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A communication protocol is proposed in which quantum state transfer is mediated by a vibra-
tional exciton. We consider two distant molecular groups grafted on the sides of a lattice. These
groups behave as two quantum computers where the information in encoded and received. The
lattice plays the role of a communication channel along which the exciton propagates and interacts
with a phonon bath. Special attention is paid for describing the system involving an exciton dressed
by a single phonon mode. The Hamiltonian is thus solved exactly so that the relevance of the
perturbation theory is checked. Within the nonadiabatic weak-coupling limit, it is shown that the
system supports three quasi-degenerate states that define the relevant paths followed by the exciton
to tunnel between the computers. When the model parameters are judiciously chosen, construc-
tive interferences take place between these paths. Phonon-induced decoherence is minimized and a
high-fidelity quantum state transfer occurs over a broad temperature range.

PACS numbers: 03.65.Yz,03.67.-a,63.22.-m,71.35.-y

I. INTRODUCTION

Over short length scales, high-fidelity quantum-state
transfer (QST) from one region to another is a funda-
mental task in quantum information processing1. It is
required to ensure a perfect communication between the
different parts of a quantum computer (QC) or between
adjacent QCs. In that case, solid-state based system is
the ideal candidate for scalable computing for, at least,
two main reasons2. First, in a lattice, the information is
encoded on elementary excitations that naturally propa-
gate owing to inherent interactions between neighboring
sites. QST is thus spontaneously achieved without any
external control. Second, no interfacing is needed be-
tween the QCs and the communication channel (CC) that
involves the same elementary excitations. Because the
CC depends on the way the information is implemented,
different strategies have been elaborated, such as optical
lattices3, arrays of quantum dots4, conducting polymers5

and spin networks6–16. However, it has been shown that
qubits may be encoded on intramolecular vibrations17–23

so that vibration-mediated QST is a promising alterna-
tive for quantum information processing24,25.

In this paper, we propose a protocol in which a molec-
ular lattice plays the role of the CC, QST being me-
diated by high-frequency vibrational excitons. Indeed,
molecular lattices exhibit regularly distributed atomic
subunits. Owing to dipole-dipole interactions, the energy
of a specific internal vibration delocalizes between these
subunits giving rise to narrow-band excitons. Although
many properties of the excitons have been studied26–46,
their potential interest for QST has been suggested very
recently47–49. The main idea is to encode the informa-
tion on a vibrational qubit defined as a superimposition
involving the vacuum and one-exciton states.

Unfortunately, the exciton does not propagate freely
along the lattice. It interacts with a phonon bath that
tends to destroy the coherent nature of any vibrational

qubit. The exciton properties are thus described by a re-
duced density matrix (RDM) whose behavior is governed
by a generalized master equation (GME)50–52. To under-
stand quantum decoherence, we have studied excitonic
coherences, i.e. the RDM matrix elements that measure
the ability of the exciton to be in a qubit state53–56. The
dynamics was described using a Fröhlich model57 within
the nonadiabatic weak-coupling limit, i.e. a common sit-
uation for vibrational excitons. It has been shown that
high-fidelity QST requires the use of a finite-size system.

Indeed, in an infinite lattice53,54, the phonons behave
as a reservoir. The Markov limit is reached and stan-
dard GME approaches can be used. Dephasing limited-
coherent motion takes place so that the coherences local-
ize preventing any efficient QST. By contrast, in a finite-
size lattice, a strong non-markovian regime occurs result-
ing in the breakdown of GME methods55,56. To overcome
this problem, perturbation theory (PT) has been applied
successfully47–49. It has been shown that the phonons
evolve differently depending on whether the exciton oc-
cupies the vacuum or an excited state. Exciton-phonon
entanglement takes place resulting in the decay of the
excitonic coherences. Nevertheless, the decoherence de-
pends on the nature of the one-exciton state.

In particular, for odd lattice sizes, the coherence in-
volving the state located at the band center survives over
an extremely long-time scale, even at high temperature.
Unfortunately, this state is a stationary wave unable to
carry information between the lattice sides. Nevertheless,
we can take advantage of its robustness against decoher-
ence to define a protocol quite similar to that introduced
by Yao et al. in spin chains16. The main idea is to con-
sider QST between two distant molecular groups that
are grafted on the lattice sides. The structure must be
designed so that a vibration of each molecular group is
resonant with the robust state of the lattice while remain-
ing insensitive to the phonons. The grafted groups play
the role of the QCs whereas the lattice defines the CC.
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FIG. 1: Communication protocol between two distant com-
puters x = 0 and x = L. The information is carried by an
exciton that propagates along a finite-size lattice.

Dipole-dipole interactions couple the QCs with the CC
and allow the exciton propagation so that neither control
nor interfacing is required.

In such a confined system, strong non-markovian ef-
fects will occur so that the dynamics will be addressed
within the effective Hamiltonian concept provided by
PT58,59. However, the fundamental question arises
whether PT is relevant or not, depending on the model
parameters. To answer that question, we shall restrict
our attention to a system in which only the lowest fre-
quency phonon mode (LFPM) is considered, this mode
being responsible for the largest perturbation of the exci-
ton dynamics47,48. Due to its simplicity, this model can
be solved exactly so that the PT performance can been
checked easily.

The paper is organized as follows. In Sec. II, the
exciton-phonon Hamiltonian is described and QST is for-
mulated in terms of the excitonic coherences. Then, PT
is applied to evaluate the system eigenproperties and
to determine an approximate expression of the exciton
RDM. In Sec. III, a numerical analysis is performed in
which PT is compared with exact calculations. The re-
sults are discussed and interpreted in Sec. IV.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

We consider a CC formed by a 1D molecular lattice
that contains an odd number of sites N (Fig. 1). Each
site x = 1, ..., N is occupied by an atomic subunit whose
internal dynamics is described by a two-level system. Let
|x〉 be the first excited state of the xth two-level system
and ω0 the corresponding Bohr frequency. The vacuum
state |⊘cc〉 describes all the two-level systems in their
ground state. In the CC, the exciton Hamiltonian is de-
fined in terms of the hopping constant Φ as (~ = 1)

Hcc =

N
∑

x=1

ω0|x〉〈x|+
N−1
∑

x=1

Φ(|x+1〉〈x|+ |x〉〈x+1|). (1)

Owing to the confinement, one-exciton states are N sta-
tionary waves with quantized wave vectors Kk = kπ/L,
with k = 1, .., N and L = N + 1, expressed as

|ϕk〉 =
N
∑

x=1

√

2

L
sin(Kkx)|x〉. (2)

The corresponding eigenenergies ω0
k = ω0 + 2Φ cos(Kk)

form N discrete energy levels centered on ω0, i.e. the
energy of the so-called robust stationary wave |ϕL/2〉.
The phonons of the CC refer to the external motions
of the lattice sites that behave as point masses M con-
nected via force constants W . They define N normal
modes with wave vectors Qp = pπ/L and frequencies

Ωp = Ωc sin(Qp/2), with p = 1, .., N and Ωc =
√

4W/M .
Restricting our attention to the LFPM p = 1, the phonon
Hamiltonian is defined as HB = Ωa†a, with Ω ≡ Ω1, a

†

and a being standard boson operators. In the phonon
Hilbert space EB, the eigenstates are thus the well-known
number states |n〉. As detailed previously47, the exciton-
phonon interaction V = M(a† + a) favors the exciton
scattering from |ϕk〉 to |ϕk±1〉 mediated by phonon ex-
changes. The matrix elements of the M operator are
defined as

