a medium which is not 

necessarily homogeneous. Section 3 reviews two experiments measuring the so-called 

thermophoretic velocity acquired by a suspended particle under the applied temperature 

gradient. Special attention is paid to the conditions under which that velocity is measured as 

they are an integral part of the notion of thermophoretic velocity. Next, section 4 applies the 

statistical tools of section 2 to the measurements reviewed in section 3. The observables used 

in the thermophoresis and thermodiffusion viewpoints are then related to each other. It 

appears that the often unspoken specification of a Galilean reference frame is crucial in 

establishing the link between both viewpoints. Section 5 gathers the conclusions. 

 

 

2. Constructing a Galilean-invariant equation of matter transport 

 

This section describes the statistical framework needed to handle particle transport, which is 

often not deterministic in contrast to particle motion in mechanics. This comes about because 

the particle interacts with the infinitely many thermally fluctuating degrees of freedom of the 

medium. The latter will be allowed to be inhomogeneous; that feature is mandatory if 

temperature T varies with position, since many relevant physico-chemical parameters (such as 

the mass density or the viscosity of the medium) are functions of T. 

 The laboratory frame where transport is observed is taken to be Galilean. Considering 

only one coordinate x for simplicity and denoting time by t, the simplest description of the 

non-deterministic motion x(t) of a particle suspended in the medium involves the average 

position 〈x〉 and the variance 〈(x − 〈x〉)2〉. The notation 〈 〉 means the averaging over a 

statistical ensemble of particles in which each particle has a distinct trajectory x(t). 

 Consider first a homogeneous medium. Starting from an ensemble of N particles 

sharply localized at position x0 at zero time, i.e. a particle number density n(x, t=0) = N δ(x − 

Page 2 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3 

x0) where δ is the Dirac distribution, it is expected that, at time t > 0, n(x, t) be a Gaussian 

distribution, 

   n(x, t) = 
N

 [2π〈(x − 〈x〉)2〉]3/2 exp(− 

(x − 〈x〉)2

2〈(x − 〈x〉)2〉),  (1) 

where the mean and variance are linear in time: 

   〈x〉 = x0 + vdt,       (2) 

   〈(x − 〈x〉)2〉 = 2Dt.       (3) 

The reasons for (1)-(3) are threefold [12,13]: 

 (i) because of homogeneity, the rates (d〈x〉/dt) and (d〈(x − 〈x〉)2〉/dt) are independent of 

x0 ; vd in (2) is called the drift (or migration) velocity and D in (3) is called the diffusivity; 

 (ii) it is also assumed that the process is stationary, i.e. the rates are independent of the 

origin of time; 

 (iii) because the random increments of the particle's position are independent but obey 

the same probability law owing to (i) and (ii), the central limit theorem of probabilities entails 

a Gaussian distribution of x after a sufficiently long time t. 

 We notice that (1)-(3) are equivalent to 

   
∂n
∂t  + 

∂j
∂x = 0,        (4) 

   j(x, t) =  vdn − 
∂(Dn)
∂x  .      (5) 

Equation (4) expresses the local conservation of particles and j is the conserving particle-

current density. 

 In actuality, statement (iii) and expression (5) do not hold over a short time t and n(x, t) 

is not Gaussian. This is well known in neutron transport when the scattering events are 

infrequent, i.e. when the neutron's mean free path approaches the container's size [14]. In 

electron transport in a solid medium, scattering events are so frequent that the deviation from 

the Gaussian shape can only be 'observed' in a numerical simulation of transport performed 

over a very short duration or very small length. It is then found that expression (5) of the 

current density has to be supplemented with paradiffusion terms such as ∂2(Pn)/∂x2 and 

higher-order spatial derivatives [15], skewing n(x, t) with respect to the Gaussian shape. This 

provides the most complete description of the non-deterministic motion, which includes 

moments or cumulants of x(t) of all orders [16]. However, if only one paradiffusion term is 

used in j, namely ∂2(Pn)/∂x2, then negative values of n(x, t) are found at some positions [15]. 

