
HAL Id: hal-00662679
https://hal.science/hal-00662679

Submitted on 24 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collapsing floating-point operations
David Defour

To cite this version:

David Defour. Collapsing floating-point operations. 2004. �hal-00662679�

https://hal.science/hal-00662679
https://hal.archives-ouvertes.fr


1

Collapsing floating-point operations

David Defour
Équipe DALI, Laboratoire LP2A

Universit́e de Perpignan

52 Avenue Paul Alduy,

66860 Perpignan Cedex, France

Phone: +34-68-66-21-35, Fax: +34-68-66-22-87, E-mail: david.defour@univ-perp.fr

Abstract

This paper addresses the issue of collapsing dependent floating-
point operations. The presentation focuses on studying the
dataflow graph of benchmark involving a large number of
floating-point instructions. In particular, it focuses on the rel-
evance of new floating-point operators performing two dependent
operations which are similar to “fused multiply and add”. Finally,
this paper examines the implementation cost and critical path re-
duction from this strategy.

Keywords

Instruction, ILP, FMA

I. I NTRODUCTION

Current high-performance microprocessors rely on hard-
ware or software techniques to exploit the inherent instruc-
tion level parallelism of applications. As the number of
transistors on a chip continues to grow, new hardware tech-
niques need to be proposed in order to increase the per-
formance of applications bounded by resource constrains.
One technique involves exploiting data parallelism at the
function unit level by executing one instruction over a large
number of data. This technique is the basics of the vector
processor and multimedia units in general processors. An-
other technique consist of developing functional units that
perform multiple operations as a monolithic operation. For
example the operation of the form

y = a + (b ∗ c)

called Fused Multiply and ADD (FMA) is executed for the
cost of one operation with one rounding error. Thereby re-
ducing the overall latency of the program.
These operations thatcollapsedtwo basic operations, re-
duce the overall latency of the program by reducing the
length of the dependence graph. This graph defines an ex-
ecution of a computer program. The nodes of the graph
characterize the operations and the arcs represent true data
or control dependence between two operations. The min-
imum execution time of the program corresponds to the
length of the longest path orcritical pathof the dependence
graph.
Through the examination of various applications from
benchmark, this paper studies the complex floating point
operators which should be implemented in hardware. The
simulation conducted in this study shows that the most rel-
evant operators performing two floating point operations

with one instruction is the FMA followed by the ADD2
operator (two consecutive additions).

The organization of this paper is as follows. Section 2 re-
views related work. In Section 3, the collapsing mechanism
studied in this paper is discussed. Section 4 addresses the
experimental framework and assumptions. Section 5 con-
tains the obtained results and its discussion. Section 6 will
conclude the study.

II. RELATED WORK

Several studies have been conducted on strategies dedi-
cated to reducing the length of the critical path by collaps-
ing instructions. Collapsing for specific operations with
new instruction definitions have been proposed and im-
plemented in a number of processors. The floating-point
fused multiply and add operation was used in the RS/6000
[MON 90], [OEH 90], the PowerPC [WEI 94] and recently
in the Itanium and Itanium 2 [SHA 00], [MCN 03]. Simi-
larly, a fixed point instruction Scale and Add which adds an
operand to another multiplied by a factor was implemented
in the Alpha ISA [ALP98].

A more general scheme able to collapse a dependent pair
involving fixed point arithmetic and logical instructions
was proposed by Philips and Vassiliadis in [VAS 93]. The
proposed solution takes into account a general CISC in-
struction set that includes the functionality of RISC instruc-
tion sets. Another device that includes the majority of fixed
point operations was proposed in [PHI 94]. They later in-
vestigated the potential of collapsing up to three dependent
instructions in [SAZ 96].

Recently, a solution interpreting sequences of dependent
instructions as functions was introduced in [YEH 04]. This
solution translates fixed point instruction into a hardwired
function. The Chimaera [YE 00] architecture is also related
to the collapsing mechanism since it is based on reconfig-
urable units with shift between them. Therefore resulting
in the ability of this architecture to perform instruction like
addition combined with a shift.

