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UMR-CNRS 7502, Institut Élie Cartan, Nancy, France�

Grupo de Física Matemática da Universidade de Lisboa, Portugal��

Abstract

In this article we prove the existence of Bernstein processes which
we associate in a natural way with a class of non-autonomous linear
parabolic initial- and �nal-boundary value problems de�ned in bounded
convex subsets of Euclidean space of arbitrary dimension. Under cer-
tain conditions regarding their joint endpoint distributions, we also prove
that such processes become reversible Markov di¤usions. Furthermore we
show that those di¤usions satisfy two Itô equations for some suitably con-
structed Wiener processes, and from that analysis derive Feynman-Kac
representations for the solutions to the given equations. We then illus-
trate some of our results by considering the heat equation with Neumann
boundary conditions both in a one-dimensional bounded interval and in
a two-dimensional disk.

1 Introduction and Outline

It is well known that Itô�s theory of stochastic di¤erential equations makes it
possible to associate a Markov process to essentially any second-order elliptic
di¤erential operator, and that the �ne properties of each one of these objects
allow one to get precise information about the other. In particular, the knowl-
edge of the behavior of such a di¤usion typically leads to the discovery of new
phenomena regarding the solutions to a host of elliptic and parabolic partial dif-
ferential equations, ranging from Dirichlet and Neumann initial-boundary value
problems to equations describing wave front propagation in periodic and ran-
dom media. This is testi�ed, for instance, by the many results and references
in [9] and [12].
By the same token it is also possible to associate Markov processes with the

Schrödinger equation of quantum physics in a variety of ways, as in [5] where
the author�s considerations rest on the principles of stochastic mechanics set
forth in [23], and in [34] whose constructions are related to the properties of the
stochastic variational calculus introduced in [33].
The di¤usion processes constructed in [5] and [34] are, however, quite dif-

ferent from the more traditional dissipative di¤usions in that they encode all
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the conservative properties of quantum mechanics. In particular, they exhibit
the invariance under time reversal inherent in the Schrödinger equation and
thereby maintain a perfect symmetry between past and future. More to the
point, the Markov processes of [34] actually emerge as particular cases of re-
versible di¤usions that belong to the larger class of the so-called reciprocal or
Bernstein processes, whose theory was launched many years ago in [2] following
Schrödinger�s seminal contribution in [26]. The theory of Bernstein processes
was subsequently further developed and systematically investigated in [18], and
since then has played an important rôle in relating various �elds such as the
Malliavin calculus and Euclidean quantum mechanics, or Markov bridges with
jumps and Lévy processes, to name only a few (see for instance [6], [7], [15], [24]
and the references therein for a more complete account).
Given these facts there remains the interesting and intriguing question whether

it is possible to associate reversible di¤usion processes to parabolic equations
of general form whose solutions typically display irreversible behavior, and to
get new and nontrivial information out of this association. In his attempt to
understand certain analogies between the properties of Brownian motion and
quantum mechanics in the last section of [26], Schrödinger answers the question
positively by analyzing a simple case through statistical arguments.
It is the purpose of this article to show that this can also be achieved by

purely analytical means and indeed with a considerable degree of generality. Let
D � Rd be a bounded open convex subset whose boundary is denoted by @D.
We consider parabolic initial-boundary value problems of the form

@tu(x; t) =
1

2
divx (k(x; t)rxu(x; t))� (l(x; t);rxu(x; t))Rd � V (x; t)u(x; t);

(x; t) 2 D � (0; T ] ;
u(x; 0) = '(x); x 2 D;

@u(x; t)

@nk(x; t)
= 0; (x; t) 2 @D � (0; T ] (1)

with T 2 (0;+1) arbitrary, (:; :)Rd the Euclidean inner product in Rd, and
where the last relation in (1) stands for the conormal derivative of u relative
to the matrix-valued function k. Furthermore l, V and ' are an Rd-valued
vector-�eld and real-valued functions, respectively.
Let us now associate with (1) its adjoint �nal-boundary value problem, namely,

�@tv(x; t) =
1

2
divx (k(x; t)rxv(x; t)) + divx (v(x; t)l(x; t))� V (x; t)v(x; t);

(x; t) 2 D � [0; T ) ;
v(x; T ) =  (x); x 2 D;
@v(x; t)

@nk(x; t)
= 0; (x; t) 2 @D � [0; T ) ; (2)

in order to build reversibility and eventually the Markov property into the theory
we develop below.
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We then organize the remaining part of this article in the following way: in
Section 1 we prove the existence of Bernstein processes Z�2[0;T ] wandering in
D := D[@D, which we associate with (1) and (2) in a very natural way provided
the coe¢cients therein be su¢ciently smooth. We also show there that under
certain conditions which pertain to their joint initial and �nal distributions, the
processes in question become reversible Markov di¤usions. Moreover, we can
express their probability density as the product of the solutions to (1) and (2),
and prove that they also satisfy two Itô stochastic di¤erential equations for some
suitably constructed Wiener processes. This last fact is not merely anecdotic,
as it allows us eventually to get Feynman-Kac representations of those solutions
in terms of Z�2[0;T ] in a perfectly symmetric manner, by invoking Itô�s backward
stochastic calculus in the case of (1), and quite independently the usual forward
stochastic calculus in the case of (2). In Section 1 we also explain why the
notion of reversible Markov di¤usion which emerges from our considerations
corresponds to a generalization of the classical notion of reversibility put forward
in [20] and inspired by the last section of [26], which was many years later
reformulated in [8] and [17]. In Section 2 we illustrate some of our results by
means of two examples involving the simple heat equation in a one-dimensional
bounded interval and in a two-dimensional disk, and in one of them the process
we construct shares some of the features of a re�ected di¤usion. Finally, for
the sake of completeness and for the convenience of the reader, we devote an
appendix to reviewing the existence theory of weak solutions to (1) and (2)
which provide the ingredients that are essential to our construction when the
coe¢cients therein are indeed smooth enough.
Throughout this article we use the standard notations for all the functional

spaces we need without any further comments, referring the reader for instance
to [1], [10], [11] and [29]. We also use freely results on martingales and Wiener
processes from [14].

2 A Class of Bernstein Di¤usions

We are looking for processes Z�2[0;T ] whose natural state space is the compact
convex setD endowed with the Borel �-algebra B(D), and whose behavior corre-
sponding to time values belonging to any subinterval (s; t) � [0; T ] is conditioned
by the knowledge of Zs and Zt alone. This means that all past information gath-
ered prior to time s is irrelevant, as is all future information accumulated after
time t. The precise notion we need is the following (see [18] and some of the
references therein for other equivalent formulations):

Definition 1. We say the D-valued process Z�2[0;T ] de�ned on the complete
probability space (
;F ;P) is a Bernstein process if the following conditional
expectations satisfy the relation

E
�
h(Zr)

��F+s _ F�t
�
= E (h(Zr) jZs; Zt ) (3)

3



for every bounded Borel measurable function h : D 7! R, and for all r; s; t
satisfying r 2 (s; t) � [0; T ]. In (3), F+s denotes the �-algebra generated by the
Z� �s for all � 2 [0; s], while F�t is that generated by the Z� �s for all � 2 [t; T ].

In the sequel we shall denote by F+
�2[0;T ] the increasing �ltration generated

by the F+s �s, and by F��2[0;T ] the decreasing �ltration generated by the F
�
t �s.

In order to construct such processes with relation to (1) and (2) we �rst
recast Schrödinger�s and Bernstein�s ideas to �t the theory developed in [18].
Accordingly, the two main ingredients we need are transition density functions
for the processes together with joint probability distributions for Z0 and ZT .
As we shall see, this requires the existence of classical, positive solutions to (1)
and (2), respectively, which in turn requires good smoothness properties of k,
l, V , ' and  . In order to achieve this we assume that the boundary @D is of
class C2+� for some � 2 (0; 1), and then impose the following hypotheses where
n(x) denotes the unit outer normal vector at x 2 @D (in all that follows we
write c for all the irrelevant constants that occur in the various estimates unless
we specify these constants otherwise, and we refer to [28] for a de�nition of the
above concepts and for various properties of the spaces of Hölder continuous
functions introduced here):

(K) The function k : D � [0; T ] 7! R
d2 is such that for every i; j 2 f1; :::; dg

we have ki;j = kj;i 2 C�;
�
2 (D � [0; T ]) and @ki;j

@xl
2 C�;�2 (D � [0; T ]) for all i; j; l.

Moreover, the uniform ellipticity condition

(k(x; t)q; q)
Rd
� k jqj2

with k > 0 holds for all (x; t) 2 D � [0; T ] and all q 2 Rd, where j:j denotes
the Euclidean norm. Finally, the conormal vector-�eld nk(x; t) := k(x; t)n(x) is
uniformly outward pointing, nowhere tangent to @D for every t 2 [0; T ] and we
have

(x; t) 7!
dX

i=1

ki;j(x; t)ni(x) 2 C1+�;
1+�
2 (@D � [0; T ])

for each j.

(L) For the components of the vector-�eld l : D � [0; T ] 7! R
d we have

li;
@li
@xj

2 C�;�2 (D � [0; T ]) for all i; j 2 f1; :::; dg.

(V) The function V : D � [0; T ] 7! R is such that V 2 C�;�2 (D � [0; T ]).