Marcinkiewicz [17] has shown that it is necessary to include all high-order derivatives in 

order that positivity of n(x, t) be preserved. That is the reason why, although the inclusion of 

one paradiffusion term improves the description of transport over short durations [15], in 

practice the expansion of j is truncated after the first two terms, corresponding to the central 

limit theorem. We follow that practice in the following. 
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  If the medium is not homogeneous, vd and D are functions of position. Accordingly, 

the formulae (2) and (3) are not valid any longer. The definitions of vd and D should now be 

local, i.e. 

   vd(x0) = (d〈x〉
dt ),       (6) 

   D(x0) = 
1
2 (d〈(x − 〈x〉)2〉

dt ),      (7) 

depend on the initial position x0 of the sharp group of particles. Local particle conservation (4) 

is ensured with the current density j given again by expression (5) provided that vd and D be 

considered as functions of position. Those functions should be smooth, i.e. vary little over the 

mean free path, defined as the length needed for decorrelation of the instantaneous velocity 

due to the random changes of that velocity in scattering events. 

 We stress that, for the coefficient of n in (5) to mean the local drift velocity of a 

sharply localized ensemble of particles (the velocity of their centroid according to (6)), the 

other contributions to j should be total spatial derivatives. If j = vd(x) n + (∂f/∂x) with f 

vanishing on the container's borders, then an integration by parts of (4)-(5) (the Ostrogradsky-

Gauss theorem in three dimensions) proves that (d〈x〉/dt) = vd(x0) for n(x, t=0) = N δ(x − x0) 

[11,18,19]. This has been checked experimentally on Brownian particles in an inhomogeneous 

(albeit isothermal) medium [20,21]. If in addition f = 0, it is easily verified that n(x, t=0) = 

N δ(x − x0) evolves into n(x, t) = N δ(x − X(t)) where X(t) satisfies the following differential 

equation: 

   
dX
dt  = vd(X(t)),    X(t=0) = x0 .     (8) 

Then, position evolves as a deterministic function X(t) of time. The contributions to j other 

than vd(x) n, namely (∂f/∂x) with f = −Dn + ∂(Pn)/∂x + ..., are the diffusion and paradiffusion 

current densities [15]. Once paradiffusion is dropped, we are left with a non-homogeneous 

drift-diffusion equation, often labelled 'Fokker-Planck equation' [18]. It is a continuous-time 

self-repeating application of the central limit theorem of probabilities making allowance for a 

smooth change of vd and D with x and possibly with t [16] 1. 

 Whether in the homogeneous or inhomogeneous case, the particle transport equation 

(4)-(5) exhibits manifest Galilean invariance. We can see it by observing transport in a 

different Galilean frame, such that x → x − Vt, with V denoting the translation velocity of the 

new frame with respect to the first one. Then, from (6) and (7), vd → vd − V transforms as a 

vector while D → D is a Galilean scalar 2. If the current density (5) be written as 

                                                 
1 Ryskin [16] remarks that the label 'Fokker-Planck equation' has often been given to an equation having the 
same pattern but with a wrong definition of D(x0), not consistent with Galilean invariance. 
2

 If the medium were anisotropic, D would actually be a second-order tensor Dij instead of D δij in the isotropic 
case (δij is the Kronecker symbol). 
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   j(x, t) =  (vd − 
∂D
∂x) n − D(∂n∂x),     (9) 

then the coefficient of n in (9) cannot be interpreted as the local rate of change of 〈x〉 in any 

frame. 

 

 

3. Observation of a thermophoretic velocity 

 

The first observation of the thermophoresis of particles in a liquid was reported by McNab 

and Meisen [6]. They were studying spherical polystyrene latex particles, of diameter ranging 

between 0.8 and 1.0 µm, dilute in an aqueous medium. The liquid suspension was subjected to 

a vertical gradient of temperature. The vertical drift, or migration, velocity was computed 

from the transit time, i.e. the time needed by a particle to move over a given distance in the 

medium. The actions of gravity and of the temperature gradient were assumed to be additive. 

As the particle Reynolds number never exceeded 0.1, the terminal gravitational velocity 

(corrected for buoyancy) was obtained from the Stokes law and it was subtracted from the 

observed velocity in order to isolate the effect of the temperature gradient alone. 

 In the more recent experiment of Regazzetti and co-workers [7], the temperature 

gradient is horizontal, so that no gravitational/buoyant correction to the horizontal velocity is 

needed. The time t required for the drift of the particle across the horizontal thickness w of the 

channel is measured in three experiments, and 〈t〉 denotes the mean value. The thermophoretic 

velocity is operationally defined 3 by equation (1) of [7] as w/〈t〉, i.e. 

   vd = ( dx
d〈t〉),        (10) 

instead of vd = (d〈x〉/dt) of section 2. Both definitions of vd are consistent with each other 

insofar as the uncertainty [〈(t − 〈t〉)2〉]1/2 is much less than the mean 〈t〉. Since x − x0 ≈ vdt  to 

zero order in the uncertainties, the condition [〈(t − 〈t〉)2〉]1/2 << 〈t〉 amounts to [〈(x − 〈x〉)2〉]1/2 

<< vd〈t〉, i.e. 

