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ABSTRACT

This paper tackles the problem of mixing color texture models

learned from an input dataset. We focus on stationary Gaus-

sian texture models, also known as spot noises. We derive the

barycenter and geodesic path between models according to

optimal transport. This allows the user to navigate inside the

set of texture models, and perform texture synthesis from the

obtained interpolated models. Numerical examples on a li-

brary of exemplars show the ability of our method to generate

arbitrary interpolations among unstructured natural textures.

Index Terms— Optimal transport, gaussian model, tex-

ture synthesis, texture mixing.

1. INTRODUCTION

The problem of synthesizing new textures is central in

image processing and computer graphics. In order to make

a scene realistic without having to simulate the response of

materials to light for video games or animation films, a tex-

ture is mapped onto a given surface. Because the shape and

extension of the surface may vary, the main goal of texture

synthesis is to be able to generate as much texture as it is

needed in a fast and realistic way. This problem has been ad-

dressed since the beginning of computer graphics, so we can

find many solutions in the literature. Patch-based methods

are adapted to very complicated (not even random) textures,

see e.g. [1]. Statistical parametric models are generally not

as good in handling complex texture patterns, but are much

more flexible and fast, see for instance [2]. In this paper, we

focus our attention on what could be the simplest statistical

texture model, namely stationary Gaussian distribution, fol-

lowing and extending the methodology initiated by Galerne

et al [3].

More complex textures can be obtained by texture mixing

which extends the traditional texture synthesis by consider-

ing the interplay between several texture models. This is a

difficult problem since it requires to average very distinct sta-

tistical features. Previous works make use of mixture models,

see for instance [4]. The use of non-parameteric histogram

averaging has also been proposed for grayscale [5] as well as
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color and wavelets features [6]. We propose here a simpler ap-

proach that makes use of a parameterization of the Gaussian

texture model. Defining a geodesic path with optimal trans-

port between the original Gaussian models, we can generate

new textures sharing the characteristics of the input ones. The

proposed method ensures that the new texture model stays

Gaussian.

Optimal transport (OT) [7] is used intensively in com-

puter vision as a metric between statistical features [8]. OT

with non-parametric point clouds discretization is used in [6]

to handle statistical constraints during texture synthesis. We

propose here a radically different approach that uses a com-

pact parametric model of textures using Gaussian distribu-

tions. This approach is well suited to handle stationary tex-

tures and leads to fast numerical schemes. Note that Gaussian

optimal transport has been used for color manipulation [9],

but never to achieve image modeling and synthesis.

This paper is organized as follows: In section 2, we re-

view the Spot Noise model proposed by Galerne et al. [3],

which allows us to define for each input texture a Gaussian

model and extend it to color textures. In section 3, we present

our first contribution, we derive the geodesic path defined by

the optimal transport metric between two Spot noise models.

Here, we also explain how to synthesize new textures follow-

ing this geodesic path. In section 4, we present our second

contribution which is the extension of this idea to several in-

put textures, deriving the formula to compute the barycenter

of a group of Gaussian models. Finally, we show some results

with two and more input textures.

2. SPOT NOISE TEXTURE MODEL

2.1. Stationary Gaussian Models

Let us consider the modeling of textures f ∈ R
N×d,

where N = N1 × N2 is the number of pixels in the image,

and d is the number of channels (d = 1 for grayscale and

d = 3 for color datasets). We define a Gaussian distribu-

tion as µ = N (m,Σ) where m ∈ R
N×d is the mean of

the distribution and Σ ∈ R
Nd×Nd is a positive semi-definite

covariance matrix.

We focus on stationary random fields X ∼ µ, which

means that the distributions of X and X(· + τ) are the same

for any translation vector τ ∈ Z
2. For simplicity of the ex-



position, we consider here periodic boundary conditions, and

will detail later how to perform the learning of the param-

eter for a non-periodic exemplar input. Defining the model

as stationary is equivalent to imposing that the mean m is a

constant vector in R
d and that the covariance of the channel

is a convolution. This is conveniently expressed using the 2-

dimensional discrete Fourier transform (applied in parallel to

each of the d channels)

∀ω = (ω1, . . . , ωk), f̂(ω) =
∑

x

f(x)e
P

j
2iπ
Nj

ωjxj ∈ R
d.

The transform f̂ ∈ R
N×d is computed in O(Nd log(N)) op-

erations using the FFT, and this transform is inverted with the

same complexity using the inverse FFT.

Defining our model µ as stationary is equivalent to stating

that Σ is block-diagonal over the Fourier domain. This means

that the covariance operator y = Σf can be applied over the

Fourier domain as ŷ(ω) = Σ̂(ω)f̂(ω) where Σ̂(ω) ∈ C
d×d is

a positive hermitian matrix.