However there have been no previous studies conducted on
collapsing floating-point operations. Therefore the mod-
els used in this study are different from previous studies
in that they only consider dependent floating-point instruc-
tions from the same basic block.



III. C OLLAPSING MECHANISM

This section defines the collapsing mechanism. The col-
lapsing of data dependences can be applied to any sequence
of dependent instructions. For instance in the following se-
quence :

1. F1 = F2 * F3
2. F4 = F1 + F5

a data dependency between instruction 2 that waits for the
result of instruction 1 is noticed. When the multiplication
and the addition takes 5 cycles, the final result will be avail-
able after 10 cycles. However when an architecture with
an operator that performs a multiplication followed by an
addition (FMA) is examined, the result is delivered in 5
cycles. Therefore the process proves to take half the time
to execute this sequence of instruction. This mechanism
works with any kind of instruction, arithmetics, memory
input/output, etc.
Floating-point operations are usually non commutative and
non associative, which means that collapsing floating-point
instructions might change the result. This study puts asside
accuracy objective to focus on collapsing instructions. The
collapsing of dependent pairs of floating-point operations
of the following types are enabled: addition, subtraction,

multiplication and division.
The collapsing of instruction between consecutive and non-
consecutive instructions were considered as long as they
remained in the same basic block. A basic block is charac-
terized by consecutive instructions without instructions in-
volving a split in the instruction flow, for instance a branch
or a jump. When a flow of instruction in a basic block
is studied, not all dependent instructions qualify for col-
lapsing. Solely instructions that have their results used by
one instructions can be collapsed. This occurs when the in-
termediate results is needed by more than one instruction.
Hence this result is stored in a register to be used by two or
more instructions and therefore cannot be collapsed.
Among the benefits of merging two dependent instructions,
the reduction of the data dependency graph is the most im-
portant. In addition, this process also reduces the stress
over the register file as it requires less register to store in-
termediate results. Another benefit from collapsing instruc-
tions is that it automatically reduces the number of opera-
tion to perform a certain task and therefore reduces the code
size followed by the instruction cache misses.
However, the drawback of this approach includes the
chances of one part of the operator not being used when
the operator is implemented in a hardware. For example on
the Itanium, when solely a multiplication is required from
the FMA unit, the adder remains unused.

Number of fp operations
Name Description + − ∗ /
168.wupwise Physics / Quantum Chromodynamics 76 42 176 15
171.swim Shallow Water Modeling 364 151 242 15
172.mgrid Multi-grid Solver: 3D Potential Field 511 21 104 6
173.applu Parabolic / Elliptic Partial Differential Equations3591 1458 4252 272
177.mesa Graphics Library 347 102 586 27
178.galgel Computational Fluid Dynamics 871 321 1431 100
179.art Image Recognition / Neural Networks 253 14 247 12
183.equake Seismic Wave Propagation Simulation 127 58 236 18
188.ammp Computational Chemistry 479 330 930 42
189.lucas Number Theory / Primality Testing 652 623 816 7
191.fma3d Finite-element Crash Simulation 546 337 1042 78
301.apsi Meteorology: Pollutant Distribution 1276 904 2376 622

TABLE I
BENCHMARK CHARACTERISTICS. A STATIC ANALYSIS A EACH BENCHMARK GIVES US THE NUMBER OF FLOATING-POINT

OPERATIONS.

IV. SIMULATION FRAMEWORK

To measure the impact of collapsing on parallelism, a spe-
cific toolset was developed to extract the dataflow graph
(DFG) from Alpha assembly instructions [ALP98]. The
development of these tools demonstrates that adding a col-
lapsing level within the compiler can be done without prob-

lems. The test set includes thirteen program from the
benchmark from the SPEC2000fp described in table I.
The simulation process is divided into 3 stages: First
the information about the program are collected with the
pixstat software from the Atom toolset [EUS 95]. This
tool anotates the assembly code with statistical informa-
tion about the time taken by each basic block. Next, data



dependencies in the trace were analyzed and the dataflow
graph (DFG) for the trace was built. Finally, information
and statistics concerning floating-point operations from the
DFG and the trace execution were collected.