   2D << vd
2〈t〉 ≈ vd(x − x0).      (11) 

The left-hand side is computed by means of the Stokes-Einstein formula to be about 10−12 

m2/s while the right-hand side is about 10−9 m2/s [6]. 

 In [6], the liquid is enclosed in a rigid container. Since the volume is constant, the 

pressure is not controlled by the experimentalist. It is determined by the system itself through 

the relation of state of the suspension, as discussed in the appendix. Although the value of 

pressure is not known, we show in section 4.1 that its horizontal gradient vanishes very 

                                                 
3 Actually in their equation (1) w is replaced by w − d, where d is the diameter of a particle as it can be a 

significant fraction of w. 
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quickly while its vertical gradient offsets gravity. In [7], the control of the flow rate demands a 

vertical pressure gradient associated with the viscous resistance of the channel; that gradient 

adds up to the gravitational pressure gradient. As for the horizontal pressure gradient, it is 

shown in section 4.1 to vanish very quickly. Therefore the thermophoretic velocity is either 

measured in the absence of a pressure gradient [7] or corrected for the effect of that gradient 

[6].  

 In both experiments, the temperature gradient over the particle's path x − x0 is 

established after a typical time τ = (x − x0)2/∆ where ∆ is the thermal diffusivity of the 

suspension. As the time needed to cross (x − x0) is 〈t〉 = (x − x0)/vd , we have 

   τ/〈t〉 = vd(x − x0)/∆.       (12) 

In water under standard conditions, ∆ ≈ 10−7 m2/s. The typical measured thermophoretic 

velocities [6] were about 5x10−6 m/s and (x − x0) ≈ 2x10−4 m, so that τ/〈t〉 ≈ 10−2 << 1. 

Therefore, the temperature gradient, just as the pressure gradient, may be regarded as static 

during thermophoresis. 

 

 

4. Connection with thermodiffusion 

 

4.1. Unary versus binary transport 

From the previous section, the phenomenology of thermophoresis calls for the transport 

description of section 2 in which diffusion is neglected. The evolution of the liquid medium 

where particles are suspended is not considered. Basically, thermophoresis is regarded as a 

phenomenon of unary transport, i.e. there is one mobile species B in a quiescent medium of A 

molecules. The transport of B obeys a local equation of conservation (in three dimensions) 

   
∂nB

∂t  + div jB = 0,       (13) 

where nB is the number density of B and the vector field jB(r, t) is the conserving particle-

current density of B at position r. It is nBuB(r, t), where the transport velocity uB is the 

average velocity of the ensemble of particles contained in a macroscopically small, but 

microscopically large, volume element located about r. From section 2, a first approximation 

to jB is vdnB and a second approximation, including the spreading about the centroid, is vdnB 

− ∇∇∇∇(DnB), where ∇∇∇∇ denotes the gradient operator. 

 In the viewpoint of thermodiffusion [8−10], one is considering a binary mixture of the 

species A and B where they play symmetrical roles. Just as B, A is locally conserved, so that 

(13) is supplemented with 

   
∂nA

∂t  + div jA = 0,       (14) 
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where nA is the number density of A, jA = nAuA is the conserving current density of A and uA 

is the transport velocity of A. The evolution of the mixture composition, defined as the 

particle fraction xB = nB/n where n = nA + nB is the total particle-number density, is obtained 

[22] by combining the equations of continuity (13) and (14): 

   n(DxB
Dt

) + div JB = 0,      (15) 

where 

   JB = xAjB − xBjA       (16) 

is the particle interdiffusion current density and xA = nA/n. In (15), the advective derivative 

D/Dt is ∂/∂t + u.∇∇∇∇ where u = xAuA + xBuB is the number-averaged transport velocity 

(ensemble average velocity of particles in a mesoscopic volume). Equation (15) describes the 

interdiffusion, or mixing, of A and B. The physical meaning of JB is more straightforward if it 

is rewritten as 

   JB = nxAxB(uB − uA),       (17) 

so that mixing stops when A and B are transported at the same velocity. 

 It is equally possible to describe the evolution by considering the mass fraction and 

current densities instead of the particle fraction xB and current densities jB and JB , and we 

shall do so in the appendix. The mass and particle fractions are homographic functions of each 

other, involving the ratio of masses mA of A and mB of B, and the mass and particle densities 

are related likewise. 