2.2. Spot Noise Models

Given some deterministic input exemplar f ∈ R
N×d,

it makes sense to learn from f the parameters of a Gaus-

sian model using the maximum likelihood estimator (MLE)

which can be shown to be equivalent to the spot noise

model introduced by Galerne et al. [3]. A random field

X = (X1, . . . , Xd) distributed according to the spot noise

µ = µ(f) associated to f = (f1, . . . , fd) ∈ R
N×d reads

∀ j = 1, . . . , d, Xj = mj + fj ⋆ Wj (1)

where ⋆ is the periodic convolution and the Wj are i.i.d. white

noises Wj ∼ N (0, IdN ). Equivalently, spot noise models

are the stationary Gaussian processes for which the matrices

Σ̂(ω) are rank one, and can thus be decomposed as Σ̂(ω) =

f̂(ω)f̂(ω)∗ where u∗ ∈ C
d is the complex conjugate trans-

pose of u ∈ C
d.

2.3. Stationary Gaussian Model Synthesis

Once the matrices Σ̂(ω) ∈ C
d×d are computed, the syn-

thesis of a texture g ∈ R
N×d is obtained using a realization

of the Gaussian process. In the general case, this is achieved

by factorizing the frequency covariance Σ̂(ω) = Â(ω)Â(ω)∗

(for instance using the singular value decomposition) where

A(ω) ∈ C
d×d and computing ĝ(ω) = Â(ω)ŵ(ω) for ω 6= 0

where w is a realization of N (0, IdNd) and ĝ(0) is the con-

stant mean of the model.

In the special case where the model is a spot noise µ(f),

meaning that Σ̂(ω) = f̂(ω)f̂(ω)∗, the synthesis is even faster

using (for ω 6= 0) ĝ(ω) = ŵ(ω)f̂(ω), or equivalently using a

realization of the convolution formula (1).

Our modeling process of the input texture is based on the

FFT, thus the image is assumed to be periodic. But, sym-

metrizing on the boundaries introduces artificial features that

may not be present in the input textures. We propose to pro-

cess only the periodic component as defined by Moisan [10]

instead of the original input texture. That is to say, substitute

all fj by its periodic component.

In our context, the process of extending the input texture

of size N1 × N2 to any arbitrary size M1 × M2 can be done

easily following the method proposed by Galerne et al. [3]:

The periodic component of the original texture is located at

the center of a flat new image of value m and dimensions

M1 × M2. To avoid the introduction of the high frequencies,

the new borders are smoothed with a spatial weight. We pro-

cess this new image instead of the original texture.

3. OPTIMAL TRANSPORT GEODESIC

OF SPOT NOISE

In order to manipulate texture models, we use a geodesic

distance between probability distributions, namely the L2 op-

timal transport distance [7].

3.1. Optimal Transport of Gaussian Fields

OT distances are geodesic distances between arbitrary

distributions. They are suitable to compare even singular dis-

tributions, which is crucial for color spot noises which have

rank-deficient covariances. The L2 OT distance between

µi = N (mi,Σi) reads

d(µ0, µ1)
2 = tr (Σ0 + Σ1 − 2Σ0,1) + ||m0 − m1||

2,

where Σ0,1 = (Σ
1/2
1 Σ0Σ

1/2
1 )1/2 (see for instance [11].)

3.2. Optimal Transport Geodesics

If d is a geodesic distance (as this is the case for the OT

distance), then the geodesic mixing of two distributions µ0

and µ1 is defined as

∀ t ∈ [0, 1], µt = argmin
µ

(1 − t)d(µ0, µ)2 + td(µ1, µ)2,

which defines a geodesic path t 7→ µt linking µ0 to µ1. The

following proposition details how to compute this geodesic

path for arbitrary Gaussian distributions.

Proposition 1. If ker(Σ0)∩ Im(Σ1) = {0}, the OT geodesic

of Gaussian distributions µi = N (mi,Σi) (for i = 0, 1) is a

Gaussian distribution N (mt,Σt) where mt = (1 − t)m0 +
tm1 and

Σt = [(1 − t)Id + tT ]Σ0[(1 − t)Id + tT ] (2)

where T = Σ
1/2
1 Σ+

0,1Σ
1/2
1 and where A+ is the Moore-

Penrose pseudo-inverse and A1/2 is the unique positive

square root of a symmetric semi-definite matrix.



f [0]

f [1]

f [2]

Fig. 1. f [0], f [1], f [2] original textures, see text.

Proof. The proof follows the one in [12] with the extra care

that the covariance can be rank-deficient, hence requiring a

pseudo-inverse.

Note that for rank-1 covariances, the conditions ker(Σ0)∩
Im(Σ1) = {0} means that the leading eigenvectors of the co-

variances should not be orthogonal. If this condition holds,

there exists an infinite number of geodesic paths. The follow-

ing theorem shows that the geodesic between two spot noise

models is a spot noise computed by a suitable linear blending

of the Fourier transforms.