A. Benchmark

This study used programs from the SPEC2000fp bench-
marks. The benchmarks were compiled using the Compaq
Alpha compiler with full optimizations (-fast). For each
benchmark the number of floating-point operations and the
number of instructions were assigned. The data was a result
of a static analysis of assembly code.

V. SIMULATION RESULTS

This section contains results of the experiments conducted.
Table I reports the number of floating point addition, sub-

traction, multiplication and division for each program of
the benchmark. Table II exhibits the number of collapsable
operations as defined in section III from a static analysis
of the floating point operations. The bolded number cor-
responds to the maximum number per benchmark which
represents the highest potential presence of a collapsed op-
erator in a benchmark. Table III represents the percentage
of coverage by a collapsed operator over single operators
per benchmark. In both tables the collapsed operators are
presented as follows: the first operator represents the last
operation performed and the second operator symbolises
the first operation performed, for example the FMA is rep-
resented by+∗.

Name ++ +∗ +/ ∗+ ∗∗ ∗/ /+ /∗ //

168.wupwise 38 74 0 42 27 0 7 4 0
171.swim 180 184 0 162 48 0 10 7 0
172.mgrid 249 98 0 91 11 0 2 0 0
173.applu 1826 1783 86 1797 782 7 69 109 0
177.mesa 116 274 0 164 71 0 10 10 0
178.galgel 358 856 26 415 443 21 57 36 10
179.art 73 98 0 100 34 0 8 3 0
183.equake 52 119 3 75 74 8 10 8 1
188.ammp 260 418 2 291 205 5 12 19 0
189.lucas 80 402 0 87 54 2 2 2 0
191.fma3d 215 461 12 266 144 11 24 32 0
301.apsi 514 1015 175 881 673 83 192 302 14

Total 3961 5782 304 4371 2566 137 403 532 25

TABLE II
RELATIVE RESULTS FROM A STATIC ANALYSIS.

A. Presence of single operator

The floating point addition and multiplication are almost
equally present in the observed benchmark. The division
represents 10 percent of the floating point operator.

B. Relevance of the FMA

From Table II, it is possible to observe that on average,
the FMA column number 2 (a multiplication followed by
an addition “+∗”) is the most frequent operator combining
two basic operations. This signifies that among the soft-
ware studied, frequently the multiplications are followed
with an addition. However one can rarely observe two con-
secutive multiplications.

C. Others combinations

Surprisingly there exists other interesting collapsed oper-
ations. The ADD2 operator (++) is among one of them.
First, observe that from Table II there are two programs
(mgrid and applu) over thirteen that exhibit the highest
number of this operator. From Table III, on average 58 per-
cent of single floating point addition can be replaced with
the ADD2 operator. This rate is not only the highest but
also is superior to that of the FMA.

VI. CONCLUSION AND PERSPECTIVES

This study enforces the fact that the FMA is an interesting
operator as it could be the most used among other collapsed
operators. However the ADD2 operator also sparks interest
as it can replace 58 percent of all the addition operations.



Name ++ +∗ +/ ∗+ ∗∗ ∗/ /+ /∗ //

168.wupwise 64.41 50.34 0 28.57 30.68 0 10.53 4.19 0
171.swim 69.9 48.61 0 42.8 39.67 0 3.77 5.45 0
172.mgrid 93.61 30.82 0 28.62 21.15 0 0.74 0 0
173.applu 72.33 38.34 3.23 38.64 36.78 0.31 2.59 4.82 0
177.mesa 51.67 52.95 0 31.69 24.23 0 4.2 3.26 0
178.galgel 60.07 65.27 4.02 31.64 61.91 2.74 8.82 4.7 20
179.art 54.68 38.13 0 38.91 27.53 0 5.73 2.32 0
183.equake 56.22 56.53 2.96 35.63 62.71 6.3 9.85 6.3 11.11
188.ammp 64.28 48.07 0.47 33.47 44.09 1.03 2.82 3.91 0
189.lucas 12.55 38.45 0 8.32 13.24 0.49 0.31 0.49 0
191.fma3d 48.7 47.9 2.5 27.64 27.64 1.96 4.99 5.71 0
301.apsi 47.16 44.56 12.49 38.67 56.65 5.54 13.7 20.15 4.5