 The main concern of this paper is the unary limit of guest particles B being very dilute 

in a host medium of molecules A. Then, one intuitively expects the medium to be hardly 

perturbed by the transport of a few guest particles B. In (14), nA is expected to be independent 

of time and uA to vanish in the laboratory frame. But is that actually possible? In equilibrium 

nA is a function of the local thermodynamic state (p, T, xB) of the mixture. The equilibrium 

relation nA = nA(p, T, xB) retains its validity when the change in xB is slow; that is one usual 

assumption, or rather approximation, of non-equilibrium thermodynamics, which is borne out 

in experiments and in numerical studies of the molecular dynamics [23]. Since p and T do not 

vary with time, we have 

   
∂nA

∂t  = (∂nA

∂xB
)
p, T

(∂xB

∂t ).      (18) 

The upshot is that interdiffusion, i.e. (∂xB/∂t) ≠ 0, prevents us from taking div jA = 0 in (14) 

and thereby from considering that uA = 0. Therefore the medium of molecules A may not be 

regarded as being at rest. More precisely, relation (18) tells us that the medium of molecules A 

is locally expanded or contracted because of its change in composition xB . The medium may 

not be taken as a reference frame (in the sense of mechanics) because it is a non-rigid fluid 

instead of a solid. The condition of rigidity is div uA = 0 while the actual velocity field is such 

that div uA = −(∂/∂t + uA
.∇∇∇∇) ln nA which does not vanish in general. As a result, the equations 

Page 7 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

8 

of unary transport (4)-(5) pertinent in thermophoresis cannot be straightforwardly recovered 

from the equations of binary transport (15)-(16) used in thermodiffusion. 

 That conclusion is further supported by the fact that JB is a Galilean-invariant vector 

field, whereas jB → jB − nBV in a Galilean frame moving at velocity V with respect to the 

laboratory frame. Because of those distinct behaviours with respect to Galilean invariance, JB 

cannot be carelessly identified with jB , as one would like in letting xA → 1 and uA = 0 in (17). 

 Consider now the mass transport velocity 

   v = (mAnAuA + mBnBuB)/ρ      (19) 

where ρ = mAnA + mBnB is the mass density. That velocity appears in the local conservation of 

mass in fluid dynamics [24], 

   
∂ρ
∂t  + div(ρv) = 0,       (20) 

and it is the solution of the Navier-Stokes equation [24], 

   ρ(∂ 
∂t + v.∇∇∇∇)v = −∇∇∇∇p + ρg + η∆v,     (21) 

where g is the Earth's gravity field and η is the shear viscosity (we ignore the volume viscosity 

and the position dependence of η for simplicity). In mechanical equilibrium, 

 (i) there is no horizontal pressure gradient and a vertical pressure gradient offsets 

gravity; 

 (ii) the solution v(r, t) of equation (21) is constant and uniform. 

Its value v in the laboratory frame is determined by the breaking of Galilean invariance due to 

the rigid container. The latter exerts a viscous braking force on the liquid and makes v vanish 

with respect to the container, which may be taken as a Galilean reference frame and usually is 

at rest in the laboratory. From the dimensional analysis of (21), it is seen that mechanical 

equilibration (v = 0) is achieved over a typical transient time L2/ν, where L is a typical length 

of the container and ν = η/ρ is the momentum diffusivity of the liquid [24] (ν ≈ 10−6 m2/s in 

water under standard conditions). That time is much shorter than the typical time for 

interdiffusion, namely L2/DBA , where DBA is the mutual diffusivity appearing in the 

phenomenological equation written in section 4.2: DBA ≈ 10−12 m2/s for suspended spheres 

[6,7] and ≈ 10−9 m2/s for ethanol dilute in water [25]. Because the momentum density ρv and 

the composition xB evolve over disparate time scales, it is possible to consider that v 

approximately vanishes everywhere in the container's frame while uA − uB does not. In other 

words, because of its faster time scale, mechanical equilibration adjusts to the slower 

'chemical equilibration', i.e. interdiffusion [26,27]. The relative error incurred in 

approximating v to zero is of the order of DBA/ν ≈ 10−3 or less in the examples considered. 

From v ≈ 0 in the container's frame and from definitions (16) and (19), we are now in a 

position to connect jB in that frame with JB , as 
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   JB ≈ [xA + (mB
mA

)xB] jB .      (22) 

It is emphasized that the connection (22) is specific to liquid media where DBA/ν << 1. In 

gaseous media where DBA/ν ≈ 1 [28,29], it would not hold. Indeed it is not found in the 

literature on thermodiffusion in gases  [8,9]. 

