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Ab initio techniques are used to calculate the effective work function (Weff) of a TiN/HfO2/SiO2/Si

stack representing a metal-oxide-semiconductor (MOS) transistor gate taking into account first

order many body effects. The required band offsets were calculated at each interface varying its

composition. Finally, the transitivity of local density approximation (LDA) calculated bulk band

lineups were used and completed by many body perturbation theory (MBPT) bulk corrections for

the terminating materials (Si and TiN) of the MOS stack. With these corrections the ab initio
calculations predict a Weff of a TiN metal gate on HfO2 to be close to 5.0 eV. VC 2011 American
Institute of Physics. [doi:10.1063/1.3609869]

Reducing the scale of the metal-oxide-semiconductor

(MOS) transistor has led the semiconductor industry to major

changes in the MOS stack. First, the SiO2 oxide has been

replaced by a HfO2 layer on top of a SiO2 thin film, while

TiN is a leading candidate to replace poly-silicon in the gate

for the next generation of MOS transistor (22 nm and sub-22

nm). However, the control of the threshold voltage remains

one of the major issues. The effective work function (Weff)

of a metal in a MOS structure is one of the key properties

governing this threshold voltage. The aim of this paper is to

construct a milestone for the comparison between an ideal

system and available experimental data.

During electrical capacitance-voltage (C-V) measure-

ments, Weff is usually estimated through:

Weff ¼ /ms þ vðSiÞ þ fðSiÞ: (1)

Here, v(Si) is the electronic affinity of silicon, f(Si) is the dif-

ference between the conduction band and the Fermi energy

of doped silicon, and /ms is the difference between the metal

Fermi energy and the semiconductor Fermi energy. /ms is

extracted from the flat-band voltage through modeling of the

defect’s charge distribution along the oxide.1

The valence band offset (VBO) between the metal and

the semiconductor (VBOms) is related to /ms through VBOms

þ Eg(Si)¼/ms þ f (Si), where Eg (Si) (1.1 eV) is the elec-

tronic gap of silicon. Combining this relation with Eq. (1)

and considering the well-accepted value of v(Si) (4.1 eV),

the ab initio Weff of a given metal can be evaluated through

the equation

Wab initio
eff ¼ VBOab initio

ms þ vðSiÞ þ EgðSiÞ: (2)

Then, one realizes that the ab initio quantity of primary im-

portance is VBOms.

Evaluating the VBOms from first principles calculations

is a challenge. On the one hand, the recent introduction of

hafnium oxide requires the accurate treatment of the com-

plex chemistry of the interfaces. On the other hand, in order

to reach a sufficient precision on electronic energies (60.1

eV), one needs to compute the eigenvalues in many body

perturbation theory (MBPT). However, this is out of reach

for the treatment of a complete MOS stack within the GW

approximation (GWA, where G stands for the Green’s func-

tion and W for the screened potential). Fortunately, the inter-

face’s potential drop can be well estimated within the

density functional theory (DFT) (Ref. 2) and coupled with

the GW eigenvalues for the valence band states calculated

only for each bulk material. These eigenvalues are calculated

in reference to the electrostatic potential average3 of each

bulk. This reference potential is then aligned with the poten-

tial drop at the interface producing the band offset.2 This

technique is generally applicable for a sufficient material

thickness (1 to 2 nm thickness for each slab) such that each

material approaches a bulk state away from the interface.

In this manner, the first order implementation of GWA,

called G0W0, has been applied to correct the band alignments

along III-V heterojunctions. These corrections slightly

improved the DFT results in the local density approximation

(LDA), which were already in pretty good agreement with

experiments.4,5 Recently, this ab initio method has been

applied to assess the band alignment at a junction between

an oxide (SiO2, ZrO2 or HfO2) and a semiconductor (Si)

resulting in a close agreement with experiment unlike the

LDA results.2,6 In this paper, we use the same approach for

each interface of a complete TiN/HfO2/SiO2/Si stack.