Theorem 1. For i = 0, 1, let µi = µ(f [i]) be spot noise

distributions associated with f [0], f [1] ∈ R
N×d. The OT

geodesic path µt defined in equation (2) is a spot noise model

µt = µ(f [t]) where f [t] = (1 − t)f [0] + tg[1] with

∀ω, ĝ[1](ω) = f̂ [1](ω)
f̂ [1](ω)∗f̂ [0](ω)

|f̂ [1](ω)∗f̂ [0](ω)|
. (3)

Proof. Denoting Σ̂i(ω) = f̂ [i](ω)f̂ [i](ω)∗ ∈ C
d×d the

Fourier covariances, one shows that T is block diagonal

over the Fourier domain and that

∀ω, T̂ (ω) =
f̂ [1](ω)f̂ [1](ω)∗

|f̂ [1](ω)f̂ [0](ω)∗|
.

Equation (2) implies that Σt is block diagonal over the Fourier

domain with Σ̂t(ω) = f̂ [t](ω)f̂ [t](ω)∗ where f̂ [t](ω) = [(1−

t)Id+tT̂ (ω)]f̂ [0](ω) which corresponds to the expression (3).

3.3. Numerical Examples

On the columns of Fig. 1, we can see four sets of three

input textures. Let us focus on the first two input textures:

f [0] and f [1]. Along this section, we showed how to compute

the in-between models f [t], defined along the geodesic path

between f [0] and f [1]. In Fig. 2, we can see a realization of

two of these f [t] models, tagged as 1, 2 respectively. Note that

both images maintain features of the two original textures.

We would also like to note that the synthesized f [0] and f [1]

tagged as 0,3 respectively, reproduce the perceptual features

of the original textures.

4. OPTIMAL TRANSPORT BARYCENTER

OF SPOT NOISE

4.1. Optimal Transport Barycenter

Given a family of Gaussian process (µi)i∈I and weights

ρi with
∑

i ρi = 1, the OT barycenter is defined as

µ⋆ = argmin
µ

∑

i∈I

ρid(µi, µ)2. (4)

For the special case of a Gaussian distribution µi = N (mi,Σi),
there is no close form solution if |I| > 2, but the barycen-

ter can be shown to be Gaussian µ⋆ = N (m⋆,Σ⋆) where

m⋆ =
∑

i∈I ρimi and the covariance matrix is solution of

the following fixed point equation

Σ⋆ =
∑

i∈I

ρi

(

Σ1/2ΣiΣ
1/2

)1/2

. (5)

This barycenter can be shown to be unique if one of the Σi

is full rank [13]. We leave for future work the theoretical

analysis of the uniqueness when all the covariances are rank-

deficient.

4.2. Spot Noise Barycenter

When µi = µ(f [i]) are spot noise, the covariance Σ⋆ of

the barycenter is block diagonal over the Fourier domain, and

the blocks Σ̂⋆(ω) satisfies the fixed point equation Σ̂⋆(ω) =
Φω(Σ̂⋆(ω)) with

Φω(Σ) =
∑

i∈I

ρi

(

Σ1/2Σ̂i(ω)Σ1/2
)1/2

.

We note that in general, µ⋆ is not a spot noise because Σ̂⋆(ω)
is not necessarily rank one. Following [14], we propose to

compute Σ̂⋆(ω) by iterating the mapping Φω, i.e. compute

the sequence Σ̂(k+1)(ω) = Φω(Σ̂(k)(ω)). Although the map-

ping Φω is not strictly contracting, we observe numerically

the convergence Σ̂(k)(ω) → Σ̂⋆(ω) when k → +∞. The

numerical computation of Φω in the case d = 3 requires the

computation of the square root of 3 × 3 matrices, which is

performed explicitly by computing the eigenvalue of the sym-

metric matrix as the root of a third order polynomial.

4.3. Numerical Examples

Given three input textures, f [0], f [1], f [2], and the path de-

fined in Fig. 3 by the red numbers in increasing order, we

generated the Gaussian models associated to each point. A
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Fig. 2. Each row corresponds to a single experiment whose input textures are shown as the columns of Fig. 1, respectively. The

parameter ρi of eq. 4 has been defined according to the triangle coordinates of the points in Fig. 3.
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Fig. 3. Spatial location scheme.

realization of each of these models can be observed in Fig.

2 using as input textures the columns of Fig. 1. Again, as

we approach in the path to an original model, the features of

it tend to predominate in the synthesized texture. Note that

this method is also able to reproduce small periodic patterns.

More examples can be checked in http://www.enst.

fr/∼xia/mixingGaussianTextures.html

5. CONCLUSION

We have presented a new method for texture synthesis and

mixing based on the geodesic path defined by the OT met-

ric on Gaussian models. We showed that using this geodesic

path between two Gaussian models, we can generate new tex-

tures with visual features of the original images. Using the

barycenter of a set of Gaussian models we generalized the re-

sult to more that two input textures. The instances of these

new in-between models produced natural results while repro-

ducing the features of the original textures.
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