David Defour
email: david.defour@univ-perp.fr

Équipe Dali

Collapsing floating-point operations

Keywords: Instruction, ILP, FMA I. INTRODUCTION

This paper addresses the issue of collapsing dependent floatingpoint operations. The presentation focuses on studying the dataflow graph of benchmark involving a large number of floating-point instructions. In particular, it focuses on the relevance of new floating-point operators performing two dependent operations which are similar to "fused multiply and add". Finally, this paper examines the implementation cost and critical path reduction from this strategy.

Current high-performance microprocessors rely on hardware or software techniques to exploit the inherent instruction level parallelism of applications. As the number of transistors on a chip continues to grow, new hardware techniques need to be proposed in order to increase the performance of applications bounded by resource constrains. One technique involves exploiting data parallelism at the function unit level by executing one instruction over a large number of data. This technique is the basics of the vector processor and multimedia units in general processors. Another technique consist of developing functional units that perform multiple operations as a monolithic operation. For example the operation of the form y = a + (b * c) called Fused Multiply and ADD (FMA) is executed for the cost of one operation with one rounding error. Thereby reducing the overall latency of the program. These operations that collapsed two basic operations, reduce the overall latency of the program by reducing the length of the dependence graph. This graph defines an execution of a computer program. The nodes of the graph characterize the operations and the arcs represent true data or control dependence between two operations. The minimum execution time of the program corresponds to the length of the longest path or critical path of the dependence graph. Through the examination of various applications from benchmark, this paper studies the complex floating point operators which should be implemented in hardware. The simulation conducted in this study shows that the most relevant operators performing two floating point operations with one instruction is the FMA followed by the ADD2 operator (two consecutive additions). The organization of this paper is as follows. Section 2 reviews related work. In Section 3, the collapsing mechanism studied in this paper is discussed. Section 4 addresses the experimental framework and assumptions. Section 5 contains the obtained results and its discussion. Section 6 will conclude the study. 00] architecture is also related to the collapsing mechanism since it is based on reconfigurable units with shift between them. Therefore resulting in the ability of this architecture to perform instruction like addition combined with a shift. However there have been no previous studies conducted on collapsing floating-point operations. Therefore the models used in this study are different from previous studies in that they only consider dependent floating-point instructions from the same basic block.

III. COLLAPSING MECHANISM

This section defines the collapsing mechanism. The collapsing of data dependences can be applied to any sequence of dependent instructions. For instance in the following sequence :

1. F1 = F2 * F3 2. F4 = F1 + F5
a data dependency between instruction 2 that waits for the result of instruction 1 is noticed. When the multiplication and the addition takes 5 cycles, the final result will be available after 10 cycles. However when an architecture with an operator that performs a multiplication followed by an addition (FMA) is examined, the result is delivered in 5 cycles. Therefore the process proves to take half the time to execute this sequence of instruction. This mechanism works with any kind of instruction, arithmetics, memory input/output, etc. Floating-point operations are usually non commutative and non associative, which means that collapsing floating-point instructions might change the result. This study puts asside accuracy objective to focus on collapsing instructions. The collapsing of dependent pairs of floating-point operations of the following types are enabled: addition, subtraction, multiplication and division. The collapsing of instruction between consecutive and nonconsecutive instructions were considered as long as they remained in the same basic block. A basic block is characterized by consecutive instructions without instructions involving a split in the instruction flow, for instance a branch or a jump. When a flow of instruction in a basic block is studied, not all dependent instructions qualify for collapsing. Solely instructions that have their results used by one instructions can be collapsed. This occurs when the intermediate results is needed by more than one instruction. Hence this result is stored in a register to be used by two or more instructions and therefore cannot be collapsed. Among the benefits of merging two dependent instructions, the reduction of the data dependency graph is the most important. In addition, this process also reduces the stress over the register file as it requires less register to store intermediate results. Another benefit from collapsing instructions is that it automatically reduces the number of operation to perform a certain task and therefore reduces the code size followed by the instruction cache misses. However, the drawback of this approach includes the chances of one part of the operator not being used when the operator is implemented in a hardware. For example on the Itanium, when solely a multiplication is required from the FMA unit, the adder remains unused.

Number of fp operations

IV. SIMULATION FRAMEWORK

To measure the impact of collapsing on parallelism, a specific toolset was developed to extract the dataflow graph (DFG) from Alpha assembly instructions [START_REF]Alpha architecture handbookoctober[END_REF]. The development of these tools demonstrates that adding a collapsing level within the compiler can be done without prob-lems. The test set includes thirteen program from the benchmark from the SPEC2000fp described in table I. The simulation process is divided into 3 stages: First the information about the program are collected with the pixstat software from the Atom toolset [EUS 95]. This tool anotates the assembly code with statistical information about the time taken by each basic block. Next, data dependencies in the trace were analyzed and the dataflow graph (DFG) for the trace was built. Finally, information and statistics concerning floating-point operations from the DFG and the trace execution were collected.

A. Benchmark

This study used programs from the SPEC2000fp benchmarks. The benchmarks were compiled using the Compaq Alpha compiler with full optimizations (-fast). For each benchmark the number of floating-point operations and the number of instructions were assigned. The data was a result of a static analysis of assembly code.

V. SIMULATION RESULTS

This section contains results of the experiments conducted. Table I reports the number of floating point addition, sub-traction, multiplication and division for each program of the benchmark. Table II exhibits the number of collapsable operations as defined in section III from a static analysis of the floating point operations. The bolded number corresponds to the maximum number per benchmark which represents the highest potential presence of a collapsed operator in a benchmark. Table III represents the percentage of coverage by a collapsed operator over single operators per benchmark. In both tables the collapsed operators are presented as follows: the first operator represents the last operation performed and the second operator symbolises the first operation performed, for example the FMA is represented by + * .

Name

A. Presence of single operator

The floating point addition and multiplication are almost equally present in the observed benchmark. The division represents 10 percent of the floating point operator.

B. Relevance of the FMA

From Table II, it is possible to observe that on average, the FMA column number 2 (a multiplication followed by an addition "+ * ") is the most frequent operator combining two basic operations. This signifies that among the software studied, frequently the multiplications are followed with an addition. However one can rarely observe two consecutive multiplications.

C. Others combinations

Surprisingly there exists other interesting collapsed operations. The ADD2 operator (++) is among one of them. First, observe that from Table II there are two programs (mgrid and applu) over thirteen that exhibit the highest number of this operator. From Table III, on average 58 percent of single floating point addition can be replaced with the ADD2 operator. This rate is not only the highest but also is superior to that of the FMA.

VI. CONCLUSION AND PERSPECTIVES

This study enforces the fact that the FMA is an interesting operator as it could be the most used among other collapsed operators. However the ADD2 operator also sparks interest as it can replace 58 percent of all the addition operations. Therefore this study needs to be completed to observe the interaction of operators with one another. The behavior of the ADD2 in an environment with an existing FMA operator is especially intriguing. However before the possible integration of this operator into hardware, an implementation has to be found. When a hardware solution is found, the numerical implication of this operator should be studied as it is done in [OGI] with the benefit of the ADD2 over the TwoSum algorithm.

TABLE III PERCENTAGE

 III OF SINGLE OPERATOR COVERED BY THE COLLAPSED OPERATOR.