Mkk′ = η(δk,k′+1 + δk,k′−1), (3)

where η = [(EBΩ/L)(1 − (Ω/Ωc)
2)]1/2, EB being the

small polaron binding energy expressed in terms of the
coupling strength χ as EB = χ2/W .
The QCs are formed by two molecular groups x = 0

and x = L whose internal dynamics is described by a
two-level system (Fig. 1). Let |0〉 (resp. |L〉) be the first
excited state of the 0th (resp. Lth) molecular group and
ωS the corresponding Bohr frequency. The vacuum state
|⊘qc〉 describes the two groups in their ground state. Lo-
cated far enough from each other, these groups do not
interact. Their internal dynamics is governed by the
Hamiltonian Hqc = ωS(|0〉〈0|+ |L〉〈L|).
The QCs, assumed to be sufficiently far from the lat-

tice, are insensitive to the phonons. By contrast, owing
to dipole-dipole interactions, they interact with the lat-
tice exciton. This interaction originates in a vibrational
energy transfer between the group 0 (resp. L) and the
lattice site x = 1 (resp. x = N) as

W = ΦS(|0〉〈1|+ |1〉〈0|+ |L〉〈N |+ |N〉〈L|), (4)

where ΦS = ǫΦ, ǫ being the strength of the coupling
between the QCs and the CC.
Within this model, the exciton dynamics is governed

by the Hamiltonian HA = Hcc +Hqc +W . It acts in the
Hilbert space EA whose dimension is N + 3. EA is gen-
erated by the vacuum |⊘〉 = |⊘cc〉 ⊗ |⊘qc〉 and by N + 2
one-exciton eigenstates |ψµ〉, associated to the eigenfre-
quencies ωµ, with µ = 0, ..., L. The exciton Hamiltonian

is thus rewritten as HA =
∑L

µ=0 ωµ|ψµ〉〈ψµ|. To deter-
mine these one-exciton states, we first fix ωS to ω0 so
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FIG. 2: Exciton energy spectrum for ǫ = 0 (left side) and for
ǫ 6= 0 (right side).

that a resonance occurs between the two localized states
|0〉 and |L〉 and the robust stationary wave |ϕL/2〉 (Fig.
2). Then, ǫ is assumed to be sufficiently small so that
off-resonant interactions between the localized states and
the remaining stationary waves can be disregarded. This
condition is satisfied provided that ǫ ≪ π

√

2/L. As a
result, the one-exciton eigenstates |ψµ〉 are split into two
groups (Fig. 2).
The first group contains N − 1 states that reduce

to the stationary waves |ϕk〉, with k 6= L/2. For
µ = 0, ..., L/2 − 2, they are defined as |ψµ〉 = |ϕµ+1〉
(ωµ = ω0

µ+1) whereas for µ = L/2 + 2, ..., L, they reduce

to |ψµ〉 = |ϕµ−1〉 (ωµ = ω0
µ−1). The second group results

from the hybridization between the degenerate states |0〉,
|ϕL/2〉 and |L〉. Indeed, |0〉 (resp. |L〉) interacts with

|ϕL/2〉 through the coupling constant g = ǫΦ
√

2/L (resp.
g′ = g sin(Nπ/2)). When ǫ 6= 0, these couplings raise the
degeneracy so that the eigenstates are defined as

|ψ±〉 =
1

2
|0〉 ± 1√

2
|ϕL/2〉+

∆N

2
|L〉

|ψo〉 =
1√
2
|0〉 − ∆N√

2
|L〉, (5)

where ∆N = sin(Nπ/2) and with the convention µ =
L/2 ∓ 1 ≡ ± and µ = L/2 ≡ o. The corresponding
eigenfrequencies are expressed as

ω± = ω0 ± 2ǫΦ/
√
L

ωo = ω0. (6)

|ψ±〉 and |ψo〉 define three quasi-degenerate states that
involve a superimposition of the localized states, either
symmetric or antisymmetric. Note that |ψo〉 is exactly
located at the band center and it does not depend on
the stationary wave |ϕL/2〉. This is no longer the case
for |ψ+〉 and |ψ−〉 that lie just above and just below the
band center, respectively.

The exciton-phonon Hamiltonian is thus written as
H = H0 + V where H0 = HA +HB is the unperturbed
Hamiltonian. It acts in the Hilbert space E = EA ⊗ EB
that is partitioned into independent subspaces as E =
E0 ⊕ E1. In the zero-exciton subspace E0, V = 0 so
that the unperturbed states are eigenstates of H . They
correspond to tensor products |⊘〉 ⊗ |n〉 that describe n
free phonons. In the one-exciton subspace E1, the unper-
turbed states |Ψ0

µ,n〉 = |ψµ〉 ⊗ |n〉 refer to free phonons
accompanied by an exciton in state |ψµ〉. Because V
turns on, they are no longer eigenstates of H . The ex-
act eigenstates |Ψi〉, with eigenenergies Ei, correspond to
entangled exciton-phonon states.
The coupling V favors exciton scattering from |ψµ〉 to

|ψµ′〉 through phonon exchanges. The allowed transi-
tions are specified by the selection rules 〈ψµ|M |ψµ′〉 6=
0 (Eq.(3)). Because |ψµ〉 interacts with the phonons
through its dependence with respect to the stationary
waves, these rules are quite similar to those that charac-
terize the CC (|ψµ〉 is coupled with |ψµ±1〉). However,
two main differences occur. First, because |ψo〉 only de-
pends on the localized states, it remains insensitive to
the phonon bath. Second, a splitting occurs for the tran-
sitions involving |ψ±〉. Indeed, because |ψL/2±2〉 reduces
to |ϕL/2±1〉, it interacts with |ψ+〉 and |ψ−〉, both states
depending on |ϕL/2〉. Nevertheless, within the nonadia-

batic limit, i.e. for 4Φ < Ωc and ǫ≪ π
√

2/L, the allowed
transitions do not conserve the energy. There is no res-
onance between the coupled unperturbed states so that
second order PT can be applied to treat V in the weak
coupling limit (EB ≪ Φ). As detailed previously47,48,
PT is valid at temperature T provided that L < L∗ with
L∗ ≈ 0.2Ω2

c/EBkBT . When L > L∗, quasi-resonances
take place between the unperturbed coupled states and
PT breaks down.

