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Abstract

A tensor-based method is proposed for the solution of partial differential equa-
tions defined on uncertain parameterized domains. It provides an accurate solution
which is explicit with respect to parameters defining the shape of the domain, thus
allowing efficient a posteriori probabilistic or parametric analyses. In the proposed
method, a fictitious domain approach is first adopted for the reformulation of the
parametric problem on a fixed domain, yielding a weak formulation in a tensor
product space (product of space functions and parametric functions). The paper
is limited to the case of Neumann conditions on uncertain parts of the boundary.
The Proper Generalized Decomposition method is then introduced for the construc-
tion of a tensor product approximation (separated representation) of the solution.
It can be seen as an a priori model reduction technique which automatically cap-
tures reduced bases of space functions and parametric functions which are optimal
for the representation of the solution. This tensor-based method is made compu-
tationally tractable by introducing separated representations of variational forms,
resulting from separated representations of the parameterized indicator function of
the uncertain domain. For this purpose, a method is proposed for the construc-
tion of a constrained tensor product approximation which preserves positivity and
therefore ensures well-posedness of problems associated with approximate indicator
functions. Moreover, a regularization of the geometry is introduced to speed up the
convergence of these tensor product approximations.

Key words: Uncertainty quantification, Proper Generalized Decomposition,
Tensor Product approximation, Random domain, Fictitious domain method,
Spectral stochastic methods



1 Introduction

Uncertainty quantification has become a critical issue in computational and
prediction science. Uncertainty may reflect inherent variabilities in physical
systems which have to be incorporated in mathematical models, or some level
of ignorance that yields an imprecise or incomplete characterization of a model.
When adopting a probabilistic modeling of uncertainties, their impact on a
model output may be classically evaluated by means of classical sampling tech-
niques if one is interested in probabilistic or statistical quantities of interest.
In the last two decades, a growing attention has been given to an alternative
functional view of uncertainty quantification, where uncertain (random) quan-
tities are seen as functionals of parameters characterizing the input uncertain-
ties. This functional view, combined with approximation theory and numerical
analysis, has led to the development of a family of numerical methods, called
spectral stochastic methods, for the propagation of uncertainties through a
model, yielding a complete characterization of uncertain model outputs (see
recent reviews [19,30,14] and [13]). The introduction of model uncertainty may
also be required for different purposes such as model design, identification or
optimization, where one is interested in the quantification of model outputs
for a certain range of input parameters. In this context of parametric analyses,
spectral methods provide an explicit representation of the output with respect
to input parameters, thus allowing a posteriori parametric analyses. There-
fore, they constitute efficient alternatives to traditional methods that require
many evaluations of the initial model for particular values of input parame-
ters (e.g. corresponding to an experimental design, iterates of an optimization
procedure...).

Spectral methods for uncertainty quantification have been successfully applied
to many problems in science and engineering. In particular, many works have
considered the uncertainty propagation through models involving partial dif-
ferential equations (PDEs) with uncertain operators and source terms (see e.g.
[9,4,15,28]). A few works have been recently devoted to numerical methods for
PDEs defined on uncertain domains [31,29,5,23,2,16,10,22]. The explicit char-
acterization of output quantities with respect to input shape parameters is of
great interest in various analyses: impact of random perturbations of a shape,
shape optimization in model design, inverse analysis in non destructive testing
(location of a defect)... The above mentioned works start with a reformulation
of the problem on a fixed deterministic domain. In [31,29,16], a random map-
ping maps the random domain into a deterministic domain, thus transforming

∗ Corresponding author. Tel: +33-2-40-37-16-76
Email address: anthony.nouy@ec-nantes.fr (A. Nouy).

1 This work is supported by the French National Research Agency (grant ANR-
2010-COSI-006-01).

2



a PDE defined on an uncertain domain into a PDE defined on a fixed domain
with uncertain operator and right-hand-side depending on the mapping and
its derivatives. In [5,23], fictitious domain methods are introduced and consist
in embedding the uncertain domain into a fixed domain, the geometry being
characterized with a level-set technique or a mapping technique.

Contribution of this paper

In this paper, we present an efficient method for the numerical solution of
PDEs defined on uncertain parameterized domains Ω(ξ), with ξ ∈ Ξ being
parameters (eventually random), which combines a fictitious domain approach
and a tensor-based method, namely the Proper Generalized Decomposition,
for the construction of optimal separated representations of the solution. For
the proposed tensor-based method to be computationally tractable, additional
technical ingredients are introduced in order to recast the problem in a suitable
tensor format. These ingredients consist of specific treatments of the random
geometry, more precisely of the indicator function representing the random
domain. The impact of these approximations of the geometry are carefully
analyzed.
As a model example, we consider a simple diffusion equation −∆u = f defined
on Ω(ξ). The paper is limited to the case of Neumann conditions on uncertain
parts of the boundary.
A fictitious domain approach is first adopted for the reformulation of the prob-
lem on a fixed domain Ω�, which introduces a prolongation ũ of the solution
u. It yields a weak formulation of the parametric (stochastic) problem in a
tensor product space V�⊗S (product of space functions and parametric func-
tions) 2 , with V� ⊂ {w : Ω�→ R} and S ⊂ {λ : Ξ→ R}.
Model reduction techniques based on the construction of separated represen-
tations are receiving a growing interest in scientific computing. A family of
methods, recently called Proper Generalized Decomposition (PGD) methods
have been introduced for the a priori construction of separated representations
of the solution of problems defined in tensor product spaces [1,12,20,6,8]. PGD
methods can be interpreted as generalizations of Proper Orthogonal Decompo-
sition (or Singular Value Decomposition, or Karhunen-Loeve Decomposition)
for the a priori construction of a separated representation of the solution.
In the context of uncertainty propagation, this method has been initially in-
troduced as a generalization of spectral decompositions [17] for the a priori
construction of a separated representation of the solution of stochastic PDEs.

2 In the model example, V� ⊂ H1(Ω�) and S = L2
Pξ

(Ξ) with Pξ a measure associ-
ated with ξ.
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The solution is here searched under the form

u(x, ξ) ≈
m∑

i=1

(wi ⊗ λi)(x, ξ) =
m∑

i=1

wi(x)λi(ξ) (1)

with wi ∈ V� and λi ∈ S. Several definitions of separated representations have
been proposed. In this paper, we introduce a particular progressive definition of
the PGD, based on successive best approximation problems for the progressive
definition of the couples of functions (wi, λi) ∈ V�×S, which are constructed
with an alternated minimization procedure 3 . This construction only requires
the solution of independent subproblems defined on S (parametric algebraic
equations) and subproblems defined on V� (non parametric PDEs). Let us
note that PGD methods have also been extended to uncertainty quantification
problems for high-dimensional parametric models [7,21] (i.e. involving a large
number of parameters ξ = (ξ1, . . . , ξr) ∈ Ξ ⊂ R

r) by using separated variables
representations of the solution u(x, ξ1, . . . , ξr) ≈

∑m
i=1 wi(x)λ1

i (ξ1) . . . λ
r
i (ξr).

These methods allow the a priori construction of a separated representation
of a solution defined on a very high-dimensional parametric space. The method
can handle problems with such a dimension that their solution is unfeasible
with classical spectral stochastic approximation techniques. For the sake of
simplicity, in this article, we restrict the presentation to the construction of
a separation of type (1), without any additional separation of parameters
ξ = (ξ1, . . . , ξr). However, following [21], the methodology could be easily
extended to the case of multidimensional separations.

The outline of the paper is as follows. In section 2, we introduce a fictitious do-
main formulation of partial differential equations defined on uncertain param-
eterized domains, resulting in a weak formulation defined in a tensor product
space, where variational forms involve the indicator function of the parameter-
ized domain. In section 3, we introduce and illustrate the Proper Generalized
Decomposition (PGD) method for the construction of a separated representa-
tion (1) of the solution. In order to obtain an efficient method outperforming
traditional solution techniques, variational forms must also admit accurate low
rank separated representations. For this purpose, in section 4, we introduce
separated representations of the indicator function in order to obtain accurate
separated representations of variational forms. Smoothing of indicator func-
tions is introduced in order to improve the convergence rate of their separated
representations. Moreover, a method is proposed for the construction of a con-
strained tensor product approximation which preserves positivity and there-
fore ensures well-posedness of problems associated with approximate indicator
functions. In section 5, a second example illustrates the overall methodology.