 The mathematical relation between the rates of change of nB = n(p, T, xB) xB and of xB 

is 

   
∂nB

∂t  = [n + xB(
∂n
∂xB

)
p, T

](∂xB

∂t ).     (23) 

Furthermore, the vanishing of the mass transport velocity yields the advective derivative 

   
DxB
Dt

 = 
∂xB

∂t  + (1 − 
mB
mA

)xBuB
.∇∇∇∇xB .     (24) 

It is found after some algebra that the evolutions (13) of nB and (15) of xB are compatible 

provided that 

   
∂ 
∂t(mAnA + mBnB) = 0.      (25) 

This is just the local conservation of mass (20) as we have considered that v = 0 after the 

typical transient time L2/ν of mechanical equilibration. 

 

4.2. Relation between thermophoretic velocity and thermodiffusion coefficient 

The first step in the phenomenology of thermodiffusion was to write an equation of evolution 

(15) of the mixture composition involving an interdiffusion current. The second step is to 

assume that the latter current responds to the local departures from thermodynamic 

equilibrium in a linear fashion. Since the independent intensive thermodynamic state variables 

are p, T and xB , and the experiment is performed under uniform pressure (in case of horizontal 

transport), those departures are ∇∇∇∇xB and ∇∇∇∇T. The linear response to those departures is written 

as [26,30] 

   JB = −n(DBA∇∇∇∇xB + DT,BAxAxB∇∇∇∇T),     (26) 

where DBA is called the mutual diffusivity and DT,BA the thermodiffusion coefficient. Other, 

equivalent definitions of linear-response coefficients exist but they are not of interest to our 

concern. 

 Section 4.1 has related JB to the unary current density jB in the laboratory frame where 

the container is at rest. Writing jB as vdnB − ∇∇∇∇(DnB) and expressing it as a linear combination 

of ∇∇∇∇xB and ∇∇∇∇T, we have to equate the coefficients of the latter two gradients on both sides of 

relation (22). The calculation is elementary but somewhat lengthy. It involves 

   ∇∇∇∇D = 
∂D
∂T  ∇∇∇∇T + ( ∂D

 ∂xB
) ∇∇∇∇xB ,      (27) 

   ∇∇∇∇n = nβ∇∇∇∇T + ( ∂n
 ∂xB

) ∇∇∇∇xB ,      (28) 

Page 9 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

10 

where β = (∂ ln n/∂T)p, xB
 denotes the coefficient of thermal expansion of the liquid mixture. 

The outcome of the calculation is 

   DBA = D[1 + xB(
∂ ln(nD)

 ∂xB
)][xA + (mB

mA
)xB],   (29) 

   −xADT,BA∇∇∇∇T = [vd − (∂D∂T  + βD)∇∇∇∇T][xA + (mB
mA

)xB].  (30) 

In most cases, one is interested in guest particles B dilute in a host medium of molecules A, so 

that xB is close to zero. To the lowest order in xB , the previous relations simplify to 

   D ≈ DBA ,        (31) 

   vd ≈ (−DT,BA + 
∂D
∂T  + βD)∇∇∇∇T.     (32) 

In (31) we have regained a known result of the literature on isothermal diffusion [1−3,22]: the 

unary diffusivity D is approximately equal to the binary (mutual) diffusivity DBA . In contrast, 

the thermophoretic velocity (32) is not proportional to the thermodiffusion coefficient DT,BA . 

As was shown earlier [11], the main departure from proportionality stems from the 

dependence of the diffusivity D ≈ DBA on temperature. 

 

 

5. Conclusions 

 

The purpose of this paper was to establish a connection between thermophoresis (the motion 

of a suspended particle under a temperature gradient) and thermodiffusion (the partial 

demixtion of a binary mixture under a temperature gradient). The phenomenology of 

thermodiffusion involves an interdiffusion current which is Galilean invariant whereas the 

phenomenology of thermophoresis involves a velocity which depends on the choice of a 

reference frame. Connecting the two phenomenologies demands the specification of a frame. 

We have shown that the apparently natural frame, namely the suspending liquid, is not at rest 

with respect to the laboratory frame as soon as suspended particles move and, more 

importantly, the suspending liquid may not be considered as a Galilean reference frame 

because it is not rigid. 