B. Excitonic coherences and QST

Without any perturbation, the CC and the QCs are in
thermal equilibrium at temperature T . Assuming that
ω0 ≫ kBT , all the two-level systems are in their ground
state. By contrast, the phonons form a thermal bath de-
scribed by the density matrix ρB = exp(−βHB)/ZB, ZB

being the phonon partition function (β = 1/kBT ). In
that case, one assumes that the internal vibrations inter-
act with an external source so that the exciton is initially
prepared in a state |ψA〉 6= |⊘〉. This step is supposed to
be rather fast when compared with the typical time evo-
lution of the phonons. The full system is thus brought in
a configuration out of equilibrium and its initial density
matrix is defined as ρ(0) = |ψA〉〈ψA| ⊗ ρB.
To study QST between the QCs, |ψA〉 defines a qubit

implemented on the molecular group x = 0 as

|ψA〉 = α|⊘〉+ β|0〉, (7)

where |α|2 + |β|2 = 1. Our aim is thus to measure the
ability of the system to freely evolve in time so that this
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initial qubit is copied on the second QC x = L (Fig. 1).
Whatever its duration, QST must be realized with the
largest fidelity despite the coupling with the phonons. To
define this fidelity measure, different objects have been
introduced60, one of the most widely used being certainly
the so-called average Schumacher’s fidelity6. Here, we
restrict our attention to the excitonic coherences. In-
deed, the exciton properties are encoded in the RDM
σ(t) = TrB[ρ(t)], where TrB is a partial trace over the
phonon degrees of freedom. The coherences are thus the
off-diagonal matrix elements σx⊘(t). They provide infor-
mation about the ability of the xth two-level system to
develop a superimposition between its ground state and
its first excited state a time t.
When the initial qubit is implemented on the 0th QC,

the coherence σ0⊘(0) is turned on at time t = 0. There-
fore, the ability of the Lth QC to develop a superim-
position involving |⊘〉 and |L〉 at time t is given by
σL⊘(t) = GL0(t)σ0⊘(0) with

GL0(t) = 〈L|TrB
[

ρBe
iHBte−iHt

]

|0〉. (8)

The effective exciton propagator GL0(t) generalizes the
concept of transition amplitude. It yields the probability
amplitude to observe the exciton in |L〉 at time t given
that it was in |0〉 at t = 0. Its effective nature results
from the fact that the exciton interacts with the phonons
during its transition.
The effective propagator is the central object of the

present study. The condition |GL0(t)| = 1 reveals that
the Lth QC reaches a state at time t that is equivalent to
the initial state, to a phase factor. Note that this condi-
tion is exactly the QST fidelity when the coupling with
the phonons is disregarded6. Consequently, depending
on the value of the model parameters, studying the max-
imum value of |GL0(t)| provides key information about
the fidelity of the QST.

C. Perturbation theory

In its operatorial formulation58, standard PT involves
a unitary transformation that provides a new point of
view in which the exciton-phonon dynamics is described
by an effective Hamiltonian. The key point is that this
Hamiltonian is diagonal in the unperturbed basis. Quite
powerful to treat finite-size lattices47,48, this approach
breaks down in the present situation because the unper-
turbed Hamiltonian exhibits quasi-degenerate states. For
small ǫ values, |Ψ0

+,n〉 and |Ψ0
−,n〉 have almost the same

energy. Although they do not directly interact through
V , they are coupled with the same unperturbed states.
Consequently, effective couplings occur between quasi-
degenerate states resulting in errors in the calculations
of the corrected energies.
To overcome this problem, quasi-degenerate PT is

applied59 (Appendix A). To proceed, we take advan-
tage of the fact that the effective couplings conserve the
phonon number. Therefore, our procedure involves a

transformation U = exp(S) that generates a new point

of view in which the effective Hamiltonian Ĥ = UHU † is
block-diagonal in the unperturbed basis. The generator
S is expanded as a Taylor series in the coupling V so that
Ĥ becomes diagonal with respect to the phonon number
states, only. Up to second order, it is written as

Ĥ = HA + δHA + (Ω + δΩ)a†a (9)

where δHA and δΩ are operators in EA whose matrix
elements are defined as (in the unperturbed basis {|ψµ〉})

δHAµ1µ2 =
1

2

L
∑

µ=0

Mµ2µMµµ1

ωµ1 − ωµ − Ω
+

Mµ1µMµµ2

ωµ2 − ωµ − Ω

δΩµ1µ2 =
1

2

L
∑

µ=0

Mµ2µMµµ1

ωµ1 − ωµ − Ω
+

Mµ1µMµµ2

ωµ2 − ωµ − Ω

+
1

2

L
∑

µ=0

Mµ2µMµµ1

ωµ1 − ωµ +Ω
+

Mµ1µMµµ2

ωµ2 − ωµ +Ω
(10)

δHA is the correction of the exciton Hamiltonian ow-
ing to the coupling with the phonons. It results from
the spontaneous emission of a phonon during which the
exciton realizes a transition from |ψµ1〉 to |ψµ〉. How-
ever, in the nonadiabatic limit, the energy is not con-
served during the transition. The emitted phonon is im-
mediately reabsorbed and the exciton realizes a second
transition from |ψµ〉 to |ψµ2〉. In other words the exci-
ton does no longer propagate freely but it is dressed by
a virtual phonon cloud. This dressing renormalizes the
excitonic energies ωµ by an amount δωµ = δHAµµ. In ad-
dition, it induces effective interactions δHAµ1µ2 between
distinct excitonic states that can no longer be neglected
for quasi-degenerate states.

Similarly, δΩ defines the correction of the phonon fre-
quency. It has two origins. First, the phonon can be
absorbed giving rise to excitonic transitions. Because
this process does not conserve the energy, the phonon is
immediately re-emitted. Second, the phonon can induce
the stimulated emission of a second phonon during which
the exciton realizes transitions. But, as previously, the
emitted phonon is immediately reabsorbed. Both mech-
anisms are virtual processes indicating that the phonons
are dressed by virtual excitonic transitions.

To diagonalize Ĥ for each phonon number, we use the
fact that δΩ is smaller than δHA within the weak cou-
pling limit. Consequently, let |χν〉 be the eigenstates of
HA + δHA and ω̂ν the corresponding eigenfrequencies
(ν = 0, ..., L). Up to second order in V , one introduces
δΩν = 〈χν |δΩ|χν〉 as the correction of the phonon fre-
quency induced by the exciton that occupies the state
|χν〉. Within these notations, Ĥ is rewritten as

Ĥ ≈
L
∑

ν=0

ω̂ν |χν〉〈χν |+ Ĥ
(ν)
B ⊗ |χν〉〈χν |, (11)
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where Ĥ
(ν)
B = (Ω+ δΩν)a

†a is the Hamiltonian that gov-
erns the phonon dynamics when the exciton is in the state
|χν〉.
In the new point of view, the exciton-phonon dynam-

ics is thus governed by the effective Hamiltonian Ĥ that
is diagonal in the basis |χν〉 ⊗ |n〉. Its eigenvalues de-
fine the system eigenfrequencies up to second order in
V as Eν,n = ω̂ν + n(Ω + δΩν). Ĥ does no longer refer
to independent excitations but it characterizes entangled
exciton-phonon states. A state |χν〉 describes an exciton
dressed by a virtual phonon cloud whereas the number
state |n〉 describes n phonons clothed by virtual excitonic
transitions. This entanglement is clearly highlighted in
the starting point of view in which the eigenstates do no
longer factorize as |Ψν,n〉 = U †|χν〉 ⊗ |n〉.
As detailed previously48, PT is particularly suitable for

deriving an approximate expression for GL0(t). To pro-
ceed, we first introduce U and diagonalize H in Eq.(8).
Then, we define the effective density matrix

ρ
(ν)
B (t) =

1

Z
(ν)
B (t)

exp
[

−(βΩ+ iδΩνt)a
†a
]

, (12)

where Z
(ν)
B (t) = (1 − exp [−(βΩ + iδΩνt)])

−1. Strictly

speaking, ρ
(ν)
B (t) is not a density matrix since it yields

complex values for the phonon population. However,
it is isomorphic to ρB with the correspondence βΩ →
βΩ + iδΩνt and it provides averages equivalent to ther-
mal averages. Consequently, after simple algebraic ma-
nipulations, GL0(t) is rewritten as48

GL0(t) =

L
∑

ν=0

Z
(ν)
B (t)

ZB
exp[−iω̂νt]× (13)

TrB

[

ρ
(ν)
B (t)〈L|U †

ν (t)|χν〉〈χν |Uν(0)|0〉
]

.

where Uν(t) = eiĤ
(ν)
B

tUe−iĤ
(ν)
B

t. Expanding U in a Tay-
lor series with respect to V , one finally obtains the second
order expression of GL0(t), as detailed in Appendix B.