Average 57.96 46.66 2.14 32.05 37.19 1.53 5.67 5.11 2.97

TABLE III
PERCENTAGE OF SINGLE OPERATOR COVERED BY THE COLLAPSED OPERATOR.

Therefore this study needs to be completed to observe the
interaction of operators with one another. The behavior of
the ADD2 in an environment with an existing FMA oper-
ator is especially intriguing. However before the possible
integration of this operator into hardware, an implementa-
tion has to be found. When a hardware solution is found,
the numerical implication of this operator should be stud-
ied as it is done in [OGI ] with the benefit of the ADD2
over the TwoSum algorithm.

REFERENCES

[ALP98] Alpha architecture handbookoctober 1998.

[EUS 95] EUSTACE A., SRIVASTAVA A., ATOM: A Flexible In-
terface for Building High Performance Program Analysis Tools,
Proceedings of the Winter 1995 USENIX Technical Conference
on UNIX and Advanced Computing Systems, p. 303–314, 1995.

[MCN 03] MCNAIRY C., SOLTIS D., Itanium 2 processor mi-
croarchitecture, IEEE Micro, vol. 3, p. 44–55, april 2003.

[MON 90] MONTOYE R. K., HOKONEK E., RUNYAN S. L.,
Design of the floating-point execution unit of the IBM RISC Sys-
tem/6000, IBM Journal of Research and Development, vol. 34,
n1, p. 59-70, 1990.

[OEH 90] OEHLER R. R., GROVESR. D., Ibm risc system/6000
processor architecture, IBM Journal of Research and Develop-
ment, vol. 34, n1, p. 23–36, 1990.

[OGI ] OGITA T., RUMP S. M., OISHI S., Accurate Sum and
Dot Product, SIAM J. Sci. Comput., t̃o appear.

[PHI 94] PHILLIPS J., VASSILIADIS S., High-Performance 3-1
Interlock Collapsing ALU’s, IEEE Transactions on computer,
vol. 43, n3, p. 257–268, 1994.

[SAZ 96] SAZEIDES Y., VASSILIADIS S., SMITH J. E., The per-
formance potential of data dependence speculation & colapsing,
Proceedings of the 29th annual IEEE/ACM international sympo-
sium on Microarchitecture, p. 238–247, 1996.

[SHA 00] SHARANGPANI H., ARORA A., Itanium processor mi-
croarchitecture, IEEE Micro, vol. 20, n5, p. 14–43, september
2000.

[VAS 93] VASSILIADIS S., PHILLIPS J., BLANNER B., Inter-
lock Collapsing ALU’s, IEEE Transactions on computer, vol. 42,
n7, p. 825–839, 1993.

[WEI 94] WEISS S., SMITH J. E.,Inside IBM Power and Pow-

erPC, M̃organ Kaufmann Publishers Inc., San Mateo, 1994.

[YE 00] YE Z. A., MOSHOVOSA., HAUCK S., BANERJEE P.,
CHIMAERA: A high performance architecture with a tightly cou-
pled reconfigurable functional unit,Proceedings of the 27th an-
nual IEEE/ACM international symposium on computer architec-
ture, p. 225–235, june 2000.

[YEH 04] YEHIA S., TEMAM O., From Sequences of Depen-
dent Instructions to Functions: An Approach for Improving Per-
formance without ILP or Speculation,31th Annual International
Symposium on Computer Architecture, 2004.


