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OPTIMAL TRANSPORT MIXING OF GAUSSIAN TEXTURE MODELS

Sira Ferradans, Gui-Song Xia, Gabriel Peyré

CEREMADE, Univ. Paris-Dauphine

ABSTRACT

This paper tackles the problem of mixing color texture models
learned from an input dataset. We focus on stationary Gaus-
sian texture models, also known as spot noises. We derive the
barycenter and geodesic path between models according to
optimal transport. This allows the user to navigate inside the
set of texture models, and perform texture synthesis from the
obtained interpolated models. Numerical examples on a li-
brary of exemplars show the ability of our method to generate
arbitrary interpolations among unstructured natural textures.

Index Terms— Optimal transport, gaussian model, tex-
ture synthesis, texture mixing.

1. INTRODUCTION

The problem of synthesizing new textures is central in
image processing and computer graphics. In order to make
a scene realistic without having to simulate the response of
materials to light for video games or animation films, a tex-
ture is mapped onto a given surface. Because the shape and
extension of the surface may vary, the main goal of texture
synthesis is to be able to generate as much texture as it is
needed in a fast and realistic way. This problem has been ad-
dressed since the beginning of computer graphics, so we can
find many solutions in the literature. Patch-based methods
are adapted to very complicated (not even random) textures,
see e.g. [1]. Statistical parametric models are generally not
as good in handling complex texture patterns, but are much
more flexible and fast, see for instance [2]. In this paper, we
focus our attention on what could be the simplest statistical
texture model, namely stationary Gaussian distribution, fol-
lowing and extending the methodology initiated by Galerne
et al [3].

More complex textures can be obtained by texture mixing
which extends the traditional texture synthesis by consider-
ing the interplay between several texture models. This is a
difficult problem since it requires to average very distinct sta-
tistical features. Previous works make use of mixture models,
see for instance [4]. The use of non-parameteric histogram
averaging has also been proposed for grayscale [5] as well as
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color and wavelets features [6]. We propose here a simpler ap-
proach that makes use of a parameterization of the Gaussian
texture model. Defining a geodesic path with optimal trans-
port between the original Gaussian models, we can generate
new textures sharing the characteristics of the input ones. The
proposed method ensures that the new texture model stays
Gaussian.

Optimal transport (OT) [7] is used intensively in com-
puter vision as a metric between statistical features [8]. OT
with non-parametric point clouds discretization is used in [6]
to handle statistical constraints during texture synthesis. We
propose here a radically different approach that uses a com-
pact parametric model of textures using Gaussian distribu-
tions. This approach is well suited to handle stationary tex-
tures and leads to fast numerical schemes. Note that Gaussian
optimal transport has been used for color manipulation [9],
but never to achieve image modeling and synthesis.

This paper is organized as follows: In section 2, we re-
view the Spot Noise model proposed by Galerne et al. [3],
which allows us to define for each input texture a Gaussian
model and extend it to color textures. In section 3, we present
our first contribution, we derive the geodesic path defined by
the optimal transport metric between two Spot noise models.
Here, we also explain how to synthesize new textures follow-
ing this geodesic path. In section 4, we present our second
contribution which is the extension of this idea to several in-
put textures, deriving the formula to compute the barycenter
of a group of Gaussian models. Finally, we show some results
with two and more input textures.

2. SPOT NOISE TEXTURE MODEL

2.1. Stationary Gaussian Models

Let us consider the modeling of textures f € RN*4,
where N = Nj X Ny is the number of pixels in the image,
and d is the number of channels (d = 1 for grayscale and
d = 3 for color datasets). We define a Gaussian distribu-
tion as u = N(m, %) where m € RN¥*9 is the mean of
the distribution and ¥ € RN¥*Nd g 3 positive semi-definite
covariance matrix.

We focus on stationary random fields X ~ g, which
means that the distributions of X and X (- + 7) are the same
for any translation vector 7 € Z2. For simplicity of the ex-



position, we consider here periodic boundary conditions, and
will detail later how to perform the learning of the param-
eter for a non-periodic exemplar input. Defining the model
as stationary is equivalent to imposing that the mean m is a
constant vector in R? and that the covariance of the channel
is a convolution. This is conveniently expressed using the 2-
dimensional discrete Fourier transform (applied in parallel to
each of the d channels)
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The transform f € RV*? is computed in O(Ndlog(N)) op-
erations using the FFT, and this transform is inverted with the
same complexity using the inverse FFT.