III. NUMERICAL RESULTS

In this section, numerical calculations are carried out
to show the relevance of PT for describing QST. To pro-
ceed, the previous formalism is applied to amide-I vi-
brations in α-helices, a system for which the parameters
are well-known26–36 : ω0 = 1660 cm−1, W = 15 Nm−1,
M = 1.8×10−25 kg, Ωc = 96.86 cm−1 and Φ = 7.8 cm−1.
To avoid PT breakdown, the size is set to L = 10 and
the exciton-phonon coupling strength is fixed to χ = 10
pN. Special attention will be paid for characterizing the
influence of the coupling ǫ between the QCs and the CC.
The difference ∆E = Ei−Eν,n between exact and ap-

proximate energies is shown in Fig. 3. For ǫ = 0.01, PT
provides a very good estimate of the energy spectrum
over a broad energy scale. The smaller the energy is, the

FIG. 3: Ei −Eν,n vs Ei for ǫ = 0.01, χ = 10 pN and L = 10.

FIG. 4: Ei (thin x) and Eν,n (full lines) vs η for ǫ = 0.01 and
L = 10.

better is the agreement. Of course, ∆E increases with
Ei indicating that the PT accuracy decreases with the
phonon number n because V scales as

√
n. For instance,

for Ei ≈ 100Φ (n ≈ 50), ∆E is approximately equal to
10−3Φ whereas it reaches 5×10−3Φ for Ei ≈ 200Φ. Nev-
ertheless, we have verified that ∆E is smaller than the
energy level spacing indicating that PT remains valid,
even for quite large energies. As shown in the inset,
the curve ∆E vs Ei behaves almost periodically, with
a period approximately equal to Ω, indicating that the
PT accuracy depends on the nature of the unperturbed
states. PT is exact for the unperturbed states that in-
volve the exciton state insensitive to the phonons. By
contrast, unperturbed states located in the neighborhood
of quasi-degenerate states are the less well-corrected.
As shown in Fig. 4, ∆E slightly increases with χ

so that PT remains valid in the intermediate coupling
regime. It reproduces the influence of the exciton-phonon
coupling on the energy levels up to χ = 20 pN (η = 1.41
cm−1). In particular, PT accounts for the energy level
crossing process that affects the dressed states. Owing to



6

o

FIG. 5: (Color online) δωµ vs ǫ for χ = 10 pN and L = 10.

the coupling V , unperturbed states hybridize giving rise
to energy shift and splitting characteristic of anti-crossing
phenomena. Some energy levels repel each other whereas
other energy levels get closer. These levels describing
exact uncoupled eigenstates, energy level crossing takes
place.

The ǫ dependence of the exciton energy correction δωµ

is shown in Fig. 5. Owing to the dressing by virtual
phonons, the exciton energy is redshifted and δωµ de-
creases linearly with EB. However, this behavior de-
pends on the exciton state. For the state |ψo〉 insensitive
to the phonons, δωo = 0. By contrast, the stationary
waves µ 6= o,± experience an energy correction approx-
imately equal to −0.2EB. This shift reduces to −0.1EB

for the states |ψ0〉 and |ψL〉, whose energies define the
band edges, and for the quasi-degenerate states |ψ±〉.
Moreover, Fig. 5 reveals that the energy correction of
the stationary waves is almost ǫ independent. This is
no longer the case for the quasi-degenerate states be-
cause δω+ (resp. δω−) decreases (resp. increases) lin-
early with ǫ (not well distinguishable in Fig. 5). Note
that δω+ = δω− = 0.108EB when ǫ = 0.

Fig. 6 shows the ǫ dependence of the difference be-
tween the energy ω̂µ of a dressed state |χµ〉 and the cor-
rected energy ωµ + δωµ of a bare state |ψµ〉. For the sta-
tionary waves µ 6= o,±, a correspondence occurs between
both energies suggesting that the dressing mainly induces
an energy renormalization without significantly modify-
ing the state. In fact, we have verified that |χµ〉 ≈ |ψµ〉
for µ 6= ±. Note that the correspondence is exact for
the state insensitive to the phonons so that one defines
a dressed state |χo〉 ≡ |ψo〉 (ν = L/2 ≡ o). By contrast,
the correspondence disappears for the quasi-degenerate
states and the smaller ǫ is, the larger is the energy differ-
ence. A strong hybridization occurs between |ψ±〉 that
results in the formation of two quasi-degenerate dressed
states. Denoted |χ±〉 (ν = L/2 ∓ 1 ≡ ±), these dressed

FIG. 6: (Color online) ω̂µ −ωµ − δωµ vs ǫ for χ = 10 pN and
L = 10.
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w+
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FIG. 7: (Color online) ǫ dependence of ω̂± (full lines) and ω±

(dashed lines) for χ = 10 pN and L = 10.

states mainly correspond to superimpositions involving
|ψ+〉 and |ψ−〉.
The ǫ dependence of the energy ω̂± of the quasi-

degenerate dressed state |χ±〉 is shown in Fig. 7. For
quite large ǫ values, ω̂+ (resp. ω̂−) is slightly red-shifted
when compared with ω+ (resp. ω−). In that case,
ω̂± follows the ǫ dependence of the corrected bare en-
ergy ω± + δω± and |χ+〉 (resp. |χ−〉) basically cor-
responds to |ψ+〉 (resp. |ψ−〉). As ǫ decreases down
to zero, ω̂+ decreases and it reaches ω0. By contrast,
ω̂− increases and it converges to a value located below
the band center. The energy difference characterizes an
anti-crossing phenomena so that the energy levels of the
dressed states repel each other. This is the signature
of the hybridization between |ψ+〉 and |ψ−〉 that results
in the formation of two quasi-degenerate dressed states
|χ±〉 ≈ (|ψ+〉 ± |ψ−〉)/

√
2.

The ǫ dependence of the phonon frequency correction
δΩν is shown in Fig. 8. The phonon frequency is ei-
ther red-shifted or blue-shifted depending on the nature
of the exciton. A redshift is induced when the exciton
occupies a dressed state |χν〉 with ν = 0, ..., L/2−1. The
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FIG. 8: (Color online) δΩν vs ǫ for χ = 10 pN and L = 10.