Thus, the above functions are all jointly Hölder continuous in the space-time
variable (x; t).
Finally, ' and  ought to be smooth enough as well and compatible with

the boundary conditions in (1) and (2):

(IF) We have '; 2 C2+�(D) with ' satisfying the conormal boundary
condition relative to k at t = 0, and  satisfying that condition at t = T .
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It then follows from the classical theory of linear parabolic equations (see for
instance [13], or more speci�cally Chapter 4 in [21] and Theorem 1 in [10]), which
is, of course, a particular case of the variational approach reviewed in the ap-
pendix, that there exist evolution systems UA(t; s)0�s�t�T and U�A(t; s)0�s�t�T
in L2(D) given by

UA(t; s)f(x) =

�
f(x) if t = s;R
D
dygA(x; t; y; s)f(y) if t > s

(4)

and

U�A(t; s)f(x) =

�
f(x) if t = s;R
D
dyg�A(x; s; y; t)f(y) if t > s

(5)

with gA and g�A the parabolic Green functions associated with (1) and (2). These
functions satisfy

g�A(x; s; y; t) = gA(y; t;x; s) (6)

for all s; t 2 [0; T ] with t > s, and furthermore the functions de�ned by

u'(x; t) :=

Z

D

dygA(x; t; y; 0)'(y); t 2 (0; T ] (7)

and

v (x; t) :=

Z

D

dyg�A(x; t; y; T ) (y); t 2 [0; T ) ; (8)

are indeed classical solutions to (1) and (2), respectively. More precisely we
have the following result for them:

Proposition 1. Assume that Hypotheses (K), (L), (V) and (IF) hold. Then
the following statements are valid:

(a) We have u'; v 2 C2+�;1+�
2 (D � [0; T ]) with u' the unique classical

solution to (1) and v the unique classical solution to (2).
(b) If ' > 0,  > 0 on D we have u' > 0, v > 0 on D�[0; T ], respectively.
(c) If ' > 0 on D we have gA > 0 for all x; y 2 D and all s; t 2 [0; T ]

with t > s and furthermore gA is jointly continuous in these variables. More-
over, this function is twice continuously di¤erentiable in x, once continuously
di¤erentiable in t and satis�es

@tgA(x; t; y; s) = �A(t)gA(x; t; y; s); (x; t) 2 D � (s; T ] ; (9)

@gA(x; t; y; s)

@nk(x; t)
= 0; (x; t) 2 @D � (s; T ] ;

where the elliptic di¤erential operator

A(t) := �1
2
div (k(:; t)r) + (l(:; t);r)

Rd
+ V (:; t) (10)

corresponds to the right-hand side of (1). Finally, the heat kernel estimate

gA(x; t; y; s) � c (t� s)�
d
2 exp

"
�c jx� yj

2

t� s

#
(11)
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holds.
(d) If  > 0 on D we have g�A > 0 for all x; y 2 D and all s; t 2 [0; T ]

with t > s and furthermore g�A is jointly continuous in these variables. More-
over, this function is twice continuously di¤erentiable in x, once continuously
di¤erentiable in s and satis�es

�@sg�A(x; s; y; t) = �A�(s)g�A(x; s; y; t); (x; s) 2 D � [0; t) ; (12)

@g�A(x; s; y; t)

@nk(x; s)
= 0; (x; s) 2 @D � [0; t) ;

where

A�(s) := �1
2
div (k(:; s)r)� div (�l(:; s)) + V (:; s) (13)

is the formal adjoint to (10) corresponding to the right-hand side of (2). Finally,
the same heat kernel estimate

g�A(x; s; y; t) � c (t� s)�
d
2 exp

"
�c jx� yj

2

t� s

#
(14)

as in (c) holds.

Hypotheses (K), (L), (V) and (IF) will be our standing hypotheses in the
sequel.
Let us now consider the function

P (x; t;E; r; y; s) :=

Z

E

dzp(x; t; z; r; y; s) (15)

for every E 2 B(D), where

p(x; t; z; r; y; s) :=
gA(x; t; z; r)gA(z; r; y; s)

gA(x; t; y; s)
(16)

is well de�ned and positive for all x; y; z 2 D and all r; s; t satisfying r 2 (s; t) �
[0; T ] when the �rst part of (c) in Proposition 1 holds. In addition, let � be a
positive integrable function on D �D such that

�(E � F ) :=
Z

E�F

dxdy�(x; y) (17)

de�nes a probability measure on B(D)�B(D). It is remarkable that the simul-
taneous knowledge of (15) and (17) is su¢cient to guarantee the existence of a
Bernstein process associated with (1). Indeed we have the following result:

Theorem 1. Assume that the �rst part of (c) in Proposition 1 holds, and
let � be given by (17). Then there exists a probability space (
;F ;P�) and a
D-valued Bernstein process Z�2[0;T ] on (
;F ;P�) such that

P� (Z0 2 E0; ZT 2 ET ) = �(E0 � ET ) (18)
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for all E0; ET 2 B(D). Furthermore we have

P� (Zr 2 E jZs; Zt ) = P (Zt; t;E; r;Zs; s)

for every E 2 B(D) and all r; s; t satisfying r 2 (s; t) � [0; T ], and moreover
the �nite-dimensional distributions are given by

P� (Z0 2 E0; Zt1 2 E1; :::; Ztn 2 En; ZT 2 ET )

=

Z

E0�ET

dxdy�(x; y)

Z

E1

dx1:::

Z

En

dxn

nY

i=1

p (y; T ;xi; ti;xi�1; ti�1) (19)

where x0 = x, for all E0; E1; :::; En; ET 2 B(D) and all t0; :::; tn 2 [0; T ) satis-
fying t0 = 0 < t1 < ::: < tn < T . Finally, P� is the unique probability measure
with these properties.

Proof. The mapping (x; y) 7! P (x; t;E; r; y; s) is evidently continuous on
D�D for every E 2 B(D) and all r; s; t satisfying r 2 (s; t) � [0; T ]. Moreover,
the mapping E 7! P (x; t;E; r; y; s) de�nes a probability measure on B(D) for all
x; y 2 D and all of those r; s; t; this is indeed a consequence of the composition
law

UA(t; s) = UA(t; r)UA(r; s) (20)

pertaining to the evolution system (4), which translates as

gA(x; t; y; s) =

Z

D

dzgA(x; t; z; r)gA(z; r; y; s) (21)

for the corresponding Green function. We also have the relation
Z

E

dxp(x0; t0;x; t; y; s)P (x; t;F; r; y; s)

=

Z

F

dzp(x0; t0; z; r; y; s)P (x0; t0;E; t; z; r) (22)

for all E;F 2 B(D), all x0; y 2 D and all r; s; t; t0 satisfying r 2 (s; t) � (s; t0) �
[0; T ]. In order to see this we remark that the relation

p(x0; t0;x; t; y; s)p(x; t; z; r; y; s)

= p(x0; t0; z; r; y; s)p(x0; t0;x; t; z; r)

holds as an immediate consequence of (16), so that (22) obtains by integrating
both sides of the preceding identity �rst with respect to z over F , and then the
resulting expression with respect to x over E. The statement of the theorem
then follows from a direct adaptation of the arguments in Section 2 of [18]. �

Remark. The preceding result makes it clear that the probability of having
Zr 2 E is indeed solely conditioned by the past information at time s and
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the future information at time t. Furthermore, owing to (18) and (19) the
probability measure � clearly plays the rôle of a joint endpoint distribution for
Z0; ZT , and we ought to note that there is a priori no reason why Z�2[0;T ]
should be a Markov process when � is arbitrary. However Z�2[0;T ] does become
a reversible Markov di¤usion in a sense we shall de�ne shortly, for a very special
class of endpoint distributions which we will identify. For this we �rst associate
a forward Markov transition function with (2) in the following way:

Lemma 1. Assume that the part of (b) in Proposition 1 relative to  and
v holds, together with the �rst part of (d). Let us de�ne the function

M� (x; s;E; t) :=

Z

E

dym�(x; s; y; t) (23)

for each E 2 B(D), every x 2 D and all s; t 2 [0; T ] with t > s, where

m�(x; s; y; t) := g�A(x; s; y; t)
v (y; t)

v (x; s)
(24)

with v given by (8). Then (23) is the transition function of a forward Markov
process in D.

Proof. The mapping x 7! M� (x; s;E; t) is positive and continuous on D,
and furthermore E 7! M� (x; s;E; t) de�nes a probability measure on B(D).
This last assertion follows from the relation

v (x; s) =

Z

D

dyg�A(x; s; y; t)v (y; t);

which, in turn, is a simple consequence of the composition law

U�A(t; s) = U�A(r; s)U
�
A(t; r)

for the evolution system (5), which gives

g�A(x; s; y; t) =

Z

D

dzg�A(x; s; z; r)g
�
A(z; r; y; t) (25)

for the corresponding Green function. But then the Chapman-Kolmogorov re-
lation

M� (x; s;E; t) =

Z

D

dym�(x; s; y; r)M� (y; r;E; t)

holds for (23), since (24) and (25) imply that

m�(x; s; y; t) =

Z

D

dzm�(x; s; z; r)m�(z; r; y; t)

for all r; s; t such that r 2 (s; t) � [0; T ]. �
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In a completely symmetric way, we can also associate a backward Markov
transition function with (1). Indeed we have the following result, whose proof
is entirely similar to that of the preceding lemma and thereby omitted:

Lemma 2. Assume that the part of (b) in Proposition 1 relative to ' and
u' holds, together with the �rst part of (c). Let us de�ne the function

M (x; t;E; s) :=

Z

E

dym(x; t; y; s) (26)

for each E 2 B(D), every x 2 D and all s; t 2 [0; T ] with t > s, where

m(x; t; y; s) := gA(x; t; y; s)
u'(y; s)

u'(x; t)
(27)

with u' given by (7). Then (26) is the transition function of a backward Markov
process in D.

The remarkable fact is that when Z�2[0;T ] is reversible in the sense of the
de�nition below, it becomes a realization of the Markov processes we are alluding
to in the preceding two lemmas. The precise notion we need is the following,
where we recall that ' > 0,  > 0:

Definition 2. We say the Bernstein process Z�2[0;T ] of Theorem 1 is re-
versible if the density of the joint probability measure (17) is of the form

�(x; y) = '(x)gA(y; T ;x; 0) (y) (28)

where Z

D�D

dxdy'(x)gA(y; T ;x; 0) (y) = 1: (29)

For the corresponding initial and �nal marginal distributions we then have

�0(E) := �(E �D) =
Z

E

dx'(x)v (x; 0)

and

�T (F ) := �(D � F ) =
Z

F

dy (y)u'(y; T )

as a consequence of (8) and (7), respectively, with �0(D) = �T (D) = 1. Our
de�nition is motivated by the following result, where we use the shorthand
notation

�0(x) = '(x)v (x; 0) (30)

and
�T (y) =  (y)u'(y; T ) (31)

for the marginal densities:
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Theorem 2. Assume that (b) and the �rst parts of (c) and (d) in Propo-
sition 1 hold. Assume furthermore that � is given by (17) and (28), and let
Z�2[0;T ] be the corresponding Bernstein process associated with (1) in the sense
of Theorem 1. Then the following statements hold for its �nite-dimensional
distributions:
(a) We have

P� (Z0 2 E0; Zt1 2 E1; :::; Ztn 2 En)

=

Z

E0

dx�0(x)

Z

E1

dx1:::

Z

En

dxn

nY

i=1

m� (xi�1; ti�1;xi; ti) (32)

where m� is given by (24) and x0 = x, for all E0; E1; :::; En 2 B(D) and all
t0; :::; tn 2 [0; T ) satisfying t0 = 0 < t1 < ::: < tn < T . Thus Z�2[0;T ] is
a forward Markov process with transition function m� and initial distribution
density �0.
(b) We have

P� (ZT 2 ET ; Ztn 2 En; :::; Zt1 2 E1)

=

Z

ET

dy�T (y)

Z

E1

dx1:::

Z

En

dxn

nY

i=1

m (xi+1; ti+1;xi; ti) (33)

where m is given by (27) and xn+1 = y, for all ET ; E1; :::; En 2 B(D) and all
t1; :::; tn+1 2 (0; T ] satisfying T = tn+1 > tn > ::: > t1 > 0. Thus Z�2[0;T ] is
also a backward Markov process with transition function m and �nal distribution
density �T .
(c) We have

P� (Zt 2 E) =
Z

E

dxu'(x; t)v (x; t) (34)

for each E 2 B(D) and every t 2 [0; T ], where u' and v are given by (7) and
(8), respectively.