Defining our model p as stationary is equivalent to stating
that 3 is block-diagonal over the Fourier domain. This means
that the covariance operator y = X f can be applied over the
Fourier domain as §(w) = 3(w) f(w) where 3(w) € C*? is
a positive hermitian matrix.

2.2. Spot Noise Models

Given some deterministic input exemplar f € RN*9,
it makes sense to learn from f the parameters of a Gaus-
sian model using the maximum likelihood estimator (MLE)
which can be shown to be equivalent to the spot noise
model introduced by Galerne et al. [3]. A random field
X = (Xy,...,X,) distributed according to the spot noise
w = u(f) associated to f = (f1,..., fa) € RV*4 reads

Vi=1,...,d, X;=m;+ fjxW, Q)
where x is the periodic convolution and the W} are i.i.d. white
noises W; ~ N(0,Idx). Equivalently, spot noise models
are the stationary Gaussian processes for which the matrices
i(w) are rank one, and can thus be decomposed as il(w) =
f(w)f(w)* where u* € C? is the complex conjugate trans-
pose of u € C%.

2.3. Stationary Gaussian Model Synthesis

Once the matrices 3(w) € C?*? are computed, the syn-
thesis of a texture g € RV >4 is obtained using a realization
of the Gaussian process. In the general case, this is achieved
by factorizing the frequency covariance 3(w) = A(w)A(w)*
(for instance using the singular value decomposition) where
A(w) € €™ and computing j(w) = A(w)w(w) for w # 0
where w is a realization of N (0,Idx4) and §(0) is the con-
stant mean of the model.

In the special case where the model is a spot noise u(f),
meaning that 3(w) = f(w)f(w)*, the synthesis is even faster
using (for w # 0) §(w) = w(w) f(w), or equivalently using a
realization of the convolution formula (1).

Our modeling process of the input texture is based on the
FFT, thus the image is assumed to be periodic. But, sym-
metrizing on the boundaries introduces artificial features that
may not be present in the input textures. We propose to pro-
cess only the periodic component as defined by Moisan [10]
instead of the original input texture. That is to say, substitute
all f; by its periodic component.

In our context, the process of extending the input texture
of size N1 x Ns to any arbitrary size M; X M, can be done
easily following the method proposed by Galerne et al. [3]:
The periodic component of the original texture is located at
the center of a flat new image of value m and dimensions
M, x Ms. To avoid the introduction of the high frequencies,
the new borders are smoothed with a spatial weight. We pro-
cess this new image instead of the original texture.

3. OPTIMAL TRANSPORT GEODESIC
OF SPOT NOISE

In order to manipulate texture models, we use a geodesic
distance between probability distributions, namely the L? op-
timal transport distance [7].

3.1. Optimal Transport of Gaussian Fields

OT distances are geodesic distances between arbitrary
distributions. They are suitable to compare even singular dis-
tributions, which is crucial for color spot noises which have
rank-deficient covariances. The L? OT distance between
wi = N (my, 3;) reads

d(po, 1) = tr (o + L1 — 2%0,1) + [mo — ma[?,

where ¥ 1 = (21/22021/2)1/2 (see for instance [11].)

3.2. Optimal Transport Geodesics

If d is a geodesic distance (as this is the case for the OT
distance), then the geodesic mixing of two distributions pg
and p; is defined as

Vi e [07 1}7 Ht = argmin (1 - t)d(:U'Oa /u)2 + td(,ulhu)27

m

which defines a geodesic path ¢t — p; linking po to 1. The
following proposition details how to compute this geodesic
path for arbitrary Gaussian distributions.

Proposition 1. [fker(Xg) NIm(X;) = {0}, the OT geodesic
of Gaussian distributions p; = N'(m;,%;) (fori = 0,1)isa
Gaussian distribution N'(my, 3¢) where my = (1 — t)mg +
tmq and

S = [(1 = £)Id + tT]So[(1 — ¢)Id + ¢T] )

1/2 1/2 .
where T = Zl/ 28:121/ and where AY is the Moore-
Penrose pseudo-inverse and A'? is the unique positive
square root of a symmetric semi-definite matrix.



Fig. 1. 1 fl1 #2] original textures, see text.
Proof. The proof follows the one in [12] with the extra care
that the covariance can be rank-deficient, hence requiring a
pseudo-inverse. O

Note that for rank-1 covariances, the conditions ker(Xy)N
Im(%;) = {0} means that the leading eigenvectors of the co-
variances should not be orthogonal. If this condition holds,
there exists an infinite number of geodesic paths. The follow-
ing theorem shows that the geodesic between two spot noise
models is a spot noise computed by a suitable linear blending
of the Fourier transforms.