closer to the band edge the exciton energy is located, the
larger is the shift. By contrast, an exciton that occupies
a state |χν〉 with ν = L/2 + 1, ..., L yields a blueshift
of the phonon frequency. As previously, excitonic states
near the band edge favor the largest phonon frequency
shift. Note that in the state |χo〉, the exciton produces
no phonon frequency shift. As shown in Fig. 8, when
the exciton occupies a state isomorphic to a stationary
wave, the phonon frequency shift is ǫ independent. By
contrast, a strong ǫ dependence occurs when the exciton
is in a quasi-degenerate dressed state |χ±〉. In that case,
δΩ+ < 0 increases when ǫ decreases whereas δΩ− > 0
decreases when ǫ decreases. For nonvanishing ǫ values,
it turns out that δΩ− ≈ −δΩ+. However, when ǫ tends
to zero, δΩ+ converges to zero whereas δΩ− reaches a
quite small nonvanishing value. In other words, when
ǫ→ 0, the frequency shift is negligible when the phonon
is accompanied by an exciton in either |χo〉, |χ+〉 or |χ−〉.
The key ingredients entering PT being characterized,

let us now study the effective exciton propagator |GL0(t)|
whose time evolution is displayed in Fig. 9. The fig-
ure shows that PT perfectly agrees with exact calcu-
lations over a long-time scale. Initially equal to zero,
|GL0(t)| first increases with time. Then, at time TM ,
it reaches a maximum value GM quite close to unity.
Finally, it develops damped oscillations that fluctuate
around 1/2. These oscillations support a high-frequency
small-amplitude modulation whose behavior depends on
ǫ. When ǫ = 0.020, |GL0(t)| exhibits a double maximum.
At t = 248.47Φ−1, |GL0(t)| first reaches a local maximum
whose value is equal to 0.83. Then, the absolute maxi-
mum GM = 0.88 occurs at TM = 495.48Φ−1. Such a
temporal structure is very sensitive to ǫ. When ǫ slightly
varies around 0.020, the absolute maximum jumps be-
tween the two values of the double maximum so that
TM exhibits a discontinuous character with respect to ǫ.
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FIG. 9: (Color online) Time evolution of |GL0(t)| for χ = 10
pN, L = 10 and T = 300 K. Exact calculations (dashed lines)
and PT (full lines).
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FIG. 10: (Color online) Max[|GL0(t)|] vs ǫ for χ = 10 pN and
L = 10. Exact calculations (dashed lines) and PT (full lines).

By contrast, when ǫ = 0.013, |GL0(t)| exhibits a single
absolute maximum whose behavior remains quite stable
when ǫ varies. It occurs at TM = 699.85Φ−1 and its value
GM = 0.97 is very close to unity.
The ǫ dependence of the maximum value GM =

Max[|GL0(t)|] is illustrated in Fig. 10 for different tem-
peratures. The figure shows that PT provides results in
a quite good agreement with exact calculations. A small
discrepancy occurs at high temperature and for small ǫ
values, only. When ǫ decreases from 0.05, the curve GM

vs ǫ exhibits a series of minima and maxima whose value
depends on the temperature. A local minimum corre-
sponds to a singularity. The curve exhibits a kind of
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FIG. 11: (Color online) Max[|GL0(t)|] vs T for χ = 10 pN
and L = 10. The calculations have been carried out using
PT.

cusp in the neighborhood of which the time TM (ǫ) is dis-
continuous. By contrast, a local maximum corresponds
to a well defined point where the first derivative of GM (ǫ)
vanishes. Close to a local maximum, TM (ǫ) remains con-
tinuous. Whatever the temperature, it turns out that
the absolute minimum of GM (ǫ) occurs for ǫ ≈ 0.021.
Its value slightly decreases with the temperature and it
varies from 0.86 for T = 100 K to 0.84 for T = 300 K. By
contrast, the absolute maximum takes place for ǫ ≈ 0.013
∀ T . Equal to 0.99 for T = 100 K, it decreases to 0.97 for
T = 300 K. Note that if one defines P = 100× (1−GM )
as the percentage of the lost information, one obtains
P ≈ 3 % at high temperature. When ǫ tends to zero, the
maxima and the minima are becoming more frequent but
less pronounced. GM tends to a temperature dependent
value approximately equal to 0.99 and 0.95 for T = 100
and 300 K, respectively. We have verified that the curve
GM vs ǫ depends on both the lattice size and the exciton-
phonon coupling strength. These parameters modify the
position and the value of the minima and of the maxima.
For instance, for ǫ = 0.01 and T = 300 K, one obtains
GM = 0.93 for L = 10 and χ = 10 pN, GM = 0.89 for
L = 20 and χ = 10 pN and GM = 0.73 for L = 10 and
χ = 20 pN. Increasing either L or χ reduces the QST
fidelity.

Finally, the temperature dependence of GM is illus-
trated in Fig. 11 for different ǫ values. The calcula-
tions have been carried out using PT that is particularly
suitable for the considered ǫ values. When ǫ = 0.021,
the curve GM (ǫ) lies in the neighborhood of its absolute
minimum. Consequently, over the temperature range dis-
played in the figure, GM takes the smallest values. Al-
most uniform, it is approximately equal to 0.86 ± 0.01.
The corresponding lost information is thus about 14 %.
For ǫ = 0.01 and 0.02, a critical temperature T ∗ dis-
criminates between two regimes. When T < T ∗, GM

rapidly decreases with the temperature. By contrast,
when T > T ∗, smooth variations take place. Note that

T ∗ ≈ 40 K for ǫ = 0.01 whereas T ∗ ≈ 130 K for ǫ = 0.02.
Finally, for ǫ = 0.013, the curve GM (ǫ) lies in the neigh-
borhood of its absolute maximum. Consequently, GM

slightly decreases with the temperature. It varies from
(almost) unity for T = 10 K to 0.97 for T = 300 K. It
scales as GM ≈ 1 − (T/T0)

2 with T0 ≈ 1510 K so that
the lost information remains smaller than 3 %.

IV. DISCUSSION

According to the numerical results, PT is a powerful
tool for describing the exciton-phonon dynamics. Within
the nonadiabatic weak-coupling limit, it accurately ac-
counts for the spectral properties of the system over a
broad energy scale. Moreover, PT is particularly suitable
for characterizing the time evolution of the effective exci-
ton propagator over a long-time scale, even at high tem-
perature. In that context, both exact and approximate
calculations have revealed the potential powerfulness of
the proposed communication protocol. The key point
is that its efficiency strongly depends on the coupling
ǫ between the QCs and the CC. When ǫ is judiciously
chosen, it turns out that the maximum value of |GL0(t)|
is quite close to unity. A high-fidelity QST occurs over
a broad temperature range, the lost information during
the transfer remaining smaller than 3 %. By contrast,
specific ǫ values induce a hole in the transmission curves.
The maximum value of the effective exciton propagator
deviates from unity resulting in the impoverishment of
the transfered information. The lost information drasti-
cally increases and it can represent almost 15 % of the
initially implemented infromation at high temperature.
Of course, these results depend on both the lattice size
and the exciton-phonon coupling strength whose the in-
crease reduces the fidelity of the transfer.
To interpret these results, PT can be used for deriving

a simplified expression of GL0(t). Indeed, our numeri-
cal studies have revealed that the so-called diagonal ap-
proximation works quite-well. Consequently, the exact
exciton-phonon eigenstates |Ψi〉 basically reduce to the
effective Hamiltonian eigenstates |χν〉 ⊗ |n〉. The trans-
formation U in Eq.(13) behaves as the unit operator and
the exciton-phonon entanglement mainly results from the
modification of the exciton states |ψµ〉 → |χν〉, the renor-
malization of the exciton energies ωµ → ω̂ν and the cor-
rection of the phonon frequency Ω → Ω+ δΩν . GL0(t) is
thus rewritten as

GL0(t) ≈
L
∑

ν=0

Fν(t)e
−iω̂νt〈L|χν〉〈χν |0〉, (14)

where Fν(t) = Z
(ν)
B (t)/ZB is the decoherence factor as

Fν(t) =
1− e−βΩ

1− e−βΩ−iδΩνt
. (15)