3 Alternative definitions and improved algorithms for their construction could be
also used [18,20].
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2 Formulation of the problem and fictitious domain approach

2.1 Partial differential equation defined on uncertain parameterized domain

Let (Ξ,B, Pξ) be a finite dimensional probability space representing the un-
certainties on a geometry 4 , where Ξ ⊂ R

r is the set of elementary events 5 . Pξ
denotes the probability measure of a finite set of random variables ξ which are
random parameters controlling the shape of a random domain Ω(ξ) ⊂ R

d. 6

For each ξ ∈ Ξ, the domain Ω(ξ) is bounded and connected and its boundary
∂Ω(ξ) is assumed to be sufficiently smooth (e.g. curvilinear polygonal or piece-
wise C1,1 boundary). We here consider a simple diffusion partial differential
equation defined on random domain Ω(ξ)

−∆u = f on Ω(ξ)

∇u · n = 0 on ΓN(ξ)

u = 0 on ΓD(ξ)

(2)

where ΓD and ΓN are homogeneous Dirichlet and Neumann boundaries re-
spectively, with ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω. The spatial-weak and
stochastic-strong formulation of (2) writes 7 :

Find u(ξ) ∈ V(ξ) such that

a(u(ξ), v; ξ) = ℓ(v; ξ) ∀v ∈ V(ξ)
(3)

with

a(u, v; ξ) =
∫

Ω(ξ)
∇v · ∇u dx, ℓ(v; ξ) =

∫

Ω(ξ)
vf dx (4)

and where

V(ξ) = {v ∈ H1(Ω(ξ)) ; v = 0 on ΓD(ξ)}

4 In this article, we consider that geometrical uncertainties are modeled within a
probabilistic framework. However, let us note that for classical parametric analyses,
the set Ξ could be endowed with a uniform (non probability) measure Pξ.
5 Note that random domains with boundaries defined by infinite dimensional ran-
dom fields could be handled by introducing a first stochastic discretization step (e.g.

with Karhunen-Loeve decomposition).
6 More precisely, Ω is considered as a random variable defined on (Ξ,B, Pξ) with
values in the set of measurable sets in R

d.
7 We consider equivalently u as a function of ξ with values in H1(Ω(ξ)), denoted
u(ξ)(x), or a function of x and ξ with values in R, denoted u(x, ξ).
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We now introduce the function space

W = {v : y ∈ Ξ 7→ v(y) ∈ V(y) ;
∫

Ξ
‖v(y)‖2V(y)dPξ(y) <∞} := L2

Pξ
(Ξ;V)

with
‖v(y)‖2V(y) =

∫

Ω(y)
∇v(x) · ∇v(x)dx.

We denote by ‖ · ‖W the norm on W defined by

‖v‖2W =
∫

Ξ
‖v(y)‖2V(y)dPξ(y).

A stochastic-weak formulation can then be written

Find u ∈ W such that

A(u, v) = L(v) ∀v ∈ W (P)

where

A(u, v) =
∫

Ξ
a(u, v; y)dPξ(y) =

∫

Ξ

∫

Ω(y)
∇u · ∇v dx dPξ(y) (5)

L(v) =
∫

Ξ
ℓ(v; y)dPξ(y) =

∫

Ξ

∫

Ω(y)
f v dx dPξ(y) (6)

In this paper, we only consider the case where the Dirichlet boundary ΓD is
deterministic. The case where ΓD(ξ) is random will be briefly discussed in sec-
tion 2.2.4 and a dedicated method will be presented in another paper. In this
paper, we focus on the modelling of geometrical uncertainties. However, note
that other sources of uncertainties, on the source term f or on the diffusion
operator, can be handled with no extra difficulty.

2.2 A fictitious domain formulation

We now introduce a reformulation of problem (P) on a deterministic fictitious
domain. For simplicity, the present paper is restricted to a simple diffusion
equation with homogeneous boundary conditions. However, the results could
be naturally extended to a larger class of problems, by using ad-hoc fictitious
domain reformulations (see e.g. [11,25,26] for a natural extension to diffusion-
reaction equations and the introduction of non-homogeneous Dirichlet, Neu-
mann or Robin boundary conditions).

2.2.1 Introduction of a fictitious domain

We recall that we only consider the case where ΓD is deterministic and ΓN(ξ) is
random. We introduce a deterministic fictitious domain Ω� such that

⋃

y∈Ξ Ω(y) ⊂
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Ω� and such that ΓD ⊂ Γ�
D ⊂ ∂Ω�, where the boundary of the fictitious do-

main ∂Ω� is partitioned into two deterministic disjoint sets Γ�
N and Γ�

D (see
Figure 1) 8 .

Ω

ΓD

ΓN

ΓN(ξ)

Figure 1. Fictitious domain

2.2.2 Indicator functions

We introduce a function Iη : Ω�× Ξ→ R, with 0 ≤ η ≤ 1, defined by

Iη(x, y) =







1 if x ∈ Ω(y)

η if x /∈ Ω(y)
(7)

I0(·, y) corresponds to the classical indicator function of domain Ω(y), simply
denoted I in the following. Function Iη can be expressed in terms of I as
follows:

Iη = I + η(1− I) = η + (1− η)I (8)

In practice, we introduce a function φ : Ω�× Ξ→ R such that

I(x, y) = H(−φ(x, y)), (9)

where H is the heaviside function defined by H(a) =







1 if a > 0

0 if a ≤ 0
. Here, we

use for φ(x, ξ) a random level-set function whose iso-zero in Ω� characterizes
the random boundary ΓN(ξ).

8 Note that the choice of boundary conditions on ∂Ω�\∂Ω(ξ) has a part of arbi-
trariness. However, this choice does not significantly impact on the solution if the
fictitious boundary is chosen sufficiently large.
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2.2.3 Reformulation of the problem

Problem (3) is reformulated as follows:

Find uη(ξ) ∈ V� such that

aη(uη(ξ), v; ξ) = ℓ(v; ξ) ∀v ∈ V�
(10)

where

aη(u, v; ξ) =
∫

Ω�

Iη∇v · ∇u dx, (11)

ℓ(v; ξ) =
∫

Ω�

I vf dx (12)

and where V� is a deterministic function space defined by

V� = {v ∈ H1(Ω�); v = 0 on Γ�

D}

The deterministic counterpart of the above formulation belongs to the class
of reformulations proposed in [11]. We now introduce the function space

W� = {v : y ∈ Ξ 7→ v(y) ∈ V�;
∫

Ξ
‖v(y)‖2V�dPξ(y) <∞} = L2

Pξ
(Ξ;V�)

with
‖v‖2V� =

∫

Ω�

∇v(x) · ∇v(x)dx.

Since V� is deterministic, we have W� = L2
Pξ

(Ξ;V�) ≃ V� ⊗ S, where S :=

L2
Pξ

(Ξ). W� is equipped with the following norm

‖v‖2W� =
∫

Ξ
‖v(y)‖2V�dPξ(y) =

∫

Ξ

∫

Ω�

|∇v(x, y)|2dµ(x, y)

where µ is the product measure on R
d×Ξ, such that dµ(x, y) = dxdPξ(y). We

then have the following stochastic-weak formulation of problem (10):

Find uη ∈ W� = V�⊗ S such that

Aη(uη, v) = L(v) ∀v ∈ W� = V�⊗ S
(Pη)

where Aη and L are continuous bilinear and linear forms on W� = V� ⊗ S,
defined by

Aη(u, v) =
∫

Ξ
aη(u, v; y) dPξ(y) =

∫

Ω�×Ξ
Iη∇v · ∇u dµ (13)

L(v) =
∫

Ξ
ℓ(v; y) dPξ(y) =

∫

Ω�×Ξ
I v f dµ (14)

Using (8), bilinear form Aη is equivalently expressed in terms of the classical
indicator function I as follows:

Aη(u, v) = η
∫

Ω�×Ξ
∇v · ∇u dµ+ (1− η)

∫

Ω�×Ξ
I∇v · ∇u dµ (15)
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For η > 0, Aη is a symmetric continuous and coercive bilinear form on W� =
V� ⊗ S. Therefore, there exists a unique solution to problem (Pη) which is
equivalently characterized by

uη = arg min
v∈V�⊗S

1

2
Aη(v, v)− L(v)

The convergence of uη when η → 0 is analyzed in appendix A. In the following,
we consider that uη solution of (Pη) is our reference solution, with η chosen
sufficiently small such that uη provides a good approximation of the solution
u of problem (P).

2.2.4 The case of random Dirichlet boundaries

The case where Dirichlet boundary ΓD(ξ) is random and ΓN is deterministic
can be handled in the same framework. It corresponds to a penalty method
for treating Dirichlet boundary conditions. Let us briefly detail this approach.
Let us introduce the partition ∂Ω� = Γ�

D ∪ Γ�
N with ΓN ⊂ Γ�

N . Then, we can
use the reformulation (Pη), with the following definition of bilinear form:

Aη(u, v) =
∫

Ω�×Ξ
Iη∇v · ∇u dµ+

∫

Ω�×Ξ
η(1− I)v u dµ (16)

with Iη = I for a L2 penalization or Iη = I+η(1−I) for a H1 penalization. We
choose η > 1. Denoting u and uη the solutions of (P) and (Pη) respectively, we
have limη→∞ ‖u− uη‖W = 0. The treatment of Dirichlet boundary conditions
on a random boundary is then possible with a standard Galerkin approxima-
tion method, consisting in introducing approximation spaces in formulation
(Pη). However, this reformulation is not adapted to the use of Proper General-
ized Decomposition, in the case where the indicator function I is approximated
(see section 4). Indeed, a coarse approximation of I can have dramatic conse-
quences on the quality of the solution, because η takes high values (required in
order to correctly treat boundary conditions). An alternative reformulation,
adapted to the Proper Generalized Decomposition method, will be introduced
in another paper. It consists in using a characteristic function method [3].

