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We present a general theorem characterizing finite congruence lattices of algebras belonging to a congruence distributive variety. We apply the result to some small varieties of lattices.

Introduction

This paper is a contribution to the following general problem: Characterize lattices isomorphic to congruence lattices of algebras in a given variety V. This problem has proved to be very hard and there are very few varieties for which we have a satisfactory answer. For instance, there is a longstanding problem whether every algebraic distributive lattice is isomorphic to the congruence lattice of some lattice.

In this paper we restrict our attention to congruence distributive varieties (CD varieties), i.e. varieties in which every member has a distributive congruence lattice. The most common examples of such varieties are the varieties of lattices and latticeordered structures (l-groups, MV-algebras, etc.). We consider the finite case of the above problem and present a general theorem characterizing finite lattices isomorphic to congruence lattices of algebras in a given CD variety V. As we have already mentioned, the analogous question for infinite lattices is much more complicated. Some attempts to investigate the infinite case are contained in [START_REF] Ploščica | Separation properties in congruence lattices of lattices[END_REF].

Our result is based on the observation that an algebra with a prescribed congruence lattice can often be constructed as the limit of a suitable commutative diagram of subdirectly irreducible algebras. Thus, our result is useful mainly for those varieties, where we have a good knowledge of subdirectly irreducible algebras.

Our basic reference books are [START_REF] Grätzer | General Lattice Theory[END_REF], [START_REF] Grätzer | Universal algebra[END_REF] and [START_REF] Mckenzie | Algebras, lattices, varieties I[END_REF]. All the unexplained notions and facts can be found there. We use the following special denotations. If P is a partially ordered set and

x ∈ P then ↑ x = {y ∈ P | y ≥ x}. If f : A → B is a mapping then the binary relation Ker(f ) = {(x, y) ∈ A 2 | f (x) = f (y)} is called the kernel of f . The symbol ∆ A denotes the diagonal relation {(x, x) | x ∈ A} on A.
If α is an equivalence relation on a set A, then A/α denotes the set of equivalence classes of α and x/α is the equivalence class containing x ∈ A. The Cartesian product of sets A i (i ∈ I) is denoted by Π i∈I A i . We use the notation a = (a i ) i∈I for elements of such product and speak about a i as the i-th coordinate of a.

The general result

First we present a purely set-theoretical construction. An ordered diagram of sets is a triple (P, A, F), where P is a partially ordered set, A = {A p | p ∈ P } is a family of sets indexed by P and F = {f pq | p, q ∈ P, p ≤ q} is a family of functions f pq : A p → A q such that (1) f pp is the identity map for every p ∈ P ;

(2) f qr f pq = f pr for every p, q, r ∈ P , p ≤ q ≤ r. For any ordered diagram of sets we define its limit as lim(P, A, F) = {a ∈ Π p∈P A p | a q = f pq (a p ) for every p, q ∈ P, p ≤ q}.

Thus, our limit is the limit in the sense of the category theory (applied to the category of sets). In the universal algebra, this construction is often called the inverse limit (see [START_REF] Grätzer | Universal algebra[END_REF]). Now we introduce the crucial concept of this paper. Definition 2.1. An ordered diagram of sets (P, A, F) is called admissible if the following conditions are satisfied:

(i) for every p ∈ P and every u ∈ A p there exists a ∈ lim(P, A, F) such that a p = u; (ii) for every p, q ∈ P , p ≤ q there exist a, b ∈ lim(P, A, F) such that a p = b p and a q = b q .

Admissible ordered diagrams arise naturally from systems of equivalences on a given set, as shown by the following assertion. Lemma 2.2. Let P be some set of equivalences on a set A, ordered by the set inclusion. For every α ∈ P let A α = A/α. For α ⊆ β let f αβ : A/α → A/β be the natural projection map, i.e. f αβ (x/α) = x/β. Then (P, A, F) is an admissible ordered diagram of sets.