In Eq.(14), GL0(t) is the sum of the probability ampli-
tudes associated to the different paths that the exciton
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can follow to tunnel between the QCs. A given path de-
fines a transition through the dressed state |χν〉. The
corresponding amplitude involves the weight of the lo-
calized states in the dressed state, a phase factor that
accounts for the free evolution of the dressed exciton and
the decoherence factor. This later contribution originates
in the exciton-phonon interaction. Indeed, when Eq.(8)
is developed in the phonon number state basis, GL0(t)
can be interpreted as follows. The system being prepared
in the factorized state |0〉 ⊗ |n〉, GL0(t) is the probabil-
ity amplitude to observe the system in a factorized state
|L〉⊗ exp(−inΩt)|n〉. It thus describes an excitonic tran-
sition during which the phonons evolve freely. When the
exciton occupies the state |χν〉, the phonon frequency is
modified. The probability amplitude that the phonons
evolve freely reduces to a phase factor exp(−inδΩνt).
Of course, such a phase factor does not affect the exci-
tonic coherence when the phonons are initially in a pure
state. However, at finite temperature, the phonons are
described by a statistical mixture of number states. A
thermal average is required and it yields a sum over dif-
ferent phase factors which interfere with the other. The
interferences lead to a decay of the excitonic coherence
encoded in the decoherence factor.

At this step, Eq.(14) can be simplified because only
the dressed states that involve the localized states |0〉 and
|L〉 contribute significantly to the exciton propagator. In-
deed, the bare states |ψµ〉 that correspond to the station-
ary waves of the CC (µ 6= o,±) are not degenerated. The
dressing by virtual phonons mainly induces energy renor-
malization without significantly modifying their nature.
Therefore, the system exhibits N − 1 dressed states iso-
morphic to these stationary waves, i.e. |χµ〉 ≈ |ψµ〉 and
ω̂µ ≈ ωµ+δωµ for µ 6= o,±. Because these dressed states
are almost independent on the localized states, their con-
tribution to GL0(t) can be disregarded. Note that |ψµ〉 is
coupled with zµ neighboring states through phonon ex-
changes. In the nonadiabatic limit (|ωµ − ωµ±1| ≪ Ω),
Eq.(10) yields δωµ ≈ −zµEB/L, as observed in Fig. 5.
Because z1 = zL = 1, the shift experienced by the band
edge states µ = 1 and µ = L is two times smaller than
the shift experienced by the remaining stationary waves
for which zµ = 2. In a market contrast, the bare state
|ψo〉 does not interact with the phonons. The correspond-
ing dressed state |χo〉 ≡ |ψo〉 only involves the localized
states |0〉 and |L〉 (see Eq.(5)) and the decoherence fac-
tor Fo(t) reduces to unity. Consequently, |χo〉 defines an
ideal path for the excitonic transition between the QCs.

The fundamental point concerns the quasi-degenerate
states |ψ±〉 that are profoundly perturbed by the dress-
ing mechanism. As for the stationary waves, the exciton-
phonon interaction induces a redshift δω± of each energy
ω±. This interaction originates in the dependence of |ψ±〉
with respect to the robust stationary wave |ϕL/2〉. There-
fore, each quasi-degenerate state is coupled with two sta-
tionary waves through phonon exchanges. In that case,
it is easy to extract δω± from Eq.(10). In doing so, the
shifts can be expanded as a Taylor series with respect to

ǫ as δω± = −∑∞
r=0(−1)rErǫ

r. The positive coefficients
Er are defined as

Er =
η2

2

(

Ēr

(Ω +∆ω)r+1
+

Ēr

(Ω−∆ω)r+1

)

, (16)

where Ē = 2Φ/
√
L and ∆ω = |ω0

L/2 − ω0
L/2±1|. In the

nonadiabatic limit, E0 ≈ −EB/L so that δω+ (resp.
δω−) decreases (resp. increases) linearly with ǫ form
−EB/L, in a quite good agreement with the results dis-
played in Fig. 5. Note that δω± is similar to the shift
experienced by the band edge states because the weight
of |ϕL/2〉 in |ψ±〉 is equal to 1/

√
2.

In addition to energy renormalization, the exciton-
phonon interaction yields an effective coupling v+− =
−(δω++δω−)/2 between |ψ+〉 and |ψ−〉 (Eq.(10)). Quite
similar in magnitude to the energy shifts, this coupling
can no longer be neglected resulting in a strong hybridiza-
tion between the quasi-degenerate states. These states
behave as a two-level system independent on the remain-
ing states whose eigenstates define two quasi-degenerate
dressed states as

|χ+〉 ≈ +cos(θ)|ψ+〉+ sin(θ)|ψ−〉
|χ−〉 ≈ − sin(θ)|ψ+〉+ cos(θ)|ψ−〉. (17)

The corresponding eigenenergies are expressed as

ω̂± = ω0 +
δω+ + δω−

2
± 1

2

√
∆, (18)

where

∆ = (ω+ + δω+ − ω− − δω−)
2 + 4v2+−

cos(2θ) =
ω+ + δω+ − ω− − δω−√

∆
. (19)

The hybridization is encoded in the θ parameter whose
value depends on both the exciton-phonon coupling
strength, measured by δω±, and the energy difference
δ = ω+ − ω− ≡ 2Ēǫ. Two asymptotic situations oc-
cur. For quite large ǫ values, |δω±| ≪ δ so that the
influence of the quasi-degeneracy is negligible. The hy-
bridization is weak and the dressed states reduce to the
bare states, i.e. |χ±〉 ≈ |ψ±〉 and ω̂± ≈ ω± + δω±.
The bare energies experience a similar redshift approx-
imately equal to −EB/L, as displayed in Fig. 7 for
ǫ ≈ 0.05. By contrast, for small ǫ values, |δω±| ≫ δ and
the hybridization is strong. One obtains θ ≈ π/4 and

|χ±〉 ≈ (|ψ+〉 ± |ψ−〉)/
√
2. The energy ω̂+ reaches the

band center and it scales as ω̂+ ≈ ω0+(Ē−E1)
2ǫ2/2E0.

By contrast, ω̂− ≈ ω0−2E0−2E2ǫ
2−(Ē−E1)

2ǫ2/2E0 lies
close to ω0−2EB/L, in a good agreement with the results
displayed in Fig. 7. Note that in that case |χ+〉 reduces
to a superimposition of the localized states whereas |χ−〉
tends to the robust stationary wave.
By combining Eqs.(5) and (17), it is easy to show that

the quasi-degenerate dressed states depend on the local-
ized states. They thus define two relevant paths for the
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excitonic transition between the QCs. However, when
the exciton occupies |χ±〉, it induces a shift δΩ± of the
phonon frequency. Quantum decoherence is no longer
negligible and the decoherence factors is expressed as

F±(t) ≈
e−in̄δΩ±t

√

1 + 4∆n̄2 sin2(δΩ±t/2)
, (20)

where n̄ = [exp(βΩ) − 1]−1 and ∆n̄2 = n̄(n̄ + 1). Note
that Eq.(20) has been obtained from Eq.(15) by simpli-
fying the time dependence of the argument of the deco-
herence factor. By inserting Eq.(17) into Eq.(10), the
phonon frequency shift is written as

δΩ± ≈ ∓2 cos(2θ)

∞
∑

r=0

E2r+1ǫ
2r+1. (21)