Proof. From (19) with ET = D and (16) we have

P� (Z0 2 E0; Zt1 2 E1; :::; Ztn 2 En)

=

Z

E0�D

dxdy�(x; y)

Z

E1

dx1:::

Z

En

dxn

nY

i=1

gA(y; T ;xi; ti)gA(xi; ti;xi�1; ti�1)

gA(y; T ;xi�1; ti�1)

=

Z

E0�D

dxdy'(x) (y)

Z

E1

dx1:::

Z

En

dxn

nY

i=1

gA(xi; ti;xi�1; ti�1)� gA(y; T ;xn; tn)

=

Z

E0

dx'(x)

Z

E1

dx1:::

Z

En

dxn

nY

i=1

g�A(xi�1; ti�1;xi; ti)� v (xn; tn) (35)

after the use of (28), the successive cancellation of the denominators in the
above product and the use of (6) with (8). Moreover, because of (24) we may
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write

g�A(xi�1; ti�1;xi; ti)v (xi; ti) = v (xi�1; ti�1)m
� (xi�1; ti�1;xi; ti)

for every i 2 f1; :::; ng, so that the repeated application of this relation in the
product on the very right-hand side of (35) leads to

P� (Z0 2 E0; Zt1 2 E1; :::; Ztn 2 En)

=

Z

E0

dx'(x)v (x; 0)

Z

E1

dx1:::

Z

En

dxn

nY

i=1

m� (xi�1; ti�1;xi; ti) ;

which is the desired result. The proof of (33) follows from entirely similar
arguments based on (7) and (27), with E0 = D. Finally, (34) is a straightforward
consequence of (32) with E0 = D, or of (33) with ET = D, in both cases with
n = 1. �

Remarks. (1) It follows from (2), (12), (13) and some lengthy calcula-
tions that the transition density (24) satis�es the parabolic partial di¤erential
equation

� @sm�(x; s; y; t)

=
1

2
divx (k(x; s)rxm�(x; s; y; t)) + (l(x; s);rxm�(x; s; y; t))

Rd

+ (k(x; s)rx ln v (x; s);rxm�(x; s; y; t))
Rd

(36)

relative to the variables (x; s) 2 D� [0; t) of the past, along with the boundary
condition

@m�(x; s; y; t)

@nk(x; s)
= 0; (x; s) 2 @D � [0; t) : (37)

In a similar way we infer from (1), (9) and (10) that the transition density (27)
satis�es the equation

@tm(x; t; y; s)

=
1

2
divx (k(x; t)rxm(x; t; y; s))� (l(x; t);rxm(x; t; y; s))Rd

+ (k(x; t)rx lnu'(x; t);rxm(x; t; y; s))Rd (38)

with respect to the variables (x; t) 2 D � (s; T ] of the future, together with the
boundary condition

@m(x; t; y; s)

@nk(x; t)
= 0; (x; t) 2 @D � (s; T ] : (39)

The preceding relations suggest that we may think of the reversible Markov
process of Theorem 2 as a process wandering in D which becomes re�ected in
the conormal direction whenever it hits the boundary @D. This way of looking
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at Z�2[0;T ] is reminiscent of the de�nition of the standard re�ected Brownian
motion given at the very beginning of [16], and we can indeed prove the re�ection
property we just alluded to in the �rst example of Section 2. Further below we
also explain the appearance of the somewhat exotic logarithmic terms in (36)
and (38), whose structure is intimately tied up with the speci�c form of (24)
and (27).
(2) The considerations that lead to the statement of Theorem 2 show that

the marginal densities (30) and (31) are entirely determined by ' and  . We
could also have adopted the inverse point of view, namely, that of prescribing
continuous �0 > 0 and �T > 0 satisfying the normalization conditions

Z

D

dx�0(x) =

Z

D

dx�T (x) = 1;

and then considered the relations

'(x)

Z

D

dzgA(z; T ;x; 0) (z) = �0(x);

 (y)

Z

D

dzgA(y; T ; z; 0)'(z) = �T (y) (40)

as a nonlinear inhomogeneous system of integral equations in the two unknowns
' and  . However, whereas it is true that such �0 and �T imply the existence
of a unique solution to (40) consisting of continuous and positive functions '
and  as a consequence of the main theorem in [3], the theory developed in that
article guarantees neither their regularity nor their the Hölder continuity, which
will be so crucial to our considerations. It is in fact an interesting open problem
whether the main result of [3] can be extended to cover such situations.
(3) Theorem 2 clearly illustrates a kind of reversibility of Z�2[0;T ] in that

this process can run back and forth within D, which a posteriori justi�es the
terminology of De�nition 2. In particular, the probability density

��(x; t) := u'(x; t)v (x; t) (41)

in (34) is expressed as the product of solutions to (1) and (2), which indeed
brings in the two time directions in an explicit way. Therefore, at this stage it
is natural to start exploring the possible connections that might exist between
the preceding considerations and the notion of reversibility put forward in [20].
On the one hand, it follows from (6), (24) and (27) that the identity

m(y; t;x; s)��(y; t) = ��(x; s)m
�(x; s; y; t) (42)

holds for all (x; y) 2 D�D and all s; t 2 [0; T ] with t > s, which plays the rôle
of (8) in [20]. From (42) we then immediately infer that

��(y; t) =

Z

D

dx��(x; s)m
�(x; s; y; t)

12



and

��(x; s) =

Z

D

dym(y; t;x; s)��(y; t);

which generalize (7) in [20]. On the other hand, however, let us assume momen-
tarily that Z�2[0;T ] is also reversible in the sense of [20], which means that

m(y; t;x; s) = m�(y; s;x; t) (43)

according to (9) of that article. From the preceding relation it then follows at
once from (6) that the equality

gA(y; t;x; s)
u'(x; s)

u'(y; t)
= gA(x; t; y; s)

v (x; t)

v (y; s)

is valid for all (x; y) 2 D�D and all s; t 2 [0; T ] with t > s, which implies that

��(x; t) = ��(x; s)

for each x 2 D and every t � s by choosing y = x. Therefore �� must be
independent of time, a very particular situation indeed which is almost never
realized in our context with the exception of a few cases. Thus, whereas Z�2[0;T ]
is a reversible Markov process in the sense of Theorem 2 thanks to the very
speci�c form of the joint measures (28), it is in general not reversible according to
[20]. We will dwell more on this further in this section when we have additional
information about Z�2[0;T ].
(4) While a separable version of the process Z�2[0;T ] always exists under the

above hypotheses, we may also assume that Z�2[0;T ] is continuous. Indeed for
all s; t 2 [0; T ] with t > s and  2 (0;+1) we have

E� jZt � Zsj =
Z

D�D

dxdy�s(x)m
�(x; s; y; t) jy � xj

where �s is the distribution density at time s, namely,

�s(x) =

Z

D

dz�0(z)m
�(z; 0;x; s);

with E� the expectation functional with respect to P�. Consequently, since
(x; s; y; t) 7! v�1 (x; s)v (y; t) is uniformly bounded on D � [0; T ] � D � [0; T ]
and since Z

D

dx�s(x) = 1;

13



we get the estimate

E� jZt � Zsj

� c

Z

D

dx�s(x)

Z

D

dyg�A(x; s; y; t) jy � xj

� c (t� s)�
d
2

Z

D

dx�s(x)

Z

D

dy exp

"
�c jy � xj

2

t� s

#
jy � xj

� c (t� s)

2

Z

Rd

dy exp
h
�c jyj2

i
jyj = c (t� s)


2 (44)

according to (14), translation invariance on Rd and an elementary change of
variables. Therefore, �xing  2 (2;+1) we obtain

E� jZt � Zsj � c (t� s)1+�

with � = �2
2 , so that the assertion follows from Kolmogorov�s continuity con-

ditions. In the sequel we shall thereby always assume that Z�2[0;T ] is separable
and continuous.

While Theorem 2 shows that the process Z�2[0;T ] can run forward and back-
ward in a Markovian manner within D for the very speci�c class of endpoint
distributions (28), we now proceed to investigate its dynamical properties more
in detail. Our �rst step in this direction is to show that Z�2[0;T ] is a reversible
Markov di¤usion in D.

Lemma 3. Assume that the same hypotheses as in Lemma 1 are valid.
Then Lindeberg�s condition

lim
t!s+

(t� s)�1
Z

fy2D:jx�yj>"g

dym�(x; s; y; t) = 0 (45)

holds uniformly in x 2 D for each s and every su¢ciently small " > 0. In a
similar way, if the same hypotheses as in Lemma 2 hold we have

lim
s!t�

(t� s)�1
Z

fy2D:jx�yj>"g

dym(x; t; y; s) = 0 (46)

uniformly in x 2 D for each t and every su¢ciently small " > 0.

Proof. In order to get (45) we must prove that

lim
t!s+

(t� s)�1
Z

fy2D:jx�yj>"g

dyg�A(x; s; y; t)
v (y; t)

v (x; s)
= 0

uniformly in x 2 D for each s according to (24). The key observation for this
is that the positive function (x; s; y; t) 7! v�1 (x; s)v (y; t) is uniformly bounded
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as a consequence of its smoothness on D � [0; T ]� D � [0; T ], so that estimate
(14) leads to

0 � (t� s)�1
Z

fy2D:jx�yj>"g

dyg�A(x; s; y; t)
v (y; t)

v (x; s)

� c (t� s)�
d+2
2

Z

fy2D:jx�yj>"g

dy exp

"
�c jy � xj

2

t� s

#

� c (t� s)�
d+2
2 exp

�
�c "2

t� s

�
! 0

as t ! s+ uniformly in x since D is bounded, as desired. The proof of (46) is
evidently identical, and based on (11). �

The �rst half of the preceding lemma now allows us to prove the following
result:

Proposition 2. Assume that the same hypotheses as in Lemma 1 are valid.
Then the following statements hold:
(a) We have

lim
t!s+

(t� s)�1
Z

fy2D:jx�yj�"g

dym�(x; s; y; t) (y � x)

= a�(x; s) + k(x; s)rx ln v (x; s) (47)

for each x 2 D and every s independently of any su¢ciently small " > 0, where
the ithcomponent of the vector-�eld a� is

a�i (x; s) =
1

2
divx (ki(x; s)) + li(x; s) (48)

for every i 2 f1; :::; dg, with ki(x; s) the i
throw or column of the symmetric

matrix k(x; s).
(b) We have

lim
t!s+

(t� s)�1
Z

fy2D:jx�yj�"g

dym�(x; s; y; t) ((y � x)
 (y � x)) = k(x; s) (49)

for each x 2 D and every s, independently of any su¢ciently small " > 0.