Proof. It is clear that (P, A, F) is an ordered diagram of sets. For every x ∈ A the element x = (x/α) α∈P belongs to lim(P, A, F), so 2.1(i) is satisfied. Further, let α, β ∈ P , α β. Then there are x, y ∈ A with (x, y) ∈ α, (x, y) / ∈ β. We have x, y ∈ lim(P, A, F),

x α = x/α = y/α = y α and x β = x/β = y/β = y β , which proves 2.1(ii).
On the other hand, it is not difficult to construct ordered diagrams which are not admissible.

Now we turn our attention to congruence lattices by recalling some fundamental facts from the lattice theory and the universal algebra. An element x = 1 of a lattice

L is called meet-irreducible if x = y ∧ z implies x ∈ {y, z}. An element x is strictly (or completely) meet-irreducible if x = inf X (X ⊆ L) implies x ∈ X. Equivalently, x is strictly meet-irreducible if the set {y ∈ L | y > x} has a smallest element. Of course, if L is finite then every meet-irreducible element is strictly meet-irreducible. If x is meet-irreducible and L is distributive then, for every x 1 , . . . , x n ∈ L, x 1 ∧ • • • ∧ x n ≤ x
implies that x i ≤ x for some i. Let M (L) denote the set of all strictly meet-irreducible elements of L.

We do not distinguish between an algebra and its underlying set. Let Con A denote the congruence lattice of an algebra A. It is well known that an algebra A is subdirectly irreducible iff ∆ A (the smallest element of Con A) belongs to M (Con A). More generally, θ ∈ M (Con A) iff the factor algebra A/θ is subdirectly irreducible. This is a direct consequence of the fact that Con A/θ is isomorphic to ↑ θ (a subset of Con A).

If V is a variety (a class of algebras closed under direct products, subalgebras and homomorphic images) then SI(V) denotes the class of all subdirectly irreducible members of V. The facts recalled above have the following consequence.

Lemma 2.3. Let V be a variety and L = Con A for some A ∈ V. Then for every x ∈ M (L), the lattice ↑ x is isomorphic to Con T for some T ∈ SI(V).

This lemma provides a basic information about congruence lattices of algebras in V. It is especially effective in the case of a CD variety V and a finite lattice L, because finite distributive lattices are determined uniquely by the ordered sets of their meetirreducible elements. However, 2.3 does not provide a complete characterization of finite congruence lattices for CD varieties.

Theorem 2.4. Let V be a CD variety. Let L be a finite distributive lattice. Let P = M (L). For every p ∈ P let A p ∈ V and for every p ≤ q let f pq : A p → A q be a homomorphism such that (P, A, F) is an admissible ordered diagram of sets (with A = {A p | p ∈ P } and F = {f pq | p ≤ q}) and, moreover, (*) for all p ∈ P , the sets {Ker(f pq ) | q ≥ p} and M (Con A p ) coincide. Then lim(P, A, F) is an algebra whose congruence lattice is isomorphic to L.

Proof. Let A = lim(P, A, F). It is easy to see that A is a subalgebra of the algebra Π p∈P A p . Hence, A ∈ V, so Con A is distributive. Since every finite distributive lattice is determined by its ordered set of meet-irreducible elements, it suffices to prove that the ordered sets P and M (Con A) are isomorphic. (Strictly speaking, we have not yet proved that Con A is finite. However, Con A is algebraic and every algebraic lattice with finitely many completely meet-irreducible elements is finite.) Condition (*) implies that Ker(f pp ) = ∆ Ap belongs to M (Con A p ), which means that A p is subdirectly irreducible. The condition 2.1(i) ensures that the natural projections h p : A → A p (h p (x) = x p ) are surjective. Hence, A/ Ker(h p ) is isomorphic to A p and therefore Ker(h p ) ∈ M (Con A). Thus, we can define a map ϕ : P → M (Con A) by ϕ(p) = Ker(h p ). We claim that this is the required isomorphism.

Let p, q ∈ P , p ≤ q. If (x, y) ∈ Ker(h p ) then x p = y p , hence x q = f pq (x p ) = f pq (y p ) = y q and (x, y) ∈ Ker(h q ). Thus, ϕ(p) ≤ ϕ(q). Let p, q ∈ P , p q. By 2.1(ii), there are x, y ∈ A such x p = y p and x q = y q , hence (x, y) ∈ Ker(h p ) \ Ker(h q ). Thus ϕ(p) ϕ(q). Especially, ϕ is injective.