In a quite good agreement with the results displayed in
Fig. 8, Eq.(21) reveals that when the exciton occupies
the state |χ+〉 (resp. |χ−〉), it induces a redshift (resp.
blueshift) of the phonon frequency. Moreover, as ob-
served in Fig. 8 when ǫ is not too small, one obtains
δΩ− = −δΩ+. However, when ǫ tends to zero, Eq.(21)
yields δΩ± ≈ ∓2E1(Ē − E1)ǫ

2/E0. Such a behavior
slightly differs from our numerical results. As shown in
Fig. 8, δΩ+ vanishes when ǫ tends to zero whereas δΩ−

reaches a rather small value. This discrepancy originates
in the fact that the exact dressed states |χ±〉 slightly de-
pend on the stationary waves |ψµ〉, with µ 6= o,±. When
ǫ tends to zero, such a dependence is more pronounced for
|χ−〉. These additional components, that are not taken
into account in Eq.(17), yield a nonvanishing δΩ− value.
In that context, it turns out that |χo〉, |χ+〉 and |χ−〉

define the main paths followed by the exciton to tunnel
between the QCs. Consequently, GL0(t) is rewritten as

GL0(t) ≈ −∆N exp(−iω0t)

[

+
1

2
(22)

− 1

4
|F+(t)| exp(−iW+t)[1 + sin(2θ)]

− 1

4
|F−(t)| exp(+iW−t)[1− sin(2θ)]

]

,

where W± = ±(ω̂± − ω0 + n̄δΩ±) defines a positive fre-
quency relative to the band center ω0. According to
Eq.(22), GL0(t) is the sum of the three transition am-
plitudes, τo = 1/2 and τ± = −|F±(t)| exp(∓iW±t)[1 ±
sin(2θ)]/4, connected to the three relevant paths. Be-
cause |χo〉 is insensitive to the phonons, the probability
amplitude τo is the weight 1/2 of the localized states. By
contrast, the probability amplitude τ± that the exciton
tunnels through |χ±〉 involves a phase factor whose time
evolution is governed by T± = π/W±. This phase fac-
tor is weighted by both the decoherence factor and the
weight of the localized states. Consequently, depending
on the value of the model parameters, W±, θ and F±(t)
will take particular values so that each probability am-
plitude will develop a specific time evolution. Quantum

FIG. 12: (a) GM (ǫ) vs ǫ for χ = 10 pN, L = 10 and T = 300
K using PT. (b) α = Ws/Wf vs ǫ. (c) TM/Tf vs ǫ.

interferences between the different amplitudes will occur
resulting in a characteristic time evolution of |GL0(t)|.
As time evolves, |GL0(t)| will reach a maximum whose
value GM will depend on the model parameters through
the interference pattern.
To understand this phenomenon intuitively, let us fo-

cus our attention on the influence of the coupling ǫ be-
tween the QCs and the CC. Provided that ǫ is not too
small, the numerical results suggest that δΩ− ≈ −δΩ+ >
0. The modulus of the decoherence factor is thus al-
most independent on the nature of the exciton so that
|Fν(t)| ≈ F (t) ∀ν = ±. Moreover, it turns out that the
influence of θ remains negligible, i.e. sin(2θ) ≈ 0. There-
fore, after straightforward algebraic manipulations, one
obtains

|GL0(t)|2 ≈ 1

4
[1 + F 2(t) cos2(Wst) (23)

− 2F (t) cos(Wst) cos(Wf t)],

where Ws = (W− −W+)/2 and Wf = (W− +W+)/2. In
the right hand side of Eq.(23), the first term is the prob-
ability |τo|2 that the exciton realizes a transition through
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|χo〉. The second term reduces to |τ++ τ−|2 and it refers
to the probability that the exciton tunnels through either
|χ+〉 or |χ−〉. The last term describes the quantum in-
terferences that arise when the exciton follows the paths
involving either |χ0〉 or |χ+〉, and |χ0〉 or |χ−〉. It mixes
W+ and W− and it behaves as an amplitude-modulated
signal f(t) = F (t) cos(Wst) cos(Wf t). It thus exhibits a
slowly varying envelope with frequencyWs that supports
a fast modulation with frequency Wf , both components
being damped by the decoherence factor F (t). Such a be-
havior allows us us to introduce the fundamental times
Tf = π/Wf and Ts = π/Ws.

The time evolution of |GL0(t)| is mainly encoded in the
quantum interference term f(t). Consequently, |GL0(t)|
reaches its maximum value GM (ǫ) for a time TM (ǫ) that
minimizes f(t). As illustrated in Fig. 12(c), such a situ-
ation occurs when TM is a multiple of Tf , i.e. TM = nTf
with n = 1, 2, .... However, the integer n and the mag-
nitude of GM (ǫ) depend on ǫ through the value of the
ratio α =Ws/Wf . This ratio extends from zero for large
ǫ values to unity for small ǫ values, as displayed in Fig.
12(b). Therefore, as ǫ varies, different regimes take place.

For specific ǫ values, α is such that a situation arises
in which the quantum interference term f(t) exhibits two
equivalent minima at two distinct times. In that case,
the curve GM vs ǫ exhibits a local minimum and the
time TM shows a discontinuity between two multiples
of Tf . We have observed that in that case there are
two equivalent configurations for which the probability
amplitudes τ+ and τ− are in phase with each other but
are not exactly in phase with the amplitude τo. At high
temperature, such a situation occurs for the ǫ values that
provide α = (2q− 1)/(2q+1) with q = 1, 2, .... The time
TM exhibits discontinuities between qTf and (q + 1)Tf
and one obtains T+ = 2qT− and Tf = 2T+/(2q + 1).
Note that as shown in Fig. 12, the largest hole in the
transmission curve occurs for q = 1, i.e. for α = 1/3, so
that TM varies between Tf and 2Tf .

In a marked contrast, for particular ǫ values, α is such
that the quantum interference term f(t) exhibits an iso-
lated minimum close to −1. Such a situation takes place
at a time TM (ǫ) so that the probability amplitudes τ+
and τ− are simultaneously in phase with the probability
amplitude τo. Constructive interferences occur between
the different paths followed by the exciton to tunnel be-
tween the QCs. As a result, the curve GM vs ǫ exhibits a
local maximum (see Figs. 10 and 12(a)). Such a situation
appears for the ǫ values that yield α = (q−p)/(q+p+1),
where p and q are two positive integers such that q > p.
One thus obtains TM = (2p + 1)T+ = (2q + 1)T−, i.e.
TM = (p+ q + 1)Tf . In that case, f(TM ) = −F (TM ) so
that the maximum value of the exciton effective propa-
gator is approximately equal to GM = [1 + F (TM )]/2.