3 Proper Generalized Decomposition

We consider the solution of problem (Pη) with the Proper Generalized Decom-
position (PGD) method. The idea is to find an approximation of the solution

9



uη ∈ V�⊗ S of (Pη) under the form 9

uη ≈ um =
m∑

i=1

wiλi, wi ∈ V�, λi ∈ S (17)

where um is called a rank-m separated representation of uη. This can be in-
terpreted as a simultaneous construction of reduced bases of spatial func-
tions {wi}mi=1 and stochastic functions {λi}mi=1, which are optimal (in some
sense to be defined) for the representation of the present solution uη. We here
present a particular progressive definition of the PGD. The reader can refer
to [17,18,19,20] for alternative definitions. Note that the constructed sequence
um depends on the parameter η but this dependence will be omitted in order
to simplify the notations.

3.1 Definition of the progressive PGD

Definition 1 The progressive PGD {um}m∈N of the solution uη of problem
(Pη) is defined by

um = um−1 + wmλm

with u0 = 0 and

(wm, λm) ∈ arg min
w∈V� ,λ∈S

1

2
Aη(wλ,wλ)− L(wλ) + Aη(um−1, wλ) (18)

Definition 1 is equivalent to 10

(wm, λm) ∈ arg min
w∈V� ,λ∈S

‖uη − um−1 − wλ‖2Aη (19)

where uη is the solution of (Pη) and ‖ · ‖Aη is the norm on V�⊗S induced by
Aη, defined by

‖v‖2Aη = Aη(v, v).

A new couple of functions (wm, λm) ∈ V�×S is then defined as a couple which
minimizes the distance between um and uη, with respect to the norm induced
by Aη.

Let us introduce the mapping Fm : S → V� defined by

Fm(λ) = arg min
w∈V�

1

2
Aη(wλ,wλ)− L(wλ) + Aη(um−1, wλ) (20)

9 The tensor product ⊗ is omitted in the notation wλ ≃ w ⊗ λ.
10 Note that there exist infinitely many solutions to the minimization problem (19).
If a normalization of wm (or λm) is added, there may still exists different minimizers
(wm, λm).

10



and the mapping F ⋄m : V�→ S defined by

F ⋄m(w) = arg min
λ∈S

1

2
Aη(wλ,wλ)− L(wλ) + Aη(um−1, wλ). (21)

We have the following properties:

‖uη − um−1 − wF ⋄m(w)‖2Aη = ‖uη − um−1‖2Aη − r⋄m(w) (22)

with r⋄m(w) = ‖wF ⋄m(w)‖2Aη , and

‖uη − um−1 − Fm(λ)λ‖2Aη = ‖uη − um−1‖2Aη − rm(λ) (23)

with rm(λ) = ‖Fm(λ)λ‖2Aη . We then have the following theorem, which is a
particular case of a more general convergence result of progressive PGD in
tensor product Hilbert spaces [8]. 11

Theorem 1 The progressive PGD {um}m∈N strongly converges with m to-
wards the solution uη of problem (Pη) (for a fixed η). We have

‖uη − um‖2Aη = ‖uη‖2Aη −
m∑

i=1

σ2
i −→m→∞ 0 (24)

where σm is defined by

σ2
m = max

w∈V�

r⋄m(w) = max
λ∈S

rm(λ) (25)

Remark 2 (Approximation) In practice, we introduce the approximation
spaces V�

N ⊂ V� and SP ⊂ S and we construct a PGD sequence {um}m∈N ⊂
V�
N ⊗ SP which converges to the Galerkin approximation uηN,P in V�

N ⊗ SP of
the solution uη of problem (Pη).

The progressive PGD can be interpreted in terms of successive pseudo eigen-
problems on the operators T ⋄m(w) = r⋄m(w)Fm ◦ F ⋄m(w). r⋄m is interpreted
as a pseudo Rayleigh quotient, which is maximized by the optimal func-
tion wm, called the dominant pseudo eigenfunction of T ⋄m. Equivalently, it
can be interpreted in terms of successive pseudo eigenproblems on operators
Tm(λ) = rm(λ)F ⋄m ◦ Fm(λ). rm is interpreted as a pseudo Rayleigh quotient,
which is maximized by the optimal function λm, called the dominant pseudo
eigenfunction of Tm. The values σm are then interpreted as singular values of a
progressive (generalized) singular value decomposition of uη, also named gen-
eralized spectral decomposition (see [17]). The reader can refer to [8] for a more

11 Let us note that for η = 0, bilinear form Aη only defines a pseudo norm on
the tensor Hilbert spaces. However, Theorem 1 is still valid and convergence of the
separated representation can be proved with respect to this pseudo-norm (equivalent
to a convergence towards a particular solution of problem (Pη)).
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general interpretation in terms of a generalized singular value decomposition
in tensor Hilbert spaces.

3.2 Associated algorithm

Starting from an initial function λ0 ∈ S, we construct the sequences {wk}k≥1 ⊂
V� and {λk}k≥1 ⊂ S, defined by

wk+1 = Fm(λk), λk+1 = F ⋄m(wk+1)

The algorithm can be interpreted as an alternated minimization algorithm for
solving optimization problem (18). It can also be interpreted as a power-type
algorithm 12 for finding the dominant pseudo eigenfunction of operator T ⋄m,
or equivalently of Tm (see [18]). In practice, only a few iterations (3 or 4) are
sufficient to obtain a good approximation of an optimal couple (wm, λm).

3.2.1 Application of mapping Fm (spatial problem)

For a given λ ∈ S, w = Fm(λ) is the solution of the following problem

w ∈ V�, aλ(w,w
∗) = lλ(w

∗) ∀w∗ ∈ V� (Pw)

with

aλ(w,w
∗) =

∫

Ω�

κ∇w · ∇w∗ dx, (26)

lλ(w
∗) =

∫

Ω�

gw∗ dx−
m−1∑

i=1

∫

Ω�

κi∇wi · ∇w∗ dx, (27)

and

κ(x) =
∫

Ξ
Iη(x, y)λ(y)2dPξ(y) = E(Iη(x, ξ)λ(ξ)2) (28)

g(x) =
∫

Ξ
I(x, y)f(x, y)λ(y)dPξ(y) = E(I(x, ξ)f(x, ξ)λ(ξ)) (29)

κi(x) =
∫

Ξ
Iη(x, y)λ(y)λi(y)dPξ(y) = E(Iη(x, ξ)λ(ξ)λi(ξ)) (30)

where E is the mathematical expectation defined by E(f(ξ)) =
∫

Ξ f(y)dPξ(y).

12 We have wk+1 ∝ T ⋄m ◦ . . . ◦ T ⋄m
︸ ︷︷ ︸

k times

(w1) and λk+1 ∝ Tm ◦ . . . ◦ Tm
︸ ︷︷ ︸

k times

(λ1)
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3.2.1.1 Interpretation Problem (Pw) appears as a classical diffusion equa-
tion on Ω� the strong formulation of which reads:

−∇ · (κ∇w) = g +
m−1∑

i=1

∇ · (κi∇wi) on Ω�

κ∇w · n = −
m−1∑

i=1

κi∇wi · n on Γ�

N

w = 0 on Γ�

D

κ appears as a non homogeneous diffusion coefficient of a virtual material. Let
us consider that λ is normalized, i.e. ‖λ‖2 = E(λ2) = 1. Denoting Ξx = {y ∈
Ξ; x ∈ Ω(y)}, we have

κ(x) =
∫

Ξx
λ2dPξ + η

∫

Ξ\Ξx
λ2dPξ

= 1 + (η − 1)
∫

Ξ\Ξx
λ2dPξ = η + (1− η)

∫

Ξx
λ2dPξ

We have κ(x) = 1 (resp. η) for x such that Pξ(Ξx) = 1 (resp. 0), i.e. if
point x is almost surely inside (resp. outside) the domain. For x such that
0 < Pξ(Ξx) < 1, we have η < κ(x) < 1 (since η < 1).

3.2.1.2 Approximation In practice, we introduce a classical finite ele-
ment approximation space V�

N ⊂ V� and an approximation wN of w is defined
by:

wN ∈ V�

N , aλ(wN , w
∗) = lλ(w

∗) ∀w∗ ∈ V�

N (PNw )

3.2.2 Application of mapping F ⋄m (stochastic algebraic equation)

For a given w ∈ V�, λ = F ⋄m(w) is the solution of the following problem

λ ∈ S, aw(λ, λ∗) = lw(λ∗) ∀λ∗ ∈ S (Pλ)

with

aw(λ, λ∗) = E(λ∗αλ), (31)

lw(λ∗) = E(λ∗
(

β −
m−1∑

i=1

αiλi
)

), (32)

13



where

α(y) =
∫

Ω�

Iη(x, y)∇w(x) · ∇w(x) dx (33)

β(y) =
∫

Ω�

I(x, y)f(x, y)w(x) dx (34)

αi(y) =
∫

Ω�

Iη(x, y)∇w(x) · ∇wi(x) dx (35)

3.2.2.1 Approximation In practice, we introduce a classical spectral stochas-
tic approximation space SP ⊂ S and an approximation λP of λ is defined by:

λP ∈ SP , aw(λP , λ
∗) = lw(λ∗) ∀λ∗ ∈ SP (PPλ )

3.3 Illustration

3.3.1 Description of the problem

We consider the Poisson equation (2) with f = 1 and a domain Ω(ξ) =
{(0, 2) × (0, 1)}\D(ξ), where D(ξ) = {x ∈ R

2; |x − c(ξ)| ≤ R} is a random
circular domain with radius R = 0.2 and center c(ξ) = (1.4ξ+ 0.3, 0.5), where
ξ is a uniform random variable on Ξ = (0, 1) (see Figure 2). We consider the
fictitious domain Ω� = (0, 2)× (0, 1) such that Ω(ξ) = Ω�\D(ξ). We consider
homogeneous Dirichlet boundary conditions on ΓD = ∂Ω� and homogeneous
Neumann boundary conditions on ΓN(ξ) = ∂D(ξ). We have Γ�

D = ∂Ω� and
Γ�
N = ∅. The circle is characterized by the iso-zero in Ω� of the parameterized

level-set function φ(x, ξ) = R− |x− c(ξ)|.