Proof. Owing to (24) and (45) it is su¢cient to prove that

lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t)
v (y; t)

v (x; s)
(y � x)

= a�(x; s) + k(x; s)rx ln v (x; s) (50)

and

lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t)
v (y; t)

v (x; s)
((y � x)
 (y � x)) = k(x; s); (51)
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respectively, since the functions y 7! y�x and y 7! (y � x)
(y � x) are bounded
on D. Thanks to the di¤erentiability properties of v and the convexity of D
we �rst write

v (y; t)

v (x; s)
= 1 +

(rxv (x; t); y � x)Rd
v (x; s)

+

�
Hv (x

�; t) (y � x) ; y � x
�
Rd

2v (x; s)

+ (t� s)@s�v (x; s
�)

v (x; s)
(52)

as a consequence of the Taylor expansion for v , where Hv denotes the Hessian
matrix relative to the spatial variable alone with x� a point on the open line
segment joining x and y, and where s� 2 (s; t). The strategy of the proof then
amounts to estimating the various contributions to (50) and (51) coming from
(52).
In order to explain the appearance of the vector-�eld a� on the right-hand

side of (50) we begin by showing that

lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t) (yi � xi)

=
1

2
divx (ki(x; s)) + li(x; s) (53)

for every i 2 f1; :::; dg. Let us de�ne the function fi : D 7! R by fi(y) := yi�xi;
since fi(x) = 0 we have

lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t) (yi � xi)

= lim
t!s+

(t� s)�1
�Z

D

dyg�A(x; s; y; t)fi(y)� fi(x)
�

= (�A�(s)fi) (x) =
1

2
divx (ki(x; s)) + li(x; s)

according to (5) and an elementary calculation based on (13), so that (53)
holds. A similar calculation with the function fi;j : D 7! R given by fi;j(y) :=
(yi � xi) (yj � xj) leads to

lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t) (yi � xi) (yj � xj)

= (�A�(s)fi;j) (x) = ki;j(x; s) (54)

for all i; j 2 f1; :::; dg since fi;j(x) = 0, which allows us to evaluate the contri-
bution of the gradient term in (52). Indeed, if we substitute that term into the
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ithcomponent of the left-hand side of (50) and use (54) we obtain

lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t)
(rxv (x; t); y � x)Rd

v (x; s)
(yi � xi)

=
dX

j=1

@xjv (x; s)

v (x; s)
lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t) (yi � xi) (yj � xj)

=
(k(x; s)rxv (x; s))i

v (x; s)
(55)

for every i 2 f1; :::; dg, which is the ithcomponent of the second term on the
right-hand side of (50). Therefore, in order to get (50) it remains to prove
that there are no contributions coming from the third and fourth terms on the
right-hand side of (52).
Regarding the third term we �rst observe that

lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t) jy � xj3 = 0

uniformly in x 2 D for every s, since from (14) we obtain

0 � (t� s)�1
Z

D

dyg�A(x; s; y; t) jy � xj3

� c (t� s)�
d+2
2

Z

D

dy exp

"
�c jy � xj

2

t� s

#
jy � xj3

� c (t� s)�
d+2
2

Z

Rd

dy exp

"
�c jyj

2

t� s

#
jyj3

= c(t� s) 12
Z

Rd

dy exp
h
�c jyj2

i
jyj3 ! 0 (56)

as t! s+, again by translation invariance and the same change of variables as
in (44). Consequently we have a fortiori the estimate

0 � (t� s)�1
Z

D

dyg�A(x; s; y; t)
���Hv (x�; t) (y � x) ; y � x

�
Rd
(yi � xi)

��

� c (t� s)�1
Z

D

dyg�A(x; s; y; t) jy � xj3 ! 0

as t ! s+ since the matrix-norm of Hv (x
�; t) is uniformly bounded on the

compact cylinder D � [0; T ], from which we infer that

lim
t!s+

(t� s)�1
Z

D

dyg�A(x; s; y; t)

�
Hv (x

�; t) (y � x) ; y � x
�
Rd

2v (x; s)
(yi � xi) = 0
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for each s and every i 2 f1; :::; dg, as desired.
Finally, there is no contribution from the fourth term either since from its

substitution into the ithcomponent of the left-hand side of (50), the cancellation
of the time increments and (5) we get

@tv (x; s)

v (x; s)
lim
t!s+

Z

D

dyg�A(x; s; y; t)fi(y)

=
@tv (x; s)

v (x; s)
fi(x) = 0:

The proof of (51) is entirely similar, the unique non-vanishing contribution
being determined by the constant term on the right-hand side of (52) via (54).
�

The second half of Lemma 3 allows us to obtain a similar result for the
backward Markov process of Lemma 2. We omit the proof, which is based on
(9)-(11) of Proposition 1, Lindeberg�s condition (46), and is thereby identical to
that of the preceding proposition.

Proposition 3. Assume that the same hypotheses as in Lemma 2 are valid.
Then the following statements hold:
(a) We have

lim
s!t�

(t� s)�1
Z

fy2D:jx�yj�"g

dym(x; t; y; s) (x� y)

= a(x; t)� k(x; t)rx lnu'(x; t) (57)

for each x 2 D and every t independently of any su¢ciently small " > 0, where
the ithcomponent of the vector-�eld a is

ai(x; t) = �
1

2
divx (ki(x; t)) + li(x; t) (58)

for every i 2 f1; :::; dg, with ki(x; t) as in Proposition 2.
(b) We have

lim
s!t�

(t� s)�1
Z

fy2D:jx�yj�"g

dym(x; t; y; s) ((x� y)
 (x� y)) = k(x; t) (59)

for each x 2 D and every t, independently of any su¢ciently small " > 0.

Thus, both Propositions 2 and 3 show that the process Z�2[0;T ] of Theorem
2 is indeed a reversible Markov di¤usion whose coe¢cients are determined by
(47), (49), (57) and (59), respectively. In the sequel we shall denote by

b�(x; t) := a�(x; t) + k(x; t)rx ln v (x; t) (60)

and
b(x; t) := a(x; t)� k(x; t)rx lnu'(x; t) (61)
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the drift terms (47) and (57), respectively.

Remark. We now explain why the speci�c form of (60) and (61) suggests
that our notion of reversibility and the results obtained thus far may be inter-
preted as corresponding to a generalization of the notion of reversibility de�ned
in [20] which has its origins in the last section of [26], and why our notion is
suitable for the description of non-stationary Markov processes such as Z�2[0;T ].
In order to see this it is best to refer to the reformulation of the main result
of [20] as encoded in Relation (2.9) of [8]: given a time-homogeneous forward
Markov di¤usion wandering in Rd, a probability measure which is absolutely
continuous with respect to Lebesgue measure and de�ned by a smooth positive
density � is reversible with respect to that di¤usion if, and only if, the generator
of the di¤usion is of the form

Lf(x)

=
1

2�(x)
divx (�(x)k(x)rxf(x))

=
1

2
divx (k(x)rxf(x)) +

1

2
(k(x)rx ln �(x);rxf(x))Rd (62)

for a suitable class of f �s, where k is the associated symmetric, positive de�nite
and time-independent di¤usion matrix. But this leads at once to

bDSF (x) := aDSF (x) +
1

2
k(x)rx ln �(x) (63)

for the corresponding drift, with the ithcomponent of the vector-�eld aDSF given
by

aDSF;i(x) :=
1

2
divx (ki(x)) (64)

for every i 2 f1; :::; dg where ki(x) is the ith row or column of k(x). Indeed this
follows immediately from (62) and the relation

1

2
divx (k(x)rxf(x))

=
1

2
(k(x)rx;rxf(x))Rd + (aDSF (x);rxf(x))Rd ,

so that in the end reversibility in the sense of [8] or [20] is equivalent to a drift
of the form (63). But it is then plain that (60) and (61) have the very same
structure as (63), and furthermore that

1

2
(b�(x; t)� b(x; t))

= â(x; t) +
1

2
k(x; t)rx ln ��(x; t) (65)

where ��(x; t) is given by (41) and

âi(x; t) =
1

2
divx (ki(x; t)) (66)
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for every i, with (65) and (66) formally identical to (63) and (64), respectively.
It is, therefore, deemed appropriate to say that the reversibility of Z�2[0;T ] as
illustrated by the statement of Theorem 2 and due to the very speci�c form
of the joint probability measures (28) is a natural generalization of the notion
de�ned in [8] and [20]. For another discussion of reversibility in a more geometric
context we refer the reader to Section 4 in Chapter 5 of [17].

We now proceed by proving that there exist two vector-valuedWiener processes
W �
�2[0;T ] and W�2[0;T ], indeed one for each one of the �ltrations F+�2[0;T ] and

F�
�2[0;T ] we de�ned at the very beginning of this section, which will eventually
allow us to consider Z�2[0;T ] as a forward and backward Itô di¤usion whenever
the drifts (60) and (61) do not vanish identically and simultaneously. We begin
with the following preparatory result:

Lemma 4. Assume that the hypotheses of Lemma 1 are valid and let us
de�ne the process

Y �t := Zt � Z0 �
Z t

0

d�b� (Z� ; �) (67)

for every t 2 [0; T ], where Z�2[0;T ] is considered as the forward Markov di¤usion
of Theorem 2. Then Y ��2[0;T ] is a continuous, square-integrable martingale with

respect to F+
�2[0;T ]. Under the hypotheses of Lemma 2 a similar statement holds

for the process

Yt := Zt � ZT +
Z T

t

d�b (Z� ; �) (68)

with respect to F�
�2[0;T ], with Z�2[0;T ] considered as the backward Markov di¤u-

sion of Theorem 2.