As shown in Figs. 10 and 12(a), the largest local max-
imum occurs for a specific value ǫ∗. When ǫ = ǫ∗, p = 0
and q = 1 so that α = 1/2 and TM = T+ = 3T−. Solv-
ing the equation T+ = 3T− by exanding the parameters
with respect to ǫ provides an analytical expression for ǫ∗

written as

ǫ∗ ≈
√
2E0

√

(Ē − E1)2 − 4n̄E1(Ē − E1)− 2E0E2

(24)

Over the temperature range T = 100 - 300 K and for
χ = 10 pN and L = 10, Eq.(24) yields ǫ∗ ≈ 0.011
in a quite good agreement with the numerical estimate
ǫ∗ ≈ 0.013 (Fig. 10). Therefore, when ǫ = ǫ∗, T+(ǫ

∗)
defines the shortest time for which constructive inter-
ferences occur. The decay provided by the decoherence
factor is thus minimized and the QST is optimized. In
the nonadiabatic weak-coupling limit one thus obtains

GM (ǫ∗) ≈
[

1− π2

4

∆n̄2

δn2

]

(25)

where δn = n0 − n̄ and n0 = |ω̂+(ǫ
∗) − ω0|/|δΩ+(ǫ

∗)|.
Eq.(25) clearly shows that the impoverishment of the
transfered information results from the thermal fluctu-
ations ∆n̄ of the phonon number. Fortunately, in the
weak coupling limit, n0 ≫ n̄ so that ∆n̄ is always smaller
than δn. Because ∆n̄ is proportional to kBT/Ω, the op-
timized value of the effective exciton propagator scales
as GM (ǫ∗) ≈ 1 − (T/T0)

2 with T0 = 2n0Ω/π. As ob-
served in Fig. 11, GM (ǫ∗) only slightly deviates from
unity provided that T remains smaller than the critical
temperature T0. With the parameters used in the simu-
lation (χ = 10 pN and L = 10), T0 ≈ 1600 K indicating
that the lost information during the transfer is negligible,
even at room temperature.
Consequently, when ǫ is judiciously chosen, construc-

tive interferences take place between the different paths
followed by the exciton to tunnel between the QCs. The
influence of the quantum decoherence is minimized and
an ideal QST occurs over a broad temperature range.
The fidelity of the transfer remains quite close to unity,
even at high temperature, indicating the powerfulness of
the proposed communication protocol.

V. CONCLUSION

In the present paper, a new communication protocol
has been proposed in which QST is achieved by a high-
frequency vibrational exciton. The main idea was to use
two distant molecular groups grafted on the sides of a
molecular lattice. These groups behave as two QCs on
which the information is encoded and received. By con-
trast, the lattice defines the CC along which the exciton
propagates and interacts with a phonon bath. To mini-
mize the impact of the quantum decoherence, the struc-
ture was designed so that a vibrational resonance occurs
between the QCs and the robust stationary wave of the
lattice whose energy is exactly located at the band center.
To highlight the relevance of PT, special attention has

been paid for describing a simple model in which an
exciton is dressed by a single phonon mode, only. In
that case, the Hamiltonian was solved exactly so that
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the PT accuracy has been checked. Within the nonadi-
abatic weak-coupling limit, it has been shown that PT
is a powerful tool for characterizing the exciton-phonon
dynamics. Provided that the lattice size is not too large,
it yields a very good estimate of the spectral properties
over a broad energy scale. Moreover, it has been observed
that PT is particularly suitable for describing the time
evolution of the exciton RDM, even at high temperature.
In that context, it has been shown that the system

supports three quasi-degenerate exciton states that in-
volve the states localized on the QCs. When the exciton
occupies one of these states, it does not significantly mod-
ify the phonon bath and keeps its coherent nature over
a long-time scale. These states define the relevant paths
followed by the exciton to tunnel between the QCs. Con-
sequently, when the coupling between the QCs and the
CC is judiciously chosen, constructive interferences take
place between these paths. The quantum decoherence
is minimized and an almost ideal QST occurs. The fi-
delity of the transfer remains quite close to unity over a
broad temperature range, indicating the powerfulness of
the proposed communication protocol.
Finally, because the present approach has clearly re-

vealed the relevance of PT, it will be generalized for de-
scribing the influence of all the phonon modes. The main
idea is to check the efficiency of the proposed protocol
with a more realistic system whose dynamics cannot be
solved exactly.

Appendix A: Quasi-degenerate second order

perturbation theory

Quasi-degenerate PT involves a unitary transforma-
tion U = exp(S) that provides a block-diagonal trans-

formed Hamiltonian Ĥ = UHU † in the unperturbed ba-
sis |Ψ0

µ,n〉. More precisely, the desired Hamiltonian must
be diagonal with respect to the phonon number states,
only. To proceed, any operator O acting in E can be split
as O = OD + OND, where OD is the diagonal part with
respect to the phonon number states whereas OND is the
remaining non-diagonal part. Note that such a partition
is equivalent to that provided by a projector formalism59.
In the unperturbed basis, these operators are defined as

〈Ψ0
µ,n|OD|Ψ0

µ′,n′〉 = 〈Ψ0
µ,n|O|Ψ0

µ′,n〉δnn′ (A1)

〈Ψ0
µ,n|OND|Ψ0

µ′,n′〉 = 〈Ψ0
µ,n|O|Ψ0

µ′,n′〉(1 − δnn′).

In that context, because VD = 0, one seeks the anti-
hermitian generator S ≡ SND as a non-diagonal operator
with respect to the phonon number states. It is expanded
as a Taylor series as S = S1 + S2 + ... where Sq is the

qth order correction in the coupling V . Consequently, Ĥ
becomes

Ĥ = H0 + V + [S1, H0]

+ [S1, V ] + [S2, H0] +
1

2
[S1, [S1, H0]] + ... (A2)

From Eq.(A2), S is derived order by order to obtain a

block-diagonal form for Ĥ at the desired order. Up to
second order, the solution is given by the equations

[H0, S1] = VND

[H0, S2] =
1

2
[S1, V ]ND

Ĥ = H0 +
1

2
[S1, V ]D. (A3)

Because V = M(a† + a) is a linear combination of
creation and annihilation phonon operators, S1 is of the
form S1 = Za† − Z†a. The unknown operator Z acts in
EA, only. No restriction affects this operator because

S†
1 = −S1. Therefore, inserting this expression into

Eq.(A3) yields Zµµ′ =Mµµ′/(ωµ − ωµ′ +Ω).

The knowledge of S1 allows us to compute the commu-
tator [S1, V ] that is required to derive both Ĥ and S2.
This commutator is defined as

1

2
[S1, V ] = A+Ba†a† +B†aa+ (B +B†)a†a, (A4)

where B = [Z,M ]/2 and A = −(Z†M +MZ)/2. From

the diagonal part of Eq.(A4), Ĥ reduces to

Ĥ = HA +A+ (Ω +B +B†)a†a. (A5)

We thus recover Eq.(9) with δHA = A and δΩ = B +
B† whose representation in the unperturbed basis yields
Eq.(10). From the non diagonal part of Eq.(A4), one
seeks S2 of the form S2 = Ea†a† − E†aa. The unknown
operator E acts in EA, only. Inserting this expression
into Eq.(A3) yields Eµµ′ = Bµµ′/(ωµ − ωµ′ + 2Ω).

Appendix B: Effective exciton propagator

Expanding U as a Taylor series with respect to V ,
Eq.(13) yields the second order expression of the effec-
tive exciton propagator as

GL0(t) =

L
∑

ν=0

Z
(ν)
B (t)

ZB
e−iω̂νt ×

[ 〈L|χν〉〈χν |0〉
+ 〈L|Z|χν〉〈χν |Z†|0〉n(ν)(t)ei(Ω+δΩν )t

+ 〈L|Z†|χν〉〈χν |Z|0〉(n(ν)(t) + 1)e−i(Ω+δΩν)t

− 〈L|ZZ†|χν〉〈χν |0〉n(ν)(t)/2

− 〈L|Z†Z|χν〉〈χν |0〉(n(ν)(t) + 1)/2

− 〈L|χν〉〈χν |ZZ†|0〉n(ν)(t)/2

− 〈L|χν〉〈χν |Z†Z|0〉(n(ν)(t) + 1)/2 ], (B1)

where n(ν)(t) = [exp(βΩ + iδΩνt)− 1]−1.
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