C(c
x
(ξ),0.5)

Γ
D

Γ
N

1.70.3

Figure 2. Model example.

A finite element approximation space V�
N is introduced using a regular mesh

composed of 3660 triangular elements (N = 1740). We also introduce an
approximation space SP composed of piecewise polynomial approximation of
degree 2 (of finite element type) associated with a uniform partition of Ξ into
20 elements (P = 60). In the following, the Galerkin approximation uηN,P ∈
V�
N ⊗ SP of problem (Pη) will be simply denoted by uη.

14



3.3.2 Behavior of the fictitious domain method

A convergence analysis of the fictitious method with respect to η is first con-
ducted. The solution uη of (Pη) is compared to the solution u of the initial
problem (P) by introducing the error indicator

εΩ(uη; u) =
‖u− uη‖Ω
‖u‖Ω

(36)

with ‖ · ‖Ω the natural norm on L2
Pξ

(Ξ;L2(Ω)) defined by

‖u‖2Ω =
∫

Ξ

∫

Ω(y)
u2 dx dPξ(y).

Solution u is obtained with the same spatial mesh as for uη. The convergence
of uη is illustrated in Figure 3. We observe a linear convergence of uη with η.
This illustrates the convergence result (A.2) stated in appendix A.

10
−8

10
−6

10
−4

10
−2

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

η

E
rr

or

Figure 3. Convergence of the solution of the fictitious domain method: evolution of
the error indicator εΩ(uη ;u) with η.

In order to study the transmission condition on the internal boundary ΓN
recalled in remark 4 of appendix A, we introduce the following indicator:

iBC(η) =
‖ 1
meas(ΓN )1/2

∂uη

∂n
‖ΓN

‖ 1
meas(Ω)1/2

∇uη‖Ω
(37)

where n is the unit normal to ΓN . iBC(η) is evaluated for different spatial
meshes and is plotted in Figure 4.

We observe that as η tends towards 0, the homogeneous Neumann bound-
ary condition is better satisfied until the plateau due to the finite element
approximation is reached.
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−0.54

η
i B

C

 

 

h=0.08
h=0.04
h=0.028

Figure 4. Evaluation of the transmission condition on ΓN : evolution of indicator
iBC(η) with η for different element sizes h of the spatial mesh.

3.3.3 Convergence of the PGD

We now adopt a fictitious domain formulation with η = 0.01 and we consider
as a reference solution the Galerkin approximation uη ∈ V�

N ⊗ SP of problem
(Pη).

The progressive PGD um is compared to the reference solution uη ∈ V�
N ⊗SP

with the error indicator εΩ(um; uη). The convergence of the PGD is illus-
trated in Figure 5. We observe a fast convergence of the PGD and the error
εΩ(um; uη) = 10−2 is reached with a low rank m = 10. Figures 6 and 7 respec-

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

Rank m

E
rr

or

Figure 5. Convergence of the progressive PGD: evolution of the error indicator
εΩ(um;uη) with m.

tively show the first deterministic vectors wi and parametric functions λi of
the PGD. We can observe that the first sets of functions are smooth functions
that can describe the global behavior of the response. Then as the progressive
PGD goes along, the new sets of functions allow to well describe the local
behavior of the response. Figure 8 illustrates the first diffusion coefficients
κ(x) = E(Iηλ2

i ) of the “virtual material” defined in (28). The black areas cor-
respond to κ = 1 and the white areas correspond to κ = η. We verify that
κ(x) = 1 for points x almost surely inside the random domain Ω(ξ). Figure 9
shows the reference solution uη and um for some values of rank m, evaluated
for ξ = 0.5. Again, it illustrates the good convergence of the PGD towards the
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(a) w1 (b) w2 (c) w3 (d) w4

(e) w5 (f) w6 (g) w7 (h) w8

Figure 6. The first deterministic vectors wi of the PGD.
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Figure 7. The first parametric functions λi(ξ) of the PGD.

reference solution. Finally, Figure 10 shows the reference solution uη and the
PGD approximation u60 for several realizations of ξ. The rank-60 progressive
PGD gives a very accurate approximation for all these realizations.
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(a) E(Iηλ2
1) (b) E(Iηλ2

2) (c) E(Iηλ2
3) (d) E(Iηλ2

4)

(e) E(Iηλ2
5) (f) E(Iηλ2

6) (g) E(Iηλ2
7) (h) E(Iηλ2

8)

Figure 8. The first diffusion coefficient κ = E(Iηλ2
i ) of the “virtual material”.

(a) uη (b) u1 (c) u3

(d) u5 (e) u9 (f) u60

Figure 9. Comparison between uη(·, ξ) and um(·, ξ) for ξ = 0.5.

(a) (b)

Figure 10. Comparison between uη(·, ξ) (a) and u60(·, ξ) (b) for 6 realizations of ξ.
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4 Separated representations of the indicator functions

When directly applied to problem (Pη), the PGD method is not computa-
tionally tractable since bilinear form Aη and linear form L do not have a
“separated form”. In practice, when the approximation spaces V�

N ⊂ V� and
SP ⊂ S are introduced, the solutions of problems (PNw ) and (PPλ ) require a fine
integration of the bilinear and linear forms, which limits the use of the method
to relatively coarse approximation spaces at both spatial and stochastic levels.
This point was also the limiting point of the direct Galerkin approximation
approach introduced in [23], where specific integration techniques (computa-
tionally costly) were proposed.

We here propose to introduce a suitable approximation of the indicator func-
tion I in order to obtain a separated representation of bilinear and linear forms
and therefore to obtain a significant gain with the PGD method compared to
a classical direct computation of the Galerkin approximation of problem (Pη).

4.1 Reformulation of the problem with approximate indicator functions

We introduce the following rank-s separated representation of I:

I(x, ξ) ≈ Is(x, ξ) =
s∑

i=1

gi(x)χi(ξ) (38)

and introduce the associated problem:

Find uη,s ∈ W� = V�⊗ S such that

Aηs(u
η,s, v) = Lηs(v) ∀v ∈ W� = V�⊗ S (Pη,s)

where Aηs and Lηs are approximations of the bilinear and linear forms Aη and
L, obtained by replacing I by Is in equations (15) and (14):

Aηs(u, v) = η
∫

Ω�×Ξ
∇u · ∇v dµ+ (1− η)

∫

Ω�×Ξ
Is∇u · ∇v dµ (39)

Lηs(v) =
∫

Ω�×Ξ
Isf
ηv dµ (40)

where f η is a prolongation of f on Ω� × Ξ which can possibly depend on
parameter η.

Two important issues must be considered: the separated representation (38)
should be such that (i) problem (Pη,s) is well posed and (ii) uη,s is a “good
approximation” of the solution uη of problem (Pη). These two issues are solved
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if there exists an integer s′ such that for all s ≥ s′, we have (almost surely)

α ≤ Is(x, ξ) ≤ β (41)

where β is a constant and α is a constant such that

α >
−η

1− η (42)

Indeed, under conditions (41) and (42), (i) Aηs is continuous and coercive and
therefore (Pη,s) is well posed, and (ii) the solution uη,s strongly converges with
s towards the solution uη of problem (Pη). This convergence result is proved
in appendix A.

Let us note that in problem (Pη,s), we use a prolongation f η of f on Ω�× Ξ
and the sequence {uη,s}s≥1 depends on this prolongation. For a fixed η, the
convergence of the sequence uη is guaranteed whatever the choice of prolonga-
tion. However, the convergence properties may be influenced by this choice. In
appendix A, it is given a sufficient condition on the prolongation f η in order
to obtain convergence properties only dependent on the convergence of the
sequence of approximate indicator functions {Is}s≥1.

4.2 Separated representations of Is

We now address the problem of the construction of a separated representation
(38) of Is verifying (41). We present two alternatives. The first one is a clas-
sical Karhunen-Loève expansion, for which restrictive assumptions on I are
required. The second one is an original definition of a constrained separated
representation, which could be considered as a generalization of Karhunen-
Loève decomposition in order to impose uniform boundedness constraints.