It remains to prove the surjectivity of ϕ. Let β ∈ M (Con A). Clearly, p∈P Ker(h p ) = ∆ A ≤ β. Since P is finite and β is meet-irreducible, we obtain that β ≥ Ker(h p ) for some p ∈ P . Consider the natural map k : A p → A/β defined by k(x p ) = x/β. It is easy to check that k is well defined (x p = y p implies x/β = y/β) and that it is a surjective homomorphism. Since A/β is subdirectly irreducible and isomorphic to A p / Ker(k), we have Ker(k) ∈ M (Con A p ). By our assumption (*) we have Ker(k) = Ker(f pq ) for some q ≥ p. For any x, y ∈ A we have (x, y) ∈ β iff k(x p ) = k(y p ) iff (x p , y p ) ∈ Ker(k) = Ker(f pq ) iff x q = f pq (x p ) = f pq (y p ) = y q iff (x, y) ∈ Ker(h q ). Hence, β = ϕ(q). Theorem 2.5. Let V be a CD variety. Let L be a finite distributive lattice. Let P = M (L). The following conditions are equivalent.

(1) There is A ∈ V such that Con A is isomorphic to L.

(2) There are algebras A p ∈ V (for p ∈ P ) and homomorphisms f pq : A p → A q such that (P, A, F) is an admissible ordered diagram of sets (with A = {A p | p ∈ P } and F = {f pq | p ≤ q}) and, moreover, (*) for all p ∈ P , the sets {Ker(f pq ) | q ≥ p} and M (Con A p ) coincide.

Proof. We have just proved the implication (2)=⇒(1). Conversely, let (1) hold. Then M (Con A) is isomorphic to P , we can assume that M (Con A) = P . For every α ∈ M (Con A) let A α = A/α. For every α, β ∈ M (Con A) with α ≤ β we have a natural homomorphism f αβ : A α → A β . By 2.2, we have constructed an admissible ordered diagram of sets. By the well known isomorphism theorem,

Con A/α = {β/α | β ∈ Con A, β ≥ α} and therefore M (Con A α ) = M (Con A/α) = {β/α | β ∈ M (Con A), β ≥ α} = {Ker(f αβ ) | β ∈ M (Con A), β ≥ α}, which shows (*).
We admit that our theorem looks rather complicated. It might be possible to find simpler equivalent conditions, especially under some additional assumptions on the variety V. We believe that this paper is a good starting point for the research in this direction.

Nevertheless, our result is applicable to concrete varieties. If V contains only finitely many subdirectly irreducible algebras, then we have only finitely many ways to construct an ordered diagram with a prescribed P satisfying 2.5 [START_REF] Grätzer | Universal algebra[END_REF]. (Notice that (*) implies subdirect irreducibility of all A p .) We investigate some varieties in the next section. The application of 2.5 to a variety V requires a good knowledge of subdirectly irreducible algebras in V. Such knowledge is available in the case of small varieties of lattices. We refer to [START_REF] Jipsen | Varieties of lattices[END_REF] as a good source of information. We often use the well known fact that if a CD variety V is generated by a single finite algebra A then all subdirectly irreducible members of V are homomorphic images of subalgebras of A.

Small varieties of lattices

The smallest nontrivial variety of lattices is D, the variety of distributive lattices. The description of Con A for A ∈ D is well known, even in the infinite case. (See [START_REF] Grätzer | General Lattice Theory[END_REF], II.3 and II.4.) A finite lattice D is isomorphic to Con A for some A ∈ D if and only if D is Boolean.

The variety D is covered (in the lattice of varieties) by the varieties M 3 and N 5 generated by the lattices M 3 and N 5 depicted above.

The variety M 3 has two subdirectly irreducible members: M 3 and the 2-element chain C 2 = {0, 1}. Both M 3 and C 2 are simple, their congruence lattice is a 2-element chain. If A ∈ M 3 then by 2.3 every element of M (Con A) is a coatom of A. Hence, we obtain the same result as for D: a finite lattice D is isomorphic to Con A for some A ∈ M 3 iff D is Boolean. The congruence lattices of infinite A ∈ M 3 have a much more complicated structure and they differ from the congruence lattices of distributive lattices ( [START_REF] Ploščica | Separation properties in congruence lattices of lattices[END_REF]).