Proof. We prove (67) by �rst observing that

sup
t2[0;T ]

E� jZtj2 < +1 (69)

where

E� jZtj2 =
Z

D�D

dxdy�0(x)m
�(x; 0; y; t) jyj2 :

Indeed we have

E� jZtj2

� c

Z

D

dx�0(x)

Z

D

dyg�A(x; 0; y; t)

� ct�
d
2

Z

D

dx�0(x)

Z

Rd

dy exp

"
�c jyj

2

t

#
� c < +1
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uniformly in t 2 [0; T ] according to (14), since (x; y; t) 7! v�1 (x; 0)v (y; t) jyj2

is uniformly bounded on D �D � [0; T ]. Therefore we have

sup
t2[0;T ]

E� jY �t j
2
< +1 (70)

as a consequence of the uniform boundedness of b�(x; t) given by (60).
In order to prove the statement of the lemma, it is su¢cient to show that

the scalar-valued process

y�t := (Y
�
t ; q)Rd = (Zt � Z0; q)Rd �

Z t

0

d� (b� (Z� ; �) ; q)Rd (71)

is a continuous, square-integrable martingale for every q 2 Rd. While the con-
tinuity is clear according to the remark following Theorem 2, the fact that

sup
t2[0;T ]

E� jy�t j
2
< +1

is an immediate consequence of (70) and (71). Therefore, it remains to show
that the equality

E�

�
y�t
��F+s

�
= y�s (72)

holds P�-a.s. for all t � s, and for this we need only prove that the right-hand
derivative of (72) with respect to t vanishes, namely, that

lim
r!t+

(r � t)�1 E�
�
y�r � y�t

��F+s
�
= 0 (73)

P�-a.s. for each t. Owing to the basic properties of conditional expectations,
this amounts to proving that

lim
r!t+

(r � t)�1 E�
�
E�

�
y�r � y�t

��F+t
� ��F+s

�
= 0 (74)

for each t since F+s � F+t .
In order to get (74) we �rst show that

lim
r!t+

(r � t)�1 E�
�
y�r � y�t

��F+t
�
= 0: (75)

We have

E�

�
y�r � y�t

��F+t
�

= E�
�
(Zr � Zt; q)Rd

��F+t
�
� E�

�Z r

t

d� (b� (Z� ; �) ; q)Rd
��F+t

�
(76)

according to (71), with

E�

�
(Zr � Zt; q)Rd

��F+t
�

(77)

= E� ((Zr � Zt; q)Rd jZt ) =
Z

D

dym� (Zt; t; y; r) (y � Zt; q)Rd (78)
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and

E�

�Z r

t

d� (b� (Z� ; �) ; q)Rd
��F+t

�

=

Z r

t

d�E� ((b
� (Z� ; �) ; q)Rd jZt )

=

Z r

t

d�

Z

D

dym�(Zt; t; y; �) (b
� (y; �) ; q)

Rd
: (79)

Now from (50), (60) and (77) we get

lim
r!t+

(r � t)�1 E�
�
(Zr � Zt; q)Rd

��F+t
�
= (b� (Zt; t) ; q)Rd (80)

P�-a.s.. Furthermore, we also claim that

lim
r!t+

(r � t)�1
Z r

t

d�

Z

D

dym�(Zt; t; y; �) (b
� (y; �) ; q)

Rd
= (b� (Zt; t) ; q)Rd

(81)
P�-a.s. or, equivalently, that

lim
r!t+

(r � t)�1
Z r

t

d�

Z

D

dym�(Zt; t; y; �) (b
� (y; �)� b� (Zt; t) ; q)Rd = 0: (82)

The crucial fact about proving (82) is that the drift-term (60) satis�es the Hölder
continuity estimate

jb� (y; �)� b� (Zt; t)j � c
�
jy � Ztj� + j� � tj

�
2

�
;

which is an easy consequence of the Hölder properties of the di¤usion matrix k
and those of the vector �eld l stated in Hypotheses (K) and (L), together with
(a) of Proposition 1 regarding v . Consequently, by using the very same kind
of estimates as we did in the proofs of (44) and (56) we obtain successively

0 � (r � t)�1
Z r

t

d�

Z

D

dym�(Zt; t; y; �) jb� (y; �)� b� (Zt; t)j

� c (r � t)�1
Z r

t

d� (� � t)�
d
2

Z

Rd

dy exp

"
�c jyj

2

� � t

#�
jyj� + j� � tj

�
2

�

� c (r � t)�1
Z r

t

d� (� � t)
�
2

Z

Rd

dy exp
h
�c jyj2

i
jyj�

+ c (r � t)�1
Z r

t

d� (� � t)
�
2

Z

Rd

dy exp
h
�c jyj2

i

� c (r � t)
�
2 ! 0

as r ! t+, which indeed proves (82). The combination of (76) with (79)-(82)
then gives (75).
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It remains to prove that (74) is a consequence of (75). On the one hand we
have ����

Z

D

dym� (Zt; t; y; r) (y � Zt; q)Rd
���� � c (r � t) (83)

P�-a.s. for some positive, non-random and �nite constant c since (80) holds and
the right-hand side of (80) is uniformly bounded. On the other hand, we also
have ����

Z r

t

d�

Z

D

dym�(Zt; t; y; �) (b
� (y; �) ; q)

Rd

���� � c (r � t) (84)

because of (81). Consequently, it follows from (76)-(79) and (83), (84) that
��E�

�
y�r � y�t

��F+t
��� � c (r � t)

P�-a.s. for some suitable non-random and �nite constant c and all r; t 2 [0; T ]
with r � t. Therefore, (75) indeed implies (74) by dominated convergence,
so that (73) obtains and thereby the martingale property (72). The proof of
the statement concerning the continuous process (68) follows from similar argu-
ments, by proving that

sup
t2[0;T ]

E� jYtj2 < +1

and that the relation
E�

�
ys
��F�t

�
= yt

holds P�-a.s. for all s � t, where

yt := (Zt � ZT ; q)Rd +
Z T

t

d� (b (Z� ; �) ; q)Rd

and F�t � F�s . �

Remark. Let us assume momentarily that b� = b = 0 identically. We then
infer from (67) and (68) that Z�2[0;T ] is a continuous, square-integrable martin-
gale for both �ltrations F+

�2[0;T ] and F
�
�2[0;T ] simultaneously. Consequently we

have
E�

�
(Zt � Zs; q)2Rd

��F+s
�
= E�

�
(Zt; q)

2
Rd

��F+s
�
� (Zs; q)

2
Rd

P�-a.s. for all t � s and every q 2 Rd, and at the same time

E�

�
(Zt � Zs; q)2Rd

��F�t
�
= E�

�
(Zs; q)

2
Rd

��F�t
�
� (Zt; q)

2
Rd
:

By averaging both expressions we then obtain

E� (Zt � Zs; q)2Rd
= E� (Zt; q)

2
Rd
� E� (Zs; q)2Rd

= E� (Zs; q)
2
Rd
� E� (Zt; q)2Rd = 0
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for every q 2 R
d, so that Zt = Zs P�-a.s. for all t � s. Conversely, if the

function � 7! Z� is constant P�-a.s. we obviously have b� = b = 0 identically.
From now on we will exclude this exceptional case from our considerations for
reasons that will become apparent from the statement of Theorem 3 below and
its proof.

It is worth emphasizing the fact that the existence of the Wiener processes
we are looking for is conditioned by that of the reversible Markov di¤usion
Z�2[0;T ] and not the other way around, as there is absolutely nothing stochastic
in Problems (1) and (2). Furthermore, from a technical point of view all the
stochastic integrals de�ned below involve continuous square-integrable martin-
gales as integrators, as for instance in Chapter 3 of [19]. Then, the precise result
about Z�2[0;T ] being a reversible Itô di¤usion is the following, in which we write
k
1
2 (x; t) for the positive square root of the di¤usion matrix k(x; t) and assume
that � 7! Z� is not constant P�-a.s. according to the preceding remark.

Theorem 3. Assume that the hypotheses of Lemmas 1 and 2 are valid.
Assume furthermore that � is given by (17) and (28), and let Z�2[0;T ] be the
reversible Markov di¤usion of Theorem 2. Then the following statements hold:
(a) There exists a d-dimensional Wiener process W �

�2[0;T ] such that the re-
lation

Zt = Z0 +

Z t

0

d�b� (Z� ; �) +

Z t

0

k
1
2 (Z� ; �) d

+W �
� (85)

holds P�-a.s. for every t 2 [0; T ], with b� given by (60) and the forward sto-
chastic integral de�ned with respect to F+

�2[0;T ].
(b) There exists a d-dimensional Wiener process W�2[0;T ] such that the re-

lation

Zt = ZT �
Z T

t

d�b (Z� ; �)�
Z T

t

k
1
2 (Z� ; �) d

�W� (86)

holds P�-a.s. for every t 2 [0; T ], with b given by (61) and the backward sto-
chastic integral de�ned with respect to F�

�2[0;T ].

Proof. We de�ne W �
�2[0;T ] by

W �
t :=

Z t

0

k�
1
2 (Z� ; �) d

+Y �� (87)

with respect to the continuous square-integrable martingale Y ��2[0;T ] given by

(67) and F+
�2[0;T ]. In order to show that (87) makes sense and indeed de�nes a

Wiener process, we begin by proving that the quadratic variation of the mar-
tingale y��2[0;T ] is the absolutely continuous process

hy�it :=
Z t

0

d� (k (Z� ; �) q; q)Rd (88)
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where q 2 Rd. According to the Doob-Meyer decomposition, this amounts to
showing that the process de�ned by

z�t := (y
�
t )
2 �

Z t

0

d� (k (Z� ; �) q; q)Rd (89)

is a martingale relative to F+
�2[0;T ]. In order to achieve this we proceed as we

did in the proof of Lemma 4, by proving that the relation

lim
r!t+

(r � t)�1 E�
�
z�r � z�t

��F+s
�

= lim
r!t+

(r � t)�1 E�
�
E�

�
z�r � z�t

��F+t
� ��F+s

�
= 0 (90)

holds, where for 0 � t < r � T the inner conditional expectation is given by

E�

�
z�r � z�t

��F+t
�

= E�

�
(y�r � y�t )2

��F+t
�
�
Z r

t

d�E�
�
(k (Z� ; �) q; q)Rd

��F+t
�

(91)

since y��2[0;T ] is a martingale relative to the �ltration F+�2[0;T ].
We �rst show that

lim
r!t+

(r � t)�1 E�
�
(y�r � y�t )2

��F+t
�
= (k (Zt; t) q; q)Rd (92)