4.2.1 Karhunen-Loève expansion of the indicator function

Separated representation Is can be defined as a classical Karhunen-Loève ex-
pansion of I, defined by

‖I − Is‖2Ω� = min
g1,...,gs∈L2(Ω� )
χ1,...,χs∈L2

Pξ
(Ξ)

‖I −
s∑

i=1

giχi‖2Ω� (43)

where ‖ · ‖Ω� is the usual norm on L2
µ(Ω

�× Ξ), defined by

‖I‖2Ω� =
∫

Ω�×Ξ
I2dµ
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We denote cI : Ω�× Ω�→ R the correlation kernel of I, defined by

cI(x, x
′) =

∫

Ξ
I(x, y)I(x′, y)dPξ(y) = E(I(x, ξ)I(x′, ξ))

Functions gi are solutions of the eigenproblem

∫

Ω�

cI(x, x
′)gi(x

′) dx′ = γigi(x) (44)

The eigenfunctions {gi}i≥1 form a basis of L2
µ(Ω

� × Ξ) and are orthogonal
with respect to the natural inner product in L2

µ. If the gi are normalized, the
associated functions χi are obtained by

χi(y) =
∫

Ω�

I(x, y)gi(x) dx

The sequence Is converges towards I in L2
µ but this does not necessarily guar-

antee Property (41). However, under suitable restrictive assumptions on func-
tion I, discussed in appendix B, we have a uniform convergence of Is towards
I, i.e. 13

lim
s−→∞

‖I − Is‖L∞Pξ (Ξ;L∞(Ω�)) = 0

which means that for ǫ > 0, there exists s′(ǫ) such that for s ≥ s′(ǫ), we have
(almost everywhere and almost surely)

|I − Is| ≤ ǫ ⇒ −ǫ ≤ Is ≤ 1 + ǫ

which implies the desired property (41) and (42) for ǫ < η
1−η

. Using a classical
Karhunen-Loève expansion of I is then theoretically possible, at the condition
of choosing a rank sufficiently high in order to satisfy property (41). However,
in practice, the L∞ convergence is very slow and a very high rank is required in
order to reach a precision ǫ < η

1−η
when using small values of η (as illustrated

below).

4.2.2 Constrained separated representation of the indicator function

We now introduce a new definition of separated representation (38) that tries
to preserve the constraint (41) whatever the rank s. A detailed analysis of this
new definition can be found in [24].

We propose to replace the definition (43) of the classical Karhunen-Loève
expansion by the following definition. Starting from I0 = 0, we define for

13 ‖I‖L∞
Pξ

(Ξ;L∞(Ω� )) = Pξ − ess supξ∈Ξ ‖I(x, ·)‖L∞(Ω�), with Pξ − ess supξ∈Ξ f(ξ) =

inf{a ∈ R;Pξ({y ∈ Ξ; f(y) > a}) = 0}
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s ≥ 1,

(gs, χs) ∈ arg min
g∈L2(Ω�)
χ∈L2

Pξ
(Ξ)

1

2
‖I − Is−1 − gχ‖2Ω� + F (Is−1 + gχ) (45)

where F (I) is a suitable convex lower semi-continuous coercive functional on
V = L2(Ω�)⊗L2

Pξ
(Ξ) which takes high values for non admissible functions I,

i.e. which do not verify (41).
Let us introduce the functional J : V → R ∪ {+∞} defined by J(z) = 1

2
‖I −

z‖2
Ω� +F (z). From properties of F and of the norm ‖ · ‖Ω� , J is a lower semi-

continuous strictly convex and coercive functional on V . Let R1 = {gχ; g ∈
L2(Ω�), χ ∈ L2

Pξ
(Ξ)} ⊂ V be the set of rank-one separated functions in tensor

product Hilbert space V . Equation (45) then defines zs = gsχs ∈ R1 as follows

J(Is−1 + zs) = min
z∈R1

J(Is−1 + z) (46)

The existence of a minimizer zs ∈ R1 classically follows from the properties
of J and from the fact that R1 is a weakly closed subset of V (see [8]). In
fact, the proposed definition of the decomposition Is is a particular case of the
PGD for a class of nonlinear convex problems, whose mathematical analysis
will be found in a forthcoming paper.

4.2.2.1 Choice of functional F For the present context, we choose

F (I) =
∫

Ω�×Ξ
f(I(x, y)) dµ(x, y) (47)

where f : R→ R∪{+∞} is a convex lower semi-continuous coercive function
which is zero inside the admissible interval [α, β] and takes high values outside
this interval. Ideally, we could choose

f(x) =







0 if x ∈ [α, β]

+∞ if x /∈ [α, β],

but in practice, we select a two times differentiable regularization of this func-
tion:

f(x) = ǫ−1
(

max(x− β, 0)2 + max(α− x, 0)2
)

(48)

4.2.2.2 Algorithm In order to compute a minimizer zs = gsχs of problem
(46), we can use an alternated minimization procedure consisting in solving
successively problems of type ming J(Is−1+gχ) for a fixed χ, and minχ J(Is−1+
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gχ) for a fixed g. Each sub-problem is a nonlinear optimization problem whose
Euler-Lagrange equation writes

< J ′(Is−1 + gχ), g∗χ >= 0 ∀g∗, (49)

< J ′(Is−1 + gχ), gχ∗ >= 0 ∀χ∗ (50)

where

< J ′(Is−1 + gχ), g∗χ∗ >= (gχ+ Is−1 − I, g∗χ∗)+ < F ′(Is−1 + gχ), g∗χ∗ >

=
∫

Ω�×Ξ
(gχ+ Is−1 − I)g∗χ∗ dµ+

∫

Ω�×Ξ
f ′(Is−1 + gχ)g∗χ∗ dµ

The above Euler-Lagrange equations are nonlinear equations which can be
solved with a Newton method.

4.2.2.3 Algebraic version In practice, the indicator function is approx-
imated on a finite dimensional basis:

I(x, y) =
n∑

i=1

p
∑

j=1

Iijϕi(x)ψj(y). (51)

When selecting for ϕi and ψj interpolation bases, Iij corresponds to the value
of the indicator function at a given point xi and for a given value yj of the pa-
rameter. We then transform the continuous point of view into a discrete point
of view, consisting of a constrained singular value decomposition of matrix
(Iij), defined by

(gs, χs) ∈ arg min
g∈Rn

χ∈Rp

1

2
‖I − Is−1 − gχT‖2Ω� + F (Is−1 + gχT ) (52)

with ‖I‖2
Ω� =

∑

i,j I
2
ij and F (I) =

∑

i,j f(Iij). With this formulation, we try to
constrain the values (Is)ij to be inside the interval [α, β], which is equivalent
to imposing the constraint (41) at the interpolation points.

4.2.2.4 An alternative definition Rather than the progressive defini-
tion (45), we could also adopt the following direct definition

J(Is) = min
g1,...,gs∈L2(Ω� )
χ1,...,χs∈L2

Pξ
(Ξ)

J(
s∑

i=1

giχi) (53)

which leads in practice to far better convergence properties of the sequence
Is. An alternated minimization procedure can also be used for the solution
of this optimization problem. However, the construction of Is leads to higher
computational costs than the progressive definition.
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4.3 Illustration

We consider here the same problem as in section 3.3 (with η = 0.01). We choose
a prolongation f η = 1 on the whole fictitious domain Ω�. An approximation of
the indicator function under the form (51) is introduced where we choose for
{ϕi}ni=1 a linear finite element basis associated with the mesh of Ω� (n = 1740)
and for {ψj}pj=1 a piecewise linear interpolation basis associated with a uniform
grid of Ξ composed of 61 points (p = 61). Iij then corresponds to the value
of the indicator function at a given point xi and for a given value yj of the
parameter. In order to analyze the convergence of the separated representation
of the indicator function, we introduce the following error indicator

εΩ� (I; I∗) =
‖I − I∗‖Ω�

‖I∗‖Ω�

The solution is here searched in the approximation space introduced for the
approximated indicator function, yielding N = n = 1740 and P = p = 61.