The potential drops at each of the interfaces have been

computed within DFT/LDA using the atomic orbital SIESTA

software,7 whereas the GWA computations have been carried

out with the plane-waves ABINIT software.8 To be consistent,

identical Troullier-Martins pseudopotentials9 for each atomic

species have been used for Abinit and Siesta and were gener-

ated using the Fhi98pp and Atom programs7,10 in the LDA.11

Siesta calculations have been performed using a polarized

double zeta, Polarized Double-Zeta (DZP) basis with an

energy shift of 50 meV and a Meshcutoff of at least 100

Hartrees. A simulated anneal has also been carried out within
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Siesta as an heuristic method to relax the forces for each stack:

from 1000 K to 100 K in 1 ps, followed by a conjugated gradi-

ent method to reduce the forces to less than 0.07 eV/Å.

All GWA calculations were performed at the G0W0

level. The quasiparticles energies were carefully converged

with respect to the energy cut-offs, the number of k-points in

the Brillouin zone, and the number of bands used to compute

the dielectric function and the self-energy. Thus, a numerical

accuracy of 60.1 eV on the quasiparticles energies was

reached. The Plasmon-Pole model proposed by Godby and

Needs12 was used to describe the dynamic dependence of the

“screening” function.

Two types of Si/SiO2 interfaces have each been simu-

lated, one oxygen poor and one oxygen rich. These super-

cells contained a 22.2 Å long slab of b-cristobalite SiO2 and

a 24.3 Å long slab of diamond Si, both oriented with the

(001) plane at the interface. The latter slab was compressed

by 3% in the [100] and [010] directions. The simulated LDA

value of the VBOLDA
1 is þ3.0 eV (þ2.8 eV) for the oxygen

rich (poor) interface using the sign convention, where VBO

> 0 when the valence band maximum (VBM) of the material

on the left is above the VBM of the material on the right.

The G0W0 corrections to the VBMs computed for each mate-

rial are d�GW�LDA
v ðSiÞ ¼ �0:6 eV and d�GW�LDA

v ðSiO2Þ
¼ �1:9 eV, which lead to a VBOGW

1 of þ4:2 6 0:1 eV.

These results are in good agreement with the results pub-

lished by Shaltaf et al.2 (4.1 eV calculated within GWA

starting from Generalized Gradient Approximation (GGA)

electronic structures), and a little lower than experimental

data ranging from 4.3 eV to 4.5 eV estimated by X-ray pho-

toelectron spectroscopy (XRD).13,14

The SiO2/HfO2 interface is the second interface of the

complete stack (Figure 1) considered here. The HfO2 slab

was simulated in its monoclinic structure with P21/c symme-

try, which is its stablest phase at ambient pressure and tem-

perature15,16 with the (001) plane at the interface. The SiO2

slab was again b-cristobalite and oriented with the (001)

plane at the interface. The HfO2 was stretched by 3.7% in

the [100] direction and by 2.1% in the [010] direction to

match the 5.23� 5.23 Å2 square interface of the SiO2, which

agrees with the other simulations in literature of SiO2 in the

stack.2,17 The supercell contained seven HfO2 layers and ten

SiO2 tetrahedron. At the interface after relaxation, 3 oxygens

were each three times coordinated with both Si and Hf. The

potential along the stack shown in Figure 1 exhibits a large

potential drop of 5.2 eV, which is expected since the electric

permittivity and the average valence electronic density are

much higher in hafnia than in silica. At the LDA level, the

VBOLDA
2 is þ0.4 eV, which is qualitatively wrong with

respect to XPS measurements,13 i.e., the VBM of SiO2 is

measured below the VBM of HfO2. Some DFT calculations

of the HfO2/SiO2 interface at the LDA level have also been

performed by Sharia et al. showing that the valence band off-

set is highly dependent on the interface stoichiometry.17

Using our G0W0 correction for SiO2 (�1.9 eV) and for HfO2

(�0.5 eV close to the value of Grüning et al.6 of �0.4 eV),

the LDA band offset is reversed producing a VBOGW
2 of

�1.0 eV. This is qualitatively and quantitatively in good

agreement with XPS measurements13 of 1.05 6 0.1 eV.