P�-a.s. for every t. One the one hand, from (71) we have

(y�r � y�t )
2

= (Zr � Zt; q)2Rd +
�Z r

t

d� (b�(Z� ; �) ; q)Rd

�2

� 2 (Zr � Zt; q)Rd
Z r

t

d� (b�(Z� ; �) ; q)Rd (93)

and we note that

lim
r!t+

(r � t)�1 E�
�
(Zr � Zt; q)2Rd

��F+t
�

= lim
r!t+

(r � t)�1 E�
�
(Zr � Zt; q)2Rd jZt

�
= (k (Zt; t) q; q)Rd

since � 7! Z� is not constant P�-a.s.. Indeed this follows immediately from (49),
which implies the relation

lim
r!t+

(r � t)�1
Z

D

dym�(Zt; t; y; r) (y � Zt; q)2Rd = (k (Zt; t) q; q)Rd

by switching to the quadratic form formulation. On the other hand, by dom-
inated convergence the remaining terms on the right-hand side of (93) do not
contribute to the conditional expectation (92), for

lim
r!t+

(r � t)�1
�Z r

t

d� (b�(Z� ; �) ; q)Rd

�2
= 0
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and

lim
r!t+

(r � t)�1 (Zr � Zt; q)Rd
Z r

t

d� (b�(Z� ; �) ; q)Rd

= (b�(Zt; t) ; q)Rd lim
r!t+

(Zr � Zt; q)Rd = 0

P�-a.s. for every t, as a consequence of the boundedness and the continuity of
b� and Z�2[0;T ]. Therefore (92) holds.
Next, we observe that we also have

lim
r!t+

(r � t)�1
Z r

t

d�E�
�
(k (Z� ; �) q; q)Rd

��F+t
�
= (k (Zt; t) q; q)Rd (94)

P�-a.s. for every t or, equivalently, that

lim
r!t+

(r � t)�1
Z r

t

d�

Z

D

dym�(Zt; t; y; �) ((k (y; �)� k (Zt; t))q; q)Rd = 0:

Indeed this relation follows from exactly the same arguments as those which led
to (82), since the matrix elements of k are all jointly Hölder continuous relative
to space-time variables according to Hypothesis (K). Relations (91), (92) and
(94) then imply

lim
r!t+

(r � t)�1 E�
�
z�r � z�t

��F+t
�
= 0

P�-a.s. for every t, so that (90) follows from a dominated convergence argument
similar to that given in the proof of Lemma 4. Thus z��2[0;T ] is a martingale

relative to F+
�2[0;T ], and consequently (88) is indeed the quadratic variation

process of (71).
This implies (87) makes sense in that k�

1
2 (Z� ; �) is an admissible integrand

there, and de�nes a continuous, square-integrable martingale whose quadratic
variation is given by

h(W �; q)
Rd
i
t
= t jqj2

for each t 2 [0; T ] and every q 2 Rd. This proves that W �
�2[0;T ] is a Wiener

process, and furthermore that the combination of (87) with (67) leads to
Z t

0

k
1
2 (Z� ; �) d

+W �
�

=

Z t

0

d+Y �� = Zt � Z0 �
Z t

0

d�b� (Z� ; �)

P�-a.s. for every t 2 [0; T ], which is (85). The proof of (86) with

Wt := �
Z T

t

k�
1
2 (Z� ; �) d

�Y� (95)

de�ned with respect to (68) is similar, with this time

zt := (yt)
2 �

Z T

t

d� (k (Z� ; �) q; q)Rd
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a martingale with respect to the decreasing �ltration F�
�2[0;T ]. �

We have already noted that (34) provides important information regarding
Z�2[0;T ] in terms of the solutions to (1) and (2). It is, therefore, natural to ask
whether those solutions can, in turn, be represented as suitable expectations of
some functionals of Z�2[0;T ]. This is indeed possible but not a priori evident
since the elliptic operators on the right-hand side of (1) and (2) are not the
generators of Z�2[0;T ]. The problem lies, of course, in the presence of the loga-
rithmic terms in (60), (61), and in the next result we show how to do do away
with them by means of suitable Girsanov transformations.

Corollary. Assume that the same hypotheses as in Theorem 3 are valid, and
let Z�2[0;T ] be the reversible Markov di¤usion of Theorem 2. Then, aside from
P� there exist two probability measures P

�
� on (
;F) such that the following

statements hold:
(a) There exists a d-dimensional Wiener process fW �

�2[0;T ] relative to F+�2[0;T ]
such that the relation

Zt = Z0 +

Z t

0

d�a� (Z� ; �) +

Z t

0

k
1
2 (Z� ; �) d

+fW �
� (96)

holds P+� -a.s. for every t 2 [0; T ], with a� given by (48).
(b) There exists a d-dimensional Wiener process fW�2[0;T ] relative to F��2[0;T ]

such that the relation

Zt = ZT �
Z T

t

d�a (Z� ; �)�
Z T

t

k
1
2 (Z� ; �) d

�fW� (97)

holds P�� -a.s. for every t 2 [0; T ], with a given by (58).

Proof. Let us de�ne

fW �
t :=

Z t

0

d�X� +W
�
t (98)

for every t 2 [0; T ], where

Xt := k
1
2 (Zt; t)rx ln v (Zt; t): (99)

From the hypotheses regarding k and the properties of v and Z�2[0;T ], it is
clear that (99) de�nes a continuous process adapted to the �ltration F+

�2[0;T ].
It is also bounded P�-a.s. by a non-random positive constant, so that we have

E� exp

"
1

2

Z T

0

d� jX� j2
#
< +1
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and thereby

E� exp

"
�
Z T

0

�
X� ; d

+W �
�

�
Rd
� 1
2

Z T

0

d� jX� j2
#
= 1

according to Theorem 12 in Section 1 of Chapter 3 of [14]. For every E 2 F we
then de�ne

P
+
� (E) :=

Z

E

dP� exp

"
�
Z T

0

�
X� ; d

+W �
�

�
Rd
� 1
2

Z T

0

d� jX� j2
#
;

which indeed makes (98) a Wiener process on (
;F ;P+� ) relative to F+�2[0;T ]
according to Girsanov�s standard construction (see, for instance, [14]). Further-
more we have

Z t

0

k
1
2 (Z� ; �) d

+fW �
�

=

Z t

0

d�k (Z� ; �)rx ln v (Z� ; �) +
Z t

0

k
1
2 (Z� ; �) d

+W �
�

P�-a.s. and P+� -a.s. for every t 2 [0; T ], so that (85) reduces to (96). The proof
of (97) with

fWt :=

Z T

t

d�k
1
2 (Z� ; �)rx lnu'(Z� ; �) +Wt

is similar and therefore omitted. �

Let us now write E�� for the expectation functional on (
;F ;P�� ), and by
E
�
�;x;t the conditional expectations corresponding to setting Zt = x for an arbi-
trary (x; t) 2 D�[0; T ]. We then get the following Feynman-Kac representations
for the solutions to (1) and (2) we alluded to above.

Theorem 4. Assume that the same hypotheses as in the Corollary are valid,
and let Z�2[0;T ] be the reversible Markov di¤usion of that Corollary. Then the
following statements hold:
(a) The unique classical positive solution to (1) may be written as

u'(x; t) = E
�
�;x;t

�
exp

�
�
Z t

0

d�V (Z�; �)

�
' (Z0)

�
(100)

for all (x; t) 2 D � [0; T ] :
(b) If in addition the vector-�eld l satis�es

divx l(x; t) = 0 (101)

for each t 2 [0; T ], then the unique classical positive solution to (2) may be
written as

v (x; t) = E
+
�;x;t

 
exp

"
�
Z T

t

d�V (Z�; �)

#
 (ZT )

!
(102)
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for all (x; t) 2 D � [0; T ] :

Proof. Regarding the proof of (a) we have

1

2
divx (k(x; t)rxu'(x; t))� (l(x; t);rxu'(x; t))Rd

=
1

2
(k(x; t)rx;rxu'(x; t))Rd � (a(x; t);rxu'(x; t))Rd (103)

by using (58), so that the sum of the �rst two terms on the right-hand side of
the �rst line of (1) identi�es with the generator of the backward di¤usion (97).
We then apply the corresponding backward Itô formula

F (Zt; t)

= F (Zs; s) +

Z t

s

d�
@F

@s
(Z� ; �)�

1

2

Z t

s

d� (k(Z� ; �)rx;rxF (Z� ; �))Rd

+

Z t

s

d� (a(Z� ; �);rxF (Z� ; �))Rd +
Z t

s

�
rxF (Z� ; �); k

1
2 (Z� ; �) d

�fW�

�
Rd

(104)

to the function

F (x; s) := exp

�
�
Z t

s

d�V (Z�; �)

�
u'(x; s)

for each x 2 D and all s; t 2 [0; T ] satisfying t � s, by noticing in particular the
crucial minus sign of the last term of the second line to (104). By substituting

@F

@s
(x; s) = exp

�
�
Z t

s

d�V (Z�; �)

�
(@su' (x; s) + V (Zs; s)u'(x; s))

and

rxF (x; s) = exp
�
�
Z t

s

d�V (Z�; �)

�
rxu'(x; s)

into (104), and by using (103) together with the �rst relation in (1), we obtain

u' (Zt; t)

= exp

�
�
Z t

s

d�V (Z�; �)

�
u' (Zs; s)

+

Z t

s

exp

�
�
Z t

�

d�V (Z�; �)

��
rxu'(Z� ; �); k

1
2 (Z� ; �) d

�fW�

�
Rd

(105)

where the stochastic integral in (105) is �nite P�� -a.s.. The desired result (100)
then follows by setting s = 0 in the preceding relation, by using the initial
condition in (1) and by taking the conditional expectation E��;x;t of the resulting
equality.
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As for the proof of (b), we �rst observe that (2) may be rewritten as

�@tv(x; t) =
1

2
divx (k(x; t)rxv(x; t)) + (l(x; t);rxv(x; t))Rd � V (x; t)v(x; t);

(x; t) 2 D � [0; T ) ;
v(x; T ) =  (x); x 2 D;
@v(x; t)

@nk(x; t)
= 0; (x; t) 2 @D � [0; T ) ; (106)

as a consequence of (101). Furthermore we have

1

2
divx (k(x; t)rxv'(x; t)) + (l(x; t);rxv'(x; t))Rd

=
1

2
(k(x; t)rx;rxv'(x; t))Rd + (a�(x; t);rxv'(x; t))Rd

by using (48), so that the sum of the �rst two terms on the right-hand side
of the �rst line of (106) identi�es this time with the generator of the forward
di¤usion (96). The remaining part of the argument then consists in applying
the usual forward Itô formula

F (Zt; t)

= F (Zs; s) +

Z t

s

d�
@F

@t
(Z� ; �) +

1

2

Z t

s

d� (k(Z� ; �)rx;rxF (Z� ; �))Rd

+

Z t

s

d� (a�(Z� ; �);rxF (Z� ; �))Rd +
Z t

s

�
rxF (Z� ; �); k

1
2 (Z� ; �) d

+fW �
t

�
Rd

(107)

to the function given by

F (x; t) := exp

�
�
Z t

s

d�V (Z�; �)

�
v (x; t)

for every (x; t) 2 D� [s; T ], which eventually allows us to proceed as in the �rst
part of the proof by using (106) to obtain (102). �

Remarks. (1) The backward Itô formula (104) with the appropriate sign
change has its origins in the theory developed in Section 13 of [23], particularly
in Relation (2) of that section which in fact refers to a simpler situation. Its
proof is similar to that of its forward counterpart (107) which is stated in many
places in a more general form, for instance in Theorem 3.6 of Chapter 3 in [19]
or in Theorem 5.1 of Chapter 2 in [17]. In this connection it is worth mentioning
that we are not aware of any other direct proofs of Feynman-Kac representations
such as (100) regarding the solutions to forward non-autonomous equations of
the form (1). Such a proof is indeed made possible in our case thanks to the
backward Itô equation (97), which allows us to carry out the proofs of (100) and
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(102) quite independently as there are two Itô equations for the same process
at our disposal.
(2) It is worth focusing again on two important aspects of our constructions,

namely, on the one hand (34) which provides information on Z�2[0;T ] from the
knowledge of (7) and (8) and, on the other hand, the representations (100) and
(102) that make those two solutions emerge as functionals of Z�2[0;T ]. In the
latter case we remark that the comparison of (100) and (102) with (7) and (8)
gives

E
�
�;x;t

�
exp

�
�
Z t

0

d�V (Z�; �)

�
' (Z0)

�
=

Z

D

dygA(x; t; y; 0)'(y);

E
+
�;x;t

 
exp

"
�
Z T

t

d�V (Z�; �)

#
 (ZT )

!
=

Z

D

dyg�A(x; t; y; T ) (y);

respectively, that is, a concrete representation of the expectation functionals
E
�
�;x;t. In particular, for V = 0 we obtain

E
�
�;x;t' (Z0) =

Z

D

dygV=0(x; t; y; 0)'(y);

E
+
�;x;t (ZT ) =

Z

D

dyg�V=0(x; t; y; T ) (y);

respectively, with gV=0 and g�V=0 the Green functions associated with (1) and
(2) in this case.

In the next section we illustrate some of the preceding results.

3 Two examples

In the �rst example and for the sake of clarity we investigate the case of the
simplest possible heat equation and its adjoint on a one-dimensional domain.

Example 1. Let us consider the initial-boundary value problem

@tu(x; t) =
1

2
@xxu(x; t); (x; t) 2 (0; 1)� (0; T ] ;

u(x; 0) = '(x); x 2 (0; 1) ;
@xu(0; t) = @xu(1; t) = 0; t 2 (0; T ] (108)

and the corresponding �nal-boundary value problem for the adjoint equation

�@tv(x; t) =
1

2
@xxv(x; t); (x; t) 2 (0; 1)� [0; T ) ;

v(x; T ) =  (x); x 2 (0; 1) ;
@xv(0; t) = @xv(1; t) = 0; t 2 [0; T ) ; (109)
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where ' and  satisfy the hypotheses of the preceding section.
As is well known, the solution to (108) may be written as

u'(x; t) =
X

n2Z

an cos (�nx) exp

�
��

2n2

2
t

�
(110)

with

an =

Z 1

0

dx'(x) cos (�nx)

for every n 2 Z, while the solution to (109) reads

v (x; t) =
X

n2Z

bn cos (�nx) exp

�
��

2n2

2
(T � t)

�
(111)

with

bn =

Z 1

0

dx (x) cos (�nx) ;

both series (110) and (111) being absolutely and uniformly convergent. Fur-
thermore (4) and (5) hold with the kernels

g(x; t; y; s)

= g� (x; s; y; t) =
X

n2Z

cos (�nx) cos (�ny) exp

�
��

2n2

2
(t� s)

�
; (112)

and moreover all of the results of the preceding section are valid providing
one chooses a joint probability distribution of the form (28) satisfying (29).
Equations (85) and (86) then read

Zt = Z0 +

Z t

0

d�@x ln v (Z� ; �) +W
�
t (113)

and

Zt = ZT +

Z T

t

d�@x lnu'(Z� ; �) +Wt; (114)

respectively.
Our goal now is to choose as simple a ' and  as possible in order to unveil

further properties of the processes thus constructed, keeping in mind that we
ought to disregard the trivial case

'(x) =  (x) = 1;

which does imply (29) but gives

u'(x; t) = v (x; t) = 1
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for all (x; t) 2 [0; 1]� [0; T ] and thereby b� = b = 0 identically according to (60)
and (61). Let us choose instead

'(x) = 1 +
1

2
cos (�x) (115)

and
 (x) = 1: (116)

Then the normalization condition (29) holds and we have

u'(x; t) = 1 +
1

2
cos (�x) exp

�
��

2

2
t

�
(117)

and
v (x; t) = 1 (118)

for all (x; t) 2 [0; 1]� [0; T ]. We have the following result:

Proposition 4. Let us consider (108) and (109) with the data (115) and
(116), respectively. Then the following statements hold:
(a) We have

P� (Zt 2 E) = jEj+
1

2
exp

�
��

2

2
t

� Z

E

dx cos (�x)

for every Borel subset E � [0; 1] of Lebesgue measure jEj and every t 2 [0; T ].
(b) When considered as a forward Markov di¤usion the process Z�2[0;T ] is a

Wiener process with zero drift which is instantaneously re�ected at x = 0 and
x = 1. Moreover, the Lebesgue measure on [0; 1] is an invariant measure for
Z�2[0;T ].
(c) When considered as a backward Markov di¤usion the process Z�2[0;T ]

satis�es

Zt = ZT � �
TZ

t

d�
sin (�Z� ) exp

h
��2

2 �
i

2 + cos (�Z� ) exp
�
��2

2 �
� +Wt

for every t 2 [0; T ], which corresponds to the backward drift

b(x; t) =
� sin (�x) exp

h
��2

2 t
i

2 + cos (�x) exp
�
��2

2 t
� (119)

de�ned for all (x; t) 2 [0; 1]� [0; T ].

Proof. Statement (a) follows from (34), (117) and (118).
Let us now consider Z�2[0;T ] as a forward Markov di¤usion. Then we have

b�(x; t) = 0
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for all (x; t) 2 [0; 1]� [0; T ] according to (60), so that (113) reduces to

Zt = Z0 +W
�
t

which de�nes a Wiener process with zero drift. As for the instantaneous re�ec-
tion at the boundaries of the domain, let us condition the process by setting
Z0 = x for an arbitrary x 2 (0; 1). Since Zt 2 [0; 1] we then have

Zt = jx+W �
t j

and by virtue of the identity

X

n2Z

cos (�nx) cos (�ny) exp

�
��

2n2

2
t

�

= (2�t)
� 1
2

X

n2Z

 
exp

"
�jx+ y + 2nj

2

2t

#
+ exp

"
�jx� y � 2nj

2

2t

#!

valid for all x; y 2 (0; 1) and every t 2 (0; T ) (see, for instance, Appendix 1 to
Chapter 6 in [4]), we have

P
x
� (Zt 2 E)

=

Z

E

dyg�(x; 0; y; t)

= (2�t)
� 1
2

Z

E

dy
X

n2Z

 
exp

"
�jx+ y + 2nj

2

2t

#
+ exp

"
�jx� y � 2nj

2

2t

#!

for each Borel subset E � [0; 1] and all (x; t) 2 (0; 1)�(0; T ). Therefore, we may
indeed identify Z�2[0;T ] with the doubly re�ected Brownian motion as de�ned
for instance in Section 2.8 C of [19]. Finally let us consider the function (23),
which in this case takes the form

M� (x; s;E; t) =

Z

E

dyg�(x; s; y; t)

where g� is given by (112). Since we have
Z 1

0

dxM� (x; s;E; t) = jEj

for each Borel subset E � [0; 1] and all s; t 2 [0; T ] satisfying t > s, the Lebesgue
measure is indeed an invariant measure for Z�2[0;T ] on [0; 1]. Consequently
Statement (b) holds.
Statement (c) follows directly from (61), (114) and (117). �

Remark. The Bernstein di¤usion Z�2[0;T ] of the preceding proposition is
not reversible in the sense of [8] or [20] since its probability density is time-
dependent according to Statement (a). This is a simple consequence of the
third remark following the proof of Theorem 2.

34



Example 2. We now consider the initial-boundary value problem

@tu(x; t) =
1

2
4xu(x; t); (x; t) 2 D� (0; T ] ;

u(x; 0) = '(x); x 2 D;
@u(x; t)

@n(x)
= 0; (x; t) 2 @D� (0; T ] (120)

and the corresponding �nal-boundary value problem for the adjoint equation

�@tv(x; t) =
1

2
4xv(x; t); (x; t) 2 D� [0; T ) ;

v(x; T ) =  (x); x 2 D;
@v(x; t)

@n(x)
= 0; (x; t) 2 @D� [0; T ) ; (121)

where
D =

�
x 2 R2 : jxj < 1

	

is the two-dimensional open unit disk centered at the origin, and where ' and
 satisfy the hypotheses of the preceding section. Let us restrict ourselves to
radially symmetric solutions to (120) and (121); switching to polar coordinates
and abusing the notation a bit we then rewrite (120) as

@tu(r; t) =
1

2

�
@rr + r

�1@r
�
u(r; t); (r; t) 2 (0; 1]� (0; T ] ;

u(r; 0) = '(r); r 2 [0; 1] ;
@ru(1; t) = 0; t 2 (0; T ] ; (122)

whose solution reads

u'(r; t) =
+1X

n=1

an;0J0
�p
�n;0r

�
exp

h
��n;0

2
t
i

(123)

where J0 stands for the Bessel function of zeroth order of the �rst kind (see, for
instance, [31] or [32]). In (123) we have

an;0 = 2J
�2
0

�p
�n;0

� Z 1

0

rdr' (r) J0
�p
�n;0r

�

where the �n;0�s are ordered in such a way that

0 = �1;0 < �2;0 < �3;0 < ::::: (124)

and satisfy
J 00
�p
�n;0

�
= 0; (125)
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the preceding relation being Neumann�s boundary condition in this case. In a
similar way we have

�@tv(r; t) =
1

2

�
@rr + r

�1@r
�
v(r; t); (r; t) 2 (0; 1]� [0; T ) ;

v(r; T ) =  (r); r 2 [0; 1] ;
@rv(1; t) = 0; t 2 [0; T ) ; (126)

for (121), whose solution is

v (r; t) =
+1X

n=1

bn;0J0
�p
�n;0r

�
exp

h
��n;0

2
(T � t)

i
(127)

where

bn;0 = 2J
�2
0

�p
�n;0

� Z 1

0

rdr (r) J0
�p
�n;0r

�
;

both series (123) and (127) being again absolutely and uniformly convergent.
Consequently we may write

u'(r; t) =

Z 1

0

r0dr0g (r; t; r0; 0)' (r0)

and

v (r; t) =

Z 1

0

r0dr0g� (r; t; r0; T ) (r0)

where the radial Green functions are

g (r; t; r0; s)

= g� (r; s; r0; t)