4.3.1 Unconstrained separated representation and ill-posed problems

We denote by Is the classical (unconstrained) separated representation of I.
uη and uη,s then respectively denote the solutions of problem (Pη) with I
and of problem (Pη,s) with Is. Figure 11(a) illustrates the convergence of the
unconstrained decomposition Is with s and Figure 11(b) shows the maximum
and minimum values of Is, along with the critical value −η

1−η
. Note that in

this finite dimensional case, the separated representation Is is equal to I for
s ≥ min(n, p) = 61. We observe that the condition Is(x, ξ) >

−η
1−η

is not verified

for any s < 61. Therefore, the associated problem (Pη,s) is ill-posed for s < 61.
We observe the impact of this ill-posedness in Figure 12, which illustrates
the erratic behavior of the sequence uη,s ∈ V�

N ⊗ SP (huge difference between
consecutive solutions uη,s and uη,s+1 associated with very close functions Is and
Is+1). Let us emphasize that in a continuous framework (in V� ⊗ S), when
replacing I by Is, the solution uη,s does not even exist. If we use the PGD
method to compute the solution of problem (Pη,s) using Is with s = 20 < 61
such that the problem is ill-posed, we observe a divergence of the PGD, as
illustrated in Figure 13.
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Figure 11. Unconstrained separation: evolution of the error indicator εΩ� (Is; I) with
s (a) and minimum and maximum values of Is (b).
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Figure 12. Unconstrained separation: error in solution εΩ(uη,s;uη) with respect to
the rank s of Is.
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Figure 13. Unconstrained separation: evolution of the error εΩ(um;uη) withm where
um is the rank-m progressive PGD with I replaced by Is with s = 20.
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4.3.2 Constrained separation

We now consider the constrained separated representation Is of I with a func-
tional F defined by (47) and (48), and depending on a parameter ǫ > 0. We
fix the desired lower and upper bounds to α = 0 and β = 1. Figure 14 shows
the L2 convergence of Is towards I, for different values of ǫ. We note that the
increase of ǫ results in a slower convergence of Is. However, as illustrated in
Figure 15, the constrained separated representation verifies the desired con-
straints more and more rapidly as ǫ is increased. When using ǫ = 1000 (resp.
ǫ = 200), the condition Is(x, ξ) >

−η
1−η

is satisfied for s > 9 (resp. s > 41). A
well-posed problem can then be obtained with a low rank approximation Is
by choosing a sufficiently high parameter ǫ.
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Figure 14. Constrained separation: evolution of the error indicator εΩ� (Is; I) with
s for different values of ǫ.
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Figure 15. Constrained separation: minimum and maximum values of Is for ǫ = 200
(a) and ǫ = 1000 (b).
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4.3.3 Regularization of the indicator function

We now introduce a regularized version Ir of the indicator function I, and we
denote the associated solution of (Pη) by uη,r. The aim of this regularization
is to improve the convergence properties of separated representations, as dis-
cussed in appendix B. We define the regularization by Ir = F r(I), where F r

is a truncated sine function defined by:

F r(x) =







1
2
(1 + sin(πx

2l
)) if − l ≤ x ≤ l
0 si x < −l
1 si x > l

(54)

Figure 16 shows the error in solution εΩ(uη,r; uη) with respect to parame-
ter l of function F r. We now select l = 0.1, which corresponds to an error
εΩ(uη,r; uη) ≤ 10−2. The rank-s separated representation of Ir is denoted by
Irs , and the corresponding solution is denoted by uη,r,s (solution of (Pη,s) with
Is replaced by Irs ). Figure 17 illustrates the significant improvement of the
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Figure 16. Regularized indicator function. Error εΩ(uη,r;uη) with respect to l.

convergence with s of the separated representations (unconstrained or con-
strained with ǫ = 1000) when introducing the regularization of the indicator
function. Figure 18 shows the maximum and minimum values of the separated
representations Irs . We observe that for the unconstrained decomposition, the
condition Irs (x, ξ) >

−η
1−η

is satisfied for s > 22. Let us recall that without
regularization, this condition was not satisfied for s < 61. As regards the con-
strained decomposition, the condition is satisfied for a low rank s = 9. From
this study, we conclude that the use of the regularization combined with the
constrained separated representation allows us to obtain (i) a good conver-
gence of the separated representations Irs and (ii) a well-posed problem with
a very low rank decomposition.

Hereafter we use a constrained separation Irs of the regularized indicator func-
tion Ir using ǫ = 1000 and l = 0.1. Figure 19 shows the convergence with s
of uη,r,s towards uη,r. For s = 39, we obtain an error εΩ(uη,r,s; uη,r) lower than
10−2.
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Figure 17. Influence of the regularization (l = 0.1) on the convergence of sepa-
rated representations: error indicators εΩ� (Is; I) and εΩ� (Irs ; I

r) for unconstrained
separations (a) and constrained separations with ǫ = 1000 (b).
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Figure 18. Minimum and maximum values of Irs for unconstrained decomposition
(a) and constrained decomposition with ǫ = 1000 (b).
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Figure 19. Error indicator εΩ(uη,r,s;uη,r) with respect to s, where uη,r,s is the solu-
tion associated with a constrained separated representation Irs (with ǫ = 1000) of
the regularized function Ir (with l = 0.1).
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4.3.4 Application of the PGD

We now apply the progressive PGD algorithm to problem (Pη,s) with Irs , a
separated representation of a regularized version Ir of I. We use a regular-
ization parameter l = 0.1 corresponding to an error εΩ(uη,r; uη) ≤ 10−2 and
we further perform a constrained separated representation with ǫ = 1000 and
rank s = 39, which corresponds to an error εΩ(uη,r,s; uη,r) ≤ 10−2. This rep-
resentation ensures the well-posedness of the problem associated with uη,r,s.
Henceforth, um denotes the progressive PGD approximation of uη,r,s, asso-
ciated with the approximate indicator function Irs . Figure 20 illustrates the
convergence with m of um towards uη,r,s. We note that εΩ(um; uη,r,s) ≤ 10−2

is satisfied with a very low rank m = 8.
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Figure 20. Convergence of the progressive PGD applied to the problem associated
with the approximate indicator function Irs (constrained separated representation of
the regularized indicator function with ǫ = 1000 and s = 39, and l = 0.1): evolution
of the error indicator εΩ(um;uη,r,s) with m.
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5 Example : domain with two random sinusoïdal boundaries

5.1 Description of the problem

The overall methodology is now conducted on the Poisson problem (2) with
f = 1 and a random domain Ω(ξ) delineated with two vertical lines and two
random sinusoïdal curves (see Figure 21). The domain is characterized by

Figure 21. Domain with two random sinusoïdal boundaries: geometry and boundary
conditions.

Ω(ξ) = {x = (x1, x2) ∈ (0, 1)× R; finf(x1, ξ2) < x2 < fsup(x1, ξ1)}

with

fsup(x1, ξ1) = 0.8 + 0.2
sin(12πx1ξ1)

6ξ1 + 1

finf(x1, ξ2) = 0.2 + 0.2
sin(12πx1ξ2)

6ξ2 + 1

and where ξ1 and ξ2 are two independent uniform random variables on Ξ1 =
(0, 1) and Ξ2 = (0, 1) respectively. The homogeneous Dirichlet boundary ΓD is
composed of the vertical edges x1 = 0 and x1 = 1. The homogeneous Neumann
boundary ΓN(ξ) is composed of the two sinusoidal curves x2 = fsup(x1, ξ1) and
x2 = finf(x1, ξ1).

We introduce a square fictitious domain Ω� = (0, 1) × (0, 1). We choose for
Γ�
D the vertical edges {0} × (0, 1) and {1} × (0, 1), and for Γ�

N the horizontal
edges (0, 1)× {0} and (0, 1)× {1}. The two sinusoidal curves are respectively
characterized by the iso-zeros of two independent level-sets

φ1(x, ξ1) = x2 − fsup(x1, ξ1), φ2(x, ξ2) = finf (x1, ξ2)− x2

and the domain Ω(ξ) is equivalently characterized by

Ω(ξ) = {x ∈ Ω�;φ(x, ξ) < 0}, φ(x, ξ) = max{φ1(x, ξ1), φ2(x, ξ2)}
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We introduce a finite element approximation space V�
N , with a regular mesh

composed of 7200 triangular elements and N = 3721 nodes, denoted {xi}Ni=1.
The approximation space SP is obtained by the tensorization of piecewise
linear interpolation bases associated with uniform grids of Ξ1 and Ξ2, each
grid containing 101 points. The resulting interpolation grid on Ξ1 × Ξ2 is
composed of P = 101 × 101 = 10201 points, denoted {ξk}Pk=1. We choose a
parameter η = 0.01 and a prolongation f η = 1 on Ω�.

5.2 Application of the PGD

5.2.1 Separated representation of the indicator function

The indicator function of Ω(ξ) can be expressed as I(x, ξ) = H(−φ(x, ξ)). If
directly applied to this function, Karhunen-Loève decomposition (constrained
or not) may present a very slow convergence. This is due to the statistical
independence of the two sinusoidal boundaries. In order to decrease the di-
mensionality of the representation of I (and therefore the rank of separated
representations of bilinear and linear forms), we first split the domain Ω(ξ)
into two subdomains Ω1(ξ1) ⊂ Ω�

1 = (0, 1) × (0.5, 1) and Ω2(ξ2) ⊂ Ω�
2 =

(0, 1)× (0, 0.5). In this way, we can introduce two independent indicator func-
tions I1 : Ω�

1 × Ξ1 → R and I2 : Ω�
2 × Ξ2 → R associated with domains

Ω1(ξ1) and Ω2(ξ2) respectively. Bilinear and linear forms are then obtained by
splitting the integral on Ω� into integrals on Ω�

1 and Ω�
2 . In order to improve

convergence properties of their separated representations, the indicator func-
tions are regularized as described in section 4.3.3. As regards the parameter
l of the regularization function F r introduced in (54), we propose to choose
l = L

10
, where L is a characteristic length of the studied problem defined by

L = max
i∈{1...N}

(

max
j∈{1...P}

φ(xi, ξ
j)− min

j∈{1...P}
φ(xi, ξ

j)

)

,

where the xi are the nodes of the finite element mesh and where the ξj are
the nodes of the stochastic interpolation grid. For the problem concerned, l is
found 0.07. It corresponds to an error εΩ(uη,r; uη) = 3.10−2. We then proceed
to the computation of the two constrained rank-s separated representations
Ir1,s and Ir2,s of the regularized functions Ir1 and Ir2 respectively, using s = 100
and ǫ = 1000 for each of the two functions. With an abuse of notation, we
denote by Irs the resulting approximation of the indicator function I, and by
uη,r,s the Galerkin approximation in V�

N ⊗ SP of the problem (Pη,s), with Is
replaced by Irs .
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5.2.2 Construction of the PGD

We can now construct the progressive PGD sequence um, which theoretically
converges towards uη,r,s ∈ V�

N ⊗ SP , which is considered as the reference so-
lution 14 . Figure 22 illustrates the convergence of um towards uη,r,s. We note
that an error εΩ(um; ũη,r,s) ≤ 3.10−2 is reached for a low rank m = 12. Figures
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Figure 22. Convergence of PGD for the problem with approximate indicator function
Ir1,s and Ir2,s (constrained separated representation with ǫ = 1000 and s = 100).
Evolution of the error indicator εΩ(um;uη,r,s) with m.