 We have examined the time scales underlying the measurement of the thermophoretic 

velocity. The temperature and pressure gradients may be regarded as static during 

thermophoresis; the latter gradient should vanish, otherwise its contribution has to be 

subtracted from the measured velocity. In the thermodiffusion viewpoint, the composition 

gradient evolves over a 'chemical equilibration' time scale much longer than the thermal and 

mechanical equilibration time scales. Because the latter equilibration entails a (horizontally) 

uniform pressure, the mass transport velocity of the mixture approximately vanishes 

everywhere in the container's frame with a relative error DBA/ν. That equilibration provides a 
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link between the transport velocities of A and B in that frame, which in turn connects the 

unary quantities (vd , D) used in thermophoresis with the binary quantities (DT,BA , DBA) used 

in thermodiffusion. The ladder of time scales for mechanical, thermal and 'chemical' 

equilibrations is specific to the liquid state; it does not arise in the gaseous state where ν, ∆ 

and DBA have similar orders of magnitude. Thereby, besides providing a more rigorous 

derivation than our previous work [11], the present paper has generalised the connection 

between vd and DT,BA to arbitrary particle fractions. 

 

 

Appendix 

 

This appendix examines the behaviour of pressure in a constant-volume experiment [6]. First, 

we acknowledge the existence of a relation of state of the mixture (or suspension) between the 

volume per particle or its inverse, pressure p, temperature T and composition. Taking 

quantities per unit mass, instead of per particle, that relation takes the form 

   ρ = ρ(p, T, ωB),      (A.1) 

where ρ is the mass density and ωB = mBxB/(mAxA + mBxB) is the mass fraction of B. Relation 

(A.1) states that the specific volume 1/ρ is a dependent state variable if p, T and ωB are taken 

as the independent intensive state variables. That equilibrium relation holds to a good 

approximation when variations occur slowly so that no dynamical equation is needed. 

 Secondly, the conservation of mass in a rigid box of horizontal length L and lateral 

area A is expressed by 

   
d 
dt [⌡⌠

0

L

ρ(p(t), T(ξ), ωB(ξ, t)) A dξ] = 0.    (A.2) 

For ease of reasoning, we have considered that transport occurs horizontally, along ξ varying 

between 0 and L, instead of vertically, in the presence of a time-independent temperature field 

T(ξ). The composition ωB varies with time t over the time scale L2/DBA . As argued in section 

4.1, the horizontal pressure gradient ∂p/∂ξ vanishes very quickly over the time scale L2/ν as 

the momentum diffusivity ν is much larger than the particle mutual diffusivity DBA . That is 

why the position dependence of p is ignored. In (A.2) the time dependence of p compensates 

for that of ωB so that the total mass keeps constant. 

 Once the mass transport velocity v has vanished after the fast transient of mechanical 

equilibration, (A.2) is replaced by (20), 

   
∂ 
∂t ρ(p(t), T(ξ), ωB(ξ, t)) ≈ 0.     (A.3) 

Equation (A.3) is inaccurate by a term of relative order DBA/ν. It can be rewritten as 

   (∂ρ∂p) 

dp
dt  + ( ∂ρ

 ∂ωB
) 

∂ωB
∂t   = 0.     (A.4) 
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The mass fraction evolves according to an equation similar to (15), namely 

   ρ(∂ 
∂t + v.∇∇∇∇)ωB + div(ωAjB − ωBjA) = 0,   (A.5) 

where the argument of the divergence operator is the mass interdiffusion current density. 

Since v = 0 owing to local mechanical equilibration, from (A.4) and (A.5) we get 

    
dp
dt  = 

1
ρ 

(∂ρ/∂ωB)
(∂ρ/∂p)

 div(ωAjB − ωBjA).    (A.6) 

In the framework of linear response [26,30], ωAjB − ωBjA is a linear combination of ∇∇∇∇ωB and 

∇∇∇∇T on the same pattern as equation (26). Consequently div(ωAjB − ωBjA) is of second order in 

the gradients (it contains second-order spatial derivatives and products of first-order 

derivatives). The time variation of pressure accompanying the transport of particles is thus 

negligible in the linear-response framework. The latter may be used only for weak 

composition gradients, i.e. a nearly homogeneous liquid. As a counter-example, the mixing of 

pure water with pure ethanol gives rise to a noticeable contraction of volume under constant 

pressure (up to 3.5 % under standard conditions) or equivalently a change in pressure under 

constant volume. In case of very large ∇∇∇∇ωA and ∇∇∇∇ωB such as occurs at the border between 

pure A and pure B, a linear-response ('small-signal') analysis is not appropriate [31]. 
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