Theorem 1. For i = 0,1, let pu; = p(f11) be spot noise
distributions associated with fl°, fll ¢ RN*d  The OT
geodesic path |1, defined in equation (2) is a spot noise model
e = p(fM) where flt = (1 — ) fIO  tgl1 with

Jf[ll (w)*f[O] (w) _
| F I (w)* FIO(w)

Proof. Denoting ;(w) = fld(w)flil(w)* € C¥4 the
Fourier covariances, one shows that 7" is block diagonal
over the Fourier domain and that

. T () £ ()*
oy = LU

[ f1H (@) fO (w)|
Equation (2) implies that 3; is block diagonal over the Fourier
domain with 3 (w) = fll(w) f(w)* where f¥(w) = [(1 —
£)Id+tT'(w)] f1° (w) which corresponds to the expression (3).
O

Vo, §Mw) = fMw) 3)

Vw,

3.3. Numerical Examples

On the columns of Fig. 1, we can see four sets of three
input textures. Let us focus on the first two input textures:
f% and f1. Along this section, we showed how to compute
the in-between models f*!, defined along the geodesic path
between f[% and fI*. In Fig. 2, we can see a realization of
two of these f*! models, tagged as 1, 2 respectively. Note that
both images maintain features of the two original textures.

We would also like to note that the synthesized fI° and fI
tagged as 0,3 respectively, reproduce the perceptual features
of the original textures.

4. OPTIMAL TRANSPORT BARYCENTER
OF SPOT NOISE

4.1. Optimal Transport Barycenter

Given a family of Gaussian process (p;);c; and weights
pi with . p; = 1, the OT barycenter is defined as

p* = argmin > pid(pi, 11)°. )
® iel

For the special case of a Gaussian distribution p; = N'(m;, %;),
there is no close form solution if |I| > 2, but the barycen-
ter can be shown to be Gaussian pu* = N (m*,¥*) where
m* = ), pim; and the covariance matrix is solution of
the following fixed point equation

S Zpi (21/22121/2)1/2~ 5)
icl

This barycenter can be shown to be unique if one of the 3J;
is full rank [13]. We leave for future work the theoretical
analysis of the uniqueness when all the covariances are rank-
deficient.

4.2. Spot Noise Barycenter

When p; = u(f) are spot noise, the covariance ¥* of
the barycenter is block diagonal over the Fourier domain, and
the blocks *(w) satisfies the fixed point equation 3*(w) =
®,,(S*(w)) with

,(2) =) pi (21/2&(@2”2)1/2 :
iel

We note that in general, ©* is not a spot noise because ﬁ?*(w)
is not necessarily rank one. Following [14], we propose to
compute o+ (w) by iterating the mapping ®,,, i.e. compute
the sequence 1) (w) = &, (2*) (w)). Although the map-
ping ®,, is not strictly contracting, we observe numerically
the convergence %) (w) — 3*(w) when k — 4o0. The
numerical computation of ®,, in the case d = 3 requires the
computation of the square root of 3 x 3 matrices, which is
performed explicitly by computing the eigenvalue of the sym-
metric matrix as the root of a third order polynomial.

4.3. Numerical Examples

Given three input textures, 1%, f11l, 12! and the path de-
fined in Fig. 3 by the red numbers in increasing order, we
generated the Gaussian models associated to each point. A



Fig. 2. Each row corresponds to a single experiment whose input textures are shown as the columns of Fig. 1, respectively. The
parameter p; of eq. 4 has been defined according to the triangle coordinates of the points in Fig. 3.

A,

Fig. 3. Spatial location scheme.

realization of each of these models can be observed in Fig.
2 using as input textures the columns of Fig. 1. Again, as
we approach in the path to an original model, the features of
it tend to predominate in the synthesized texture. Note that
this method is also able to reproduce small periodic patterns.
More examples can be checked in http://www.enst.
fr/~xia/mixingGaussianTextures.html

5. CONCLUSION

We have presented a new method for texture synthesis and
mixing based on the geodesic path defined by the OT met-
ric on Gaussian models. We showed that using this geodesic
path between two Gaussian models, we can generate new tex-
tures with visual features of the original images. Using the
barycenter of a set of Gaussian models we generalized the re-
sult to more that two input textures. The instances of these
new in-between models produced natural results while repro-
ducing the features of the original textures.
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