23 and 24 respectively show the first deterministic vectors wi and stochastic
parametric functions λi(ξ) of the PGD. They illustrate the progressive con-
struction of the PGD from a global representation of the solution towards a
refined representation of it.

(a) w1 (b) w2 (c) w3 (d) w4

(e) w5 (f) w6 (g) w7 (h) w8

Figure 23. First deterministic vectors wi of the PGD.

Remark 3 We notice a very high irregularity of parametric functions λi(ξ),
and therefore of um(x, ξ) with respect to ξ. This is due to the particular stochas-
tic parametrization of the sinusoidal curves. The capture of this irregularity

14 In practice, we use as a reference solution a very good approximation of uη,r,s,
obtained with a high rank PGD approximation.
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(a) λ1 (b) λ2 (c) λ3 (d) λ4

(e) λ5 (f) λ6 (g) λ7 (h) λ8

Figure 24. First stochastic parametric functions λi(ξ1, ξ2) of the PGD.

in the solution requires the use of very high dimensional approximation spaces
SP , which is made affordable by the use of the present methodology.

Figure 25 shows the reference solution uη,r,s and PGD approximations um
for different ranks m and for a particular realization of ξ. Finally, Figure

(a) uη,r,s (b) u1 (c) u3

(d) u5 (e) u9 (f) u60

Figure 25. Comparison between uη,r,s(·, ξ) and um(·, ξ) for different m, and for
ξ = ( 5

12 ,
5
12 ).

26 shows the reference solution uη,r,s and the PGD approximation u60 for
several realizations of ξ. We can draw the same conclusions as for the previous
example. Indeed, the PGD gives an accurate description of the solution with
a low rank separated representation.
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(a) (b)

Figure 26. Comparison between uη,r,s(·, ξ) (a) and u60(·, ξ) (b) for several realizations
of ξ.
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6 Conclusion

A numerical methodology has been proposed for the solution of partial differ-
ential equations defined on uncertain parameterized domains. This methodol-
ogy first relies on a fictitious domain approach, yielding a formulation of the
problem in a tensor product space. This tensor product structure is then ex-
ploited by applying the Proper Generalized Decomposition method, allowing
the a priori construction of a tensor product approximation of the solution.
This PGD method can be seen as a model reduction technique which automat-
ically constructs reduced bases of space functions and parametric functions for
an optimal separated representation of the solution. In order to make efficient
the PGD algorithms, specific techniques are introduced for obtaining low rank
separated representations of the indicator function of the domain, thus yielding
low rank representations of variational forms involved in the weak formulation
of the problem. In particular, smoothing of indicator functions is introduced in
order to accelerate the convergence of their separated representations. More-
over, a new constrained tensor product approximation is used in order to
preserve some positivity constraints that ensure a well-posedness of problems
associated with approximate indicator functions. All these ingredients have
been put together in a complete methodology, the efficiency and accuracy of
which have been illustrated on examples. Future works will be devoted to the
extension of this methodology to high dimensional parametric problems (by
exploiting multidimensional separated representation methods), with specific
applications to shape optimization and shape identification, where the shape
is controlled by multiple parameters.

A Convergence of the fictitious domain solutions associated with
approximate indicator functions

In this section, we give two convergence results.

(i) The convergence with η of the solution uη of problem (Pη) towards the
solution u of the initial problem (P)

(ii) The convergence of the sequence of solutions uη,s of problems (Pη,s), asso-
ciated with rank-s separated representations Is of the indicator function I,
towards the solution uη of problem (Pη)

The first result is a variant of the proof given in [11] in the deterministic
context, with an improved estimation of the rate of convergence. The second
convergence result is proved under a strong assumption on the sequence Is,
which is discussed in section B.
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A.1 Convergence of solutions of regularized problems

We first introduce the following decomposition of the bilinear form Aη:

Aη(u, v) = A(u, v) + ηC(u, v) = (1− η)A(u, v) + ηB(u, v)

with

C(u, v) =
∫

Ξ

∫

Ω�\Ω
∇u · ∇vdµ,

B(u, v) =
∫

Ξ

∫

Ω�

∇u · ∇vdµ

We recall that the norm ‖ · ‖W� in W� = V�⊗ S is defined by

‖v‖2W� =
∫

Ξ

∫

Ω�

|∇v|2dµ = B(v, v)

We introduce the following space

X� = L2
Pξ

(Ξ;H1
0 (Ω�\Ω)) ⊂ W�

and we define the following subspace of W�:

W�

0 =
{

v ∈ W�;C(v, w) = 0 ∀w ∈ X�
}

W�
0 corresponds to functions in W� which are harmonic in the non-physical

domain Ω�\Ω. There exists a unique function û such that

û ∈ W�

0 and û(·, y) = u(·, y) on Ω(y)

û is the unique harmonic prolongation of the solution u of (P).

Theorem 2 When η → 0, the solution uη of problem (Pη) converges towards
û in the following sense:

lim
η→0
‖û− uη‖W� = 0, (A.1)

and converges to the solution u of problem (P) in the following sense

lim sup
η→0

η−1‖u− uη‖W <∞ (A.2)

or again
lim
η→0

η−δ‖u− uη‖W = 0 ∀δ < 1

which indicates that we have a linear convergence with η when we only consider
the physical part of the solution (restriction to the physical domain Ω).
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Proof. We have

Aη(û− uη, û− uη) = Aη(û, û− uη)− Aη(uη, û− uη)
= L(û− uη) + ηC(û, û− uη)− L(û− uη)
= ηC(û, û− uη)

Using

Aη(v, v) = (1− η)A(v, v) + ηB(v, v) = (1− η)‖v‖2W + η‖v‖2W�

we first obtain

(1− η)‖û− uη‖2W + η‖û− uη‖2W� = ηC(û, û− uη) (A.3)

and also

(1− η)‖û− uη‖2W + η‖û− uη‖2W� ≤ ηC(û, û)1/2C(û− uη, û− uη)1/2

≤ ηB(û, û)1/2B(û− uη, û− uη)1/2

≤ η‖û‖W�‖û− uη‖W� (A.4)

We first deduce that

‖û− uη‖W� ≤ ‖û‖W�

which proves that the sequence uη is bounded. Therefore, we can extract a
subsequence, still denoted uη that converges weakly to an element u∗ ∈ W�.
uη verifies

A(uη, v) + ηC(uη, v) = L(v) ∀v ∈ W�

Thus, taking the limit with η → 0, we obtain

A(u∗, v) = L(v) ∀v ∈ W�

which proves that the restriction of u∗ to the domain Ω coincides with the
solution u. Moreover, for all η, we have

C(uη, v) = 0 ∀v ∈ X�

and taking the limit with η, we obtain that

C(u∗, v) = 0 ∀v ∈ X�

which gives u∗ ∈ W�
0 . Since the unique prolongation of u in W�

0 is û, we
have u∗ = û. By uniqueness of the limit, we therefore obtain that the whole
sequence {uη}η weakly converges to û. From (A.3), we have

1− η
η
‖u− uη‖2W + ‖û− uη‖2W� = C(û, û− uη) η→0−→ 0
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and we obtain that

lim
η→0
‖û− uη‖W� = 0

and also that

lim
η→0

η−1/2‖u− uη‖W = 0

In order to refine the convergence in the W-norm, we note that û and uη

belong to W�
0 , and that the norms ‖ · ‖W and ‖ · ‖W� are equivalent on W�

0 .
Therefore, there exists a constant γ > 0 such that

‖û− uη‖W� ≤ γ‖û− uη‖W

Using this inequality and (A.4), we obtain

‖û− uη‖2W ≤ ‖û− uη‖2W + η‖û− uη‖2W� − η‖û− uη‖2W ≤ ηγ‖û‖W�‖û− uη‖W

and therefore
1

η
‖û− uη‖W ≤ γ‖û‖W� <∞

which yields (A.2). �

Remark 4 Under sufficient regularity assumptions on the boundary on the
domain Ω, we have that uη verifies the following transmission condition on
the internal boundary ΓN :

η
∂uη+
∂n
− ∂uη−

∂n
= 0

where n is the unit normal to ΓN and uη+ (resp. uη−) is the restriction of uη to
Ω�\Ω (resp. Ω). For a sufficiently small η, we therefore obtain an approximate

verification of the homogeneous Neumann boundary condition
∂uη
−

∂n
≈ 0.