The TiN/HfO2 interface is the final interface of the

stack. Constructing this interface requires a specific proce-

dure because of the large lattice mismatch. First, a slab of 6

layers of monoclinic HfO2 surrounded by vacuum oriented

in the direction perpendicular to the (001) plane containing

three unit cells in the [100] direction and one unit cell in the

[010] direction was generated. During molecular dynamic

simulations, several TiN layers were successively added to

the surface. We found that the positions of the interfacial

FIG. 1. (Color online) O rich SiO2/HfO2

interface (a) and nitridized TiN/HfO2

interface (c): N in purple, Ti in tur-

quoise, Hf in blue, Si in pink, and O in

red. Potential projected along the HfO2/

SiO2 (b) and the TiN/HfO2 (d) superlat-

tices (black line) and smoothed by a

double convolution (red line). The black

arrows indicate the shifts of the eigene-

nergies with respect to the averaged

potential in the bulk. The blue arrow

indicates the VBOLDA.
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Downloaded 24 Jan 2012 to 193.52.94.40. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions



atoms from TiN were influenced by the underlying HfO2

slab arranging themselves in almost the same structure as the

oxide (at 6 0.3 Å of the atom sites). Thanks to this observa-

tion, when we constructed our TiN/HfO2 stack model, the Ti

atoms at the interface were placed in the sites of the hafnium

and the nitrogens in the oxygen sites. The stack was finalized

by adding a face-centered-cubic TiN slab oriented with the

(111) surface plane on top of the interfacial TiN layer, which

minimizes the mismatch between the slabs. Indeed, it has

been pointed out experimentally that the (111) growth direc-

tion lowers the film strain.18,19 In our case, the TiN is 1.8%

stretched out in the ½1�10� direction and 0.5% compressed in

the ½11�2� direction and contained 6 TiN layers expanded by

1% in the [111] direction in order to keep the average elec-

tronic density of the TiN bulk. Two types of interfaces were

computed: one “nitridized” with oxygen sites of HfO2 substi-

tuted by N at the interface (Figure 1), the second “oxidized,”

with six O replacing the six N at the interface. The VBOLDA
3

obtained for these two interfaces are �2.4 eV (Figure 1)

and �2.5 eV, respectively. Previous DFT calculations have

been done on TiN/HfO2 stacks but cannot be compared with

ours since they were computed in the generalized gradient

approximation.20 The quasiparticle correction to the LDA Fermi

energy of TiN was calculated to be d�GW�LDA
v ðTiNÞ ¼ þ0:4 eV.

The valence band alignments along the whole stack at

the LDA and G0W0 levels where

VBOms ¼ VBO1 þ VBO2 þ VBO3 (3)

are depicted in Table I. Also included in Table I are the con-

duction band alignments calculated by using our G0W0 band

gaps for Si (1.1 eV), SiO2 (8.6 eV), and HfO2 (6.0 eV). The

VBOLDA
ms ranges between �1.0 eV and �0.7 eV depending

on the chemistry of the interfaces which would correspond

to a work function of between 6.2 eV and 5.9 eV. This is in

qualitative disagreement with the experimental Weff which is

usually equal to or below 5 eV. It is worthy of note that in

order to calculate the VBO between the two materials on the

extremities of the stack one only needs to compute the GW

energies for the top and the bottom slabs because for the in-

termediate slabs the corrections vanish yielding,

VBOGW
ms ¼ VBOLDA

ms þ d�GW�LDA
v ðSiÞ þ d�GW�LDA

v ðTiNÞ:
(4)

VBOGW
ms ranges from 0.0 eV to 0.3 eV depending on the

chemistry of the interfaces, and one finally obtains an ab initio
Weff evaluated in the MBPT framework ranging from 5.2 eV

to 4.9 eV (i.e., Pþ in jargon of the semiconductors industry).

The Weff for (111) oriented TiN is in agreement with those

measured during cold growth process which mostly does not

modify the TiN stoichiometry.1,21 We also point out that the

GW corrections applied with a coherent methodology are

mandatory in order to obtain qualitatively correct results for

the evaluations of VBOs and Weff in a MOS stack.

We think that our results can be used to adjust the pa-

rameters of the model used to simulate the whole MOS de-

vice. Second, by comparing our “ideal” model system (no

defects and a perfect stoichiometry) with the dispersion of

the experimental values (from 4.2 to 4.9 eV) assessed by

C-V measurements,1,22 we think that our values can be used

as a reference to study the impact of the fine chemistry in

such a gate stack. Finally, in this paper, we show that the

Weff is an accessible and reliable ab initio quantity and that

this type of calculation is promising to help the understand-

ing of the Weff for nanodevices in microelectronics.
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CBO(G0W0) �3.2 �3.4 þ1.6 þ2.7 þ2.6 [þ0.8, þ1.1]
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