The variety N 5 has two subdirectly ireducible members: N 5 and C 2 . The lattice Con N 5 is depicted above. It has 3 meet-irreducible elements, namely the zero congruence ∆ N5 and the kernels of the two surjective homomorphisms f 1 , f 2 :

N 5 → C 2 given by f 1 (0) = f 1 (a) = f 1 (c) = 0, f 1 (b) = f 1 (1) = 1, f 2 (0) = f 2 (b) = 0, f 2 (a) = f 2 (c) = f 2 (1) = 1.
Theorem 3.1. For a finite distributive lattice D, the following conditions are equivalent:

(1) D ∼ = Con A for some A ∈ N 5 ;

(2) M (D) is a union of two disjoint antichains M 1 and M 2 such that for every x ∈ M 2 there are exactly two y ∈ M 1 with x < y.

Proof. The implication (1)=⇒(2) follows from 2.3.

If D = Con A, A ∈ N 5 then M 1 = {α ∈ M (D) | A/α ∼ = C 2 }, M 2 = {α ∈ M (D) | A/α ∼ = N 5 }.
Suppose now that (2) is satisfied. Let P = M (D). For every p ∈ M 1 let A p = C 2 . For every p ∈ M 2 let A p = N 5 . For every p ∈ M 2 we have exactly two elements of M 1 greater than p; we denote them by p and p . (Choose arbitrarily which one is p and which is p .) Further, define f pp = f 1 , f pp = f 2 (with f 1 , f 2 defined above). It is easy to see that (P, A, F) is an ordered diagram of sets and 2.4(*) is satisfied. (As usual, we set A = {A p | p ∈ P }, F = {f pq | p ≤ q}.) It remains to prove that (P, A, F) is admissible. For every x ∈ Π p∈M1 A p we define x * ∈ Π p∈P A p as follows. If p ∈ M 1 then x * p = x p and if p ∈ M 2 then

x * p =        0 if x p = x p = 0; a if x p = 0, x p = 1; b if x p = 1, x p = 0; 1 if x p = x p = 1.
Further, let x * * ∈ Π p∈P be such that x * * p = c whenever x * p = a and x * * p = x * p otherwise. It is easy to check that x * , x * * ∈ lim(P, A, F). Since x can be arbitrary, x * p and x * * p can take any possible value for any p ∈ P . Hence, 2.1(i) holds. To prove 2.1(ii) let p q. We distinguish several cases.
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Let q ∈ M 2 . Choose x ∈ Π x∈M1 A p such that x q = 0, x q = 1. Then x * q = a. Define y ∈ Π p∈P A p by y q = c and y r = x * r for every r = q. Then also y ∈ lim(P, A, F) and we have x * p = y p and x * q = y q . Let p, q ∈ M 1 . Choose any x, y ∈ Π p∈M1 A p with x p = y p , x q = y q . Then x * p = y * p and x * q = y * q . Finally, let p ∈ M 2 , q ∈ M 1 . Since p q, we have q / ∈ {p , p }. Choose x, y ∈ Π p∈M1 A p with x p = y p , x p = y p and x q = y q . Clearly, x * p = y * p and x * q = y * q . Thus, the diagram (P, A, F) is admissible. By 2.4, lim(P, A, F) has the congruence lattice isomorphic to D.

Finally, let us present one example. Let K be the variety generated by the lattice K depicted below. Let us consider the finite distributive lattice D depicted above. We are looking for A ∈ K such that Con A ∼ = D. The lattice D satisfies the necessary condition in 2.3. However, we claim that there is no such algebra A.

The ordered set M (D) consists of elements p, q, r, s. (See the picture.) Suppose for contradiction that there are subdirectly irreducible A p , A q , A r , A s ∈ K together with corresponding homomorphisms satisfying 2.5(2). By 2.3, the only possibility is A p = K, A r = N 5 . By (*), Ker(f pq ) must be equal to β and hence A q must be M 3 . However, A q is also a homomorphic image of A r , which is impossible.