= 2
+1X

n=1

J�20
�p
�n;0

�
J0
�p
�n;0r

�
J0
�p
�n;0r

0
�
exp

h
��n;0

2
(t� s)

i
;

so that all of the results of the preceding section remain valid in this case
provided one chooses again a probability distribution of the form (28) satisfying
(29).
Let us take for instance

'(r) =
1

�

�
1 + J0

�p
�2;0r

��
(128)

and
 (r) = 1 (129)

for every r 2 [0; 1], where p�2;0 is the �rst positive root of J 00 according to
(124) and (125). It then follows from the standard properties of J0 that '
satis�es all the required hypotheses of our theory, including positivity and (29);
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furthermore, the orthogonality properties of J0 with respect ot the �n;0�s imply
that the corresponding solutions are

u'(r; t) =
1

�

�
1 + J0

�p
�2;0r

�
exp

h
��2;0
2
t
i�

(130)

and
v (r; t) = 1 (131)

for all (r; t) 2 [0; 1] � [0; T ]. Let us denote again by Z�2[0;T ] the Bernstein
di¤usion associated with (122), (126) and (130), (131), respectively, and by
J1 = �J 00 the Bessel function of �rst order. We have the following result,
similar to that of Proposition 4:

Proposition 5. Let us consider (122) and (126) with the data (128) and
(129), respectively. Then the following statements hold:
(a) We have

P� (Zt 2 E) =
1

�

�
jEj+ exp

h
��2;0
2
t
i Z

E

dxJ0
�p
�2;0 jxj

��

for every Borel subset E � D of Lebesgue measure jEj and every t 2 [0; T ].
(b) When considered as a forward Markov di¤usion the process Z�2[0;T ] is a

Wiener process with zero drift and the Lebesgue measure on D is an invariant
measure for Z�2[0;T ].
(c) When considered as a backward Markov di¤usion the process Z�2[0;T ]

satis�es

Zt = ZT �
TZ

t

d�b (Z� ; �) +Wt

for every t 2 [0; T ], where the backward drift is given by

b(x; t) =

p
�2;0J1

�p
�2;0 jxj

�
exp

�
��2;0

2 t
�

1 + J0
�p
�2;0 jxj

�
exp

�
��2;0

2 t
� � x

jxj (132)

for all (x; t) 2 D� [0; T ] with x 6= 0, and by

b(0; t) = lim
jxj!0

b(x; t) = 0 (133)

for every t 2 [0; T ].

Proof. Statement (a) follows from (34), this time with (130) and (131).
Let us now consider Z�2[0;T ] as a forward Markov di¤usion. Then we have

Zt = Z0 +W
�
t

since
b�(x; t) = 0
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for all (x; t) 2 D � [0; T ] according to (60) and (131), which indeed de�nes a
Wiener process with zero drift, and the fact that the Lebesgue measure on D
is an invariant measure for Z�2[0;T ] follows from an argument similar to that
given in Proposition 4. Consequently Statement (b) holds.
Statement (c) is a simple consequence of (61), (86) and (130), with (133)

following from the fact that J0(0) = 1 and

J1
�p
�2;0 jxj

�
� 1

2

p
�2;0 jxj

as jxj ! 0. �

Remarks. (1) Relations (132) and (133) reveal two interesting features
regarding the drift of the backward di¤usion Z�2[0;T ]. On the one hand, b(x; t)
points to the radial direction and its norm jb(x; t)j is rotationally invariant,
which is no surprise since (130) is radially symmetric to start with. On the
other hand, jb(x; t)j vanishes at the center of the disk and on its boundary since
J1
�p
�2;0

�
= 0, and thereby reaches a maximal value at some jx�j = r� 2 (0; 1)

depending on t since J1 > 0 on the interval
�
0;
p
�2;0

�
. We note that such a

feature is already present in the one-dimensional backward drift (119).
(2) The di¤erential operator on the right-hand side of (122) and (126) is,

of course, formally the generator of a Bessel process of order zero. Along the
same line we can also consider radially symmetric solutions to Problems (120)
and (121) in the d-dimensional ball centered at the origin of Rd, where the
radial part of half of the Laplacian identi�es with the generator of a Bessel
process of order � := d

2 � 1. In such cases we can naturally expect the existence
of nontrivial connections between Bernstein di¤usions and Bessel processes of
order �. Moreover, because of (37) and (39) it is tempting to conjecture that
all Bernstein di¤usions constructed in this article are in fact re�ected di¤usions,
as is the case in Statement (b) of Proposition 4. We defer a detailed analysis of
these questions to a separate publication, including one of the boundary local
time

LZ(t) :=

Z t

0

dsI@D(Zs) = lim
"!0+

1

"

Z t

0

dsID"(Zs)

in light of the results of [22], [25] and [30], where I@D is the indicator function
of the boundary @D and ID"that of the annulus

D" :=
�
x 2 Rd : 0 < 1� " � jxj � 1

	
:
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4 Appendix. A Variational Construction ofWeak

Solutions in L2(D).

The solutions u' and v we used throughout this article are generated by two
evolution systems UA(t; s)0�s�t�T and U�A(t; s)0�s�t�T on L2(D). We show
here how to construct these evolution systems by applying the standard methods
of [29], under the following hypotheses regarding the coe¢cients k, l and V in
(1) and (2):

(K0) The function k : D � [0; T ] 7! R
d2 is matrix-valued and for every

i; j 2 f1; :::; dg we have ki;j = kj;i 2 L1(D � (0; T ) ); moreover, there exists a
�nite constant k > 0 such that the inequality

(k(x; t)q; q)
Rd
� k jqj2 (134)

holds uniformly in (x; t) 2 D � [0; T ] for all q 2 Rd. Finally, there exist �nite
constants c� > 0, � 2

�
1
2 ; 1
�
such that the Hölder continuity estimate

max
i;j2f1;:::;dg

jki;j(x; t)� ki;j(x; s)j � c� jt� sj�

is valid for every x 2 D and all s; t 2 [0; T ].

As for the lower-order di¤erential operators we assume that the following
hypotheses are valid, where we assume without restricting the generality that
the constants c� and � are the same as in Hypothesis (K0):

(L0) Each component of the vector-�eld l : D � [0; T ] 7! R
d satis�es li 2

L1(D � (0; T ) ). Moreover, the Hölder continuity estimate

max
i2f1;:::;dg

jli(x; t)� li(x; s)j � c� jt� sj�

holds for every x 2 D and all s; t 2 [0; T ].

(V0) The function V : D � (0; T ) 7! R is such that V 2 L1(D � (0; T )) and
satis�es

jV (x; t)� V (x; s)j � c� jt� sj�

for every x 2 D and all s; t 2 [0; T ].

Moreover, both the initial condition ' and the �nal condition  are real-
valued and the following hypothesis holds:

(IF0) We have '; 2 L2(D).

Remark. In the variational theory we are reviewing here we observe that
the Hölder continuity requirement relative to the time variable in Hypotheses
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(K0), (L0) and (V0) is stronger than that of Hypotheses (K), (L) and (V), since
� 2

�
1
2 ; 1
�
whereas �

2 2
�
0; 12
�
. However, it is easy to show by uniqueness

arguments that the evolution operators UA(t; s)0�s�t�T and U�A(t; s)0�s�t�T
introduced in Section 2 are identical to those constructed below. The reason why
� 2

�
1
2 ; 1
�
is required here is intimately tied up with the variational structure

of the problem, and is thoroughly discussed in [29].

Under the preceding three conditions, it is easily veri�ed that the quadratic
form a : [0; T ]�H1(D)�H1(D) 7! C de�ned by

a (t; f; h) :=
1

2

Z

D

dx (k(x; t)rxf(x);rxh(x))Cd

+

Z

D

dx (l(x; t);rxf(x))Cd h(x)

+

Z

D

dxV (x; t)f(x)h(x)

satis�es the estimates

ja (t; f; h)j � c kfk1;2 khk1;2 ; (135)

Re a (t; f; f) � k kfk21;2 � c kfk
2
2 ; (136)

ja (t; f; h)� a (s; f; h)j � c jt� sj� kfk1;2 khk1;2 (137)

for all s; t 2 [0; T ] and all f; h 2 H1(D), where k:k2 and k:k1;2 stand for the
usual norms in L2(D) and H1(D), respectively, and where (:; :)

Cd
denotes the

Hermitian inner product in Cd. Consequently, the formal elliptic operator

A(t) := �1
2
div (k(:; t)r) + (l(:; t);r)

Cd
+ V (:; t)

corresponding to the right-hand side of (1) can be realized as a regularly ac-
cretive operator de�ned on some time-dependent and dense domain D(A(t)) �
L2(D), and as such generates an evolution system UA(t; s)0�s�t�T in L2(D)
given by

UA(t; s)f(x) =

�
f(x) if t = s;R
D
dygA(x; t; y; s)f(y) if t > s

(138)

for every f 2 L2(D), where gA denotes the parabolic Green function associated
with (1). Indeed all these assertions follow directly from estimates (135)-(137)
and the general theory developed in Section 5.4 of [29], together with Schwartz�s
kernel theorem which guarantees the existence of gA (see [27] for a summary of
the many possible applications of that theorem).

In a similar way, the Hermitian conjugate form

a� (t; f; h) := a (t; h; f)
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is associated with the linear operator A�(t) adjoint to A(t), which in turn gen-
erates the adjoint evolution system

U�A(t; s)f(x) =

�
f(x) if t = s;R
D
dyg�A(x; s; y; t)f(y) if t > s;

(139)

where G�A is the parabolic Green function associated with (2) that satis�es the
relation

g�A(x; s; y; t) = gA(y; t;x; s)

for all s; t 2 [0; T ] with t > s.
The important features of (138) and (139) are that they provide the real-

valued functions de�ned by

u'(x; t) := UA(t; 0)'(x) =

Z

D

dygA(x; t; y; 0)'(y); t 2 (0; T ] (140)

and

v (x; t) := U�A(T; t) (x) =

Z

D

dyg�A(x; t; y; T ) (y); t 2 [0; T ) ; (141)

which satisfy
�
@

@t
u'(:; t); h

�

2

+ a(t; u'(:; t); h) = 0; t 2 (0; T ]

and

�
�
@

@t
v (:; t); h

�

2

+ a�(t; v (:; t); h) = 0; t 2 [0; T )

for every h 2 H1(D), respectively, where (:; :)2 stands for the usual inner product
in L2(D). Moreover we have u'; v 2 L2(D � (0; T )), so that (140) and (141)
provide weak solutions to (1) and (2), respectively (see, for instance, Section 5.5
in [29]).
These solutions are those which ultimately possess the properties listed in

Lemma 1 of Section 2, according to the above remark regarding the Hölder
regularity in time.
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