A.2 Convergence of solutions with approximate indicator functions

We suppose that the sequence {Is}s≥1 is such that for s ≥ s′, condition (41) is
verified. The existence of such an s′ is a consequence of the following stronger
assumption on the sequence Is, which is discussed in section B.

Assumption 3 We suppose that the sequence {Is}s≥1 uniformly converges
towards I:

lim
s→∞
‖I − Is‖L∞

Pξ
(Ξ;L∞(Ω� )) = 0 (A.5)
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We denote by δs = ‖I − Is‖L∞Pξ (Ξ;L∞(Ω� )). In the following, for any η, we only

consider the sequence {Is}s≥s′(η) such that

1− η
η

δs ≤ γ < 1 (A.6)

with some constant γ. Note that condition (A.6) implies that Is ≥ −δs ≥
−γ η

1−η
> − η

1−η
, which is the ellipticity condition (42). For a domain ω, even-

tually random, we denote by ‖ · ‖ω the norm in L2
Pξ

(Ξ;ω), defined by

‖v‖2ω =
∫

Ξ

∫

ω
v2 dµ (A.7)

Theorem 4 Under Assumption 3, we have the strong convergence of the se-
quence {uη,s}s∈N, with uη,s the solution of (Pη,s), towards the solution uη of
(Pη):

lim
s→∞
‖uη − uη,s‖Aη = 0

More precisely,

‖uη − uη,s‖Aη ≤ G(s, η)D(η)

where G(s, η)→ 0 as s→∞ and G(s, η) uniformly bounded with η, and where
D(η) is a constant which depends on the prolongation f η of f :

D(η) =
(

‖f‖2Ω + ‖f η/√η‖2Ω�\Ω

)1/2
(1 + η)1/2

Proof. The bilinear form Aη, defined in (15), is continuous symmetric and
coercive. It defines a norm inW�, defined by ‖v‖2Aη = Aη(v, v), and such that
η‖ · ‖2

W� ≤ ‖ · ‖2Aη ≤ ‖ · ‖2W� . We have

‖uη − uη,s‖2Aη = Aη(uη − uη,s, uη − uη,s)
= Aη(uη, uη − uη,s)− Aη(uη,s, uη − uη,s)
= L(uη − uη,s)− Lηs(uη − uη,s)

+ Aηs(u
η,s, uη − uη,s)− Aη(uη,s, uη − uη,s)

= (L− Lηs)(uη − uη,s) + (Aηs −Aη)(uη,s, uη − uη,s) (A.8)

Noting that

‖∇u‖2Ω� ≤
1

η
‖u‖2Aη

and introducing δs = ‖I − Is‖L∞Pξ (Ξ;L∞(Ω� )), we obtain

(Aηs − Aη)(uη,s, uη − uη,s) ≤ (1− η)δs‖∇uη,s‖Ω�‖∇(uη − uη,s)‖Ω�

≤ δs
1− η
η
‖uη,s‖Aη‖uη − uη,s‖Aη (A.9)
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Let ‖ · ‖Aηs be the norm on W� induced by Aηs , defined by ‖v‖2Aηs = Aηs(v, v).
We also have

‖u‖2Aηs = ‖u‖2Aη + (1− η)
∫

Ω�

(Is − I)∇u2

≥ ‖u‖2Aη − (1− η)δs‖∇u‖2Ω�

≥ ‖u‖2Aη
(

1− 1− η
η

δs

)

where 1−η
η
δs ≤ γ < 1 with assumption (A.6). We then have

(1− 1− η
η

δs)‖uη,s‖2Aη ≤ ‖uη,s‖2Aηs = Lηs(u
η,s)

≤ (1 + δs)
(

‖f‖Ω‖uη,s‖Ω + ‖f η‖Ω�\Ω‖uη,s‖Ω�\Ω

)

We denote by Cω the constant defined by

Cω = sup
v

‖v‖ω
‖∇v‖ω

and by C = max{CΩ, CΩ�} (constants CΩ and CΩ� are finite since ∂Ω and
∂Ω� possess a Dirichlet part). Then,

(1− 1− η
η

δs)‖uη,s‖2Aη

≤ (1 + δs)C
(

‖f‖Ω‖∇uη,s‖Ω + η‖f η/η‖Ω�\Ω‖∇uη,s‖Ω�

)

≤ (1 + δs)C
√

2
(

‖f‖2Ω + η‖f η/η‖2Ω�\Ω

)1/2 (‖∇uη,s‖2Ω + η‖∇uη,s‖2Ω�

)1/2

≤ (1 + δs)C
√

2
(

‖f‖2Ω + η‖f η/η‖2Ω�\Ω

)1/2
(1 + η)1/2‖uη,s‖Aη

It yields

‖uη,s‖Aη ≤
√

2
1 + δs

1− 1−η
η
δs
CD(η) (A.10)

with D(η) = (1 + η)1/2
(

‖f‖2Ω + ‖f η/√η‖2
Ω�\Ω

)1/2
. In the same way, we obtain

(L− Lηs)(uη − uη,s) ≤ δs
(

‖f‖Ω‖uη − uη,s‖Ω + ‖f η‖Ω�\Ω‖uη − uη,s‖Ω�\Ω

)

≤ δsCD(η)
√

2‖uη − uη,s‖Aη (A.11)

Finally, using (A.8), (A.9), (A.10) and (A.11), we obtain

‖uη − uη,s‖Aη ≤ G(s, η)D(η)
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with

G(s, η) =
√

2C



δs
1− η
η

1 + δs

1− (1−η)
η
δs

+ δs



 =
√

2C
δs
η

1

1− (1−η)
η
δs

We clearly have G(s, η) −→
s→∞

0. Since δs is convergent, we have δs ≤ δmax <∞.

From condition (A.6), we then have G(s, η) ≤
√

2C γ+δmax
1−γ

, which ends the
proof. �

Theorem 4 tells us that for any fixed η > 0, the solution uη,s of problem (Pη,s)
converges towards the solution uη of (Pη), in the sense of the norm induced by
Aη, which is equivalent to the norm in W�. This theorem also indicates that
when η → 0, the convergence of the sequence uη,s may be influenced by the
choice of the prolongation f η of f . A sufficient condition for this convergence
not to be influenced by the prolongation is to take

f η = f̂ηk, k ≥ 1/2, on Ω�\Ω

with f̂ a given prolongation of f , such that limη→0 D(η) <∞.

B Convergence of separated representations of indicator functions

We here discuss the assumptions on the indicator function I which are required
in order to obtain a uniform convergence of the Karhunen-Loève expansion
Is(x, ξ) =

∑s
i=1 gi(x)χi(ξ) (assumption 3), thus making possible the verifica-

tion of condition (41). We recall that this condition ensures the well-posedness
of problems (Pη,s) and the convergence of the associated approximations uη,s

(see appendix A). More details can be found in [4].

We first suppose that correlation kernel cI is continuous, which is a reasonable
assumption that can be verified in practice. Then, from Mercer’s theorem [27],
we have 15

lim
s−→∞

‖I − Is‖L∞(Ω� ;L2

Pξ
(Ξ)) = 0

If in addition, we suppose that

(c1) the images {χi(Ξ)}∞i=1 are uniformly bounded in R, i.e. there exists a bounded
set Υ ⊂ R such that χi(Ξ) ⊂ Υ for all i ≥ 1,

(c2) the functions {gi}∞i=1 are sufficiently smooth on Ω� and uniformly bounded,
i.e. maxi≥1 ‖gi‖L∞(Ω� ) <∞,

15 ‖I‖L∞(Ω� ;L2

Pξ
(Ξ)) = ess supx∈Ω� ‖I(x, ·)‖2L2

Pξ
(Ξ) = ess supx∈Ω� E(I(x, ξ)2)
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(c3) the eigenvalues of the correlation operator γi = ‖giχi‖2L2(Ξ×Ω�) have a decay

γi = O( 1
1+iq

) for some q > 1,

then we have the uniform convergence of Is towards I, i.e.

lim
s−→∞

‖I − Is‖L∞
Pξ

(Ξ;L∞(Ω�)) = 0

Considering normalized functions gi ∈ L2(Ω�), we have

|χi(y)| =
∣
∣
∣
∣

∫

Ω�

I(x, y)gi(x) dx
∣
∣
∣
∣ ≤

∫

Ω�

I(x, y)|gi(x)| dx

≤
∫

Ω�

|gi(x)| dx ≤ meas(Ω�)1/2‖gi‖L2(Ω� ) <∞

which gives the condition (c1). Condition (c3) could be verified in practice.
However, for the present application, condition (c2) is not verified since corre-
lation kernel cI does not have high regularity properties. In fact, this problem
can be circumvented by introducing a regularized version of the indicator
function I, denoted Ir, with a sufficiently smooth correlation kernel cIr . The
solution uη,r of problem (Pη), with I replaced by Ir, can be chosen arbitrarily
close to the solution uη. Then, we can define a sequence of problems (Pη,s)
associated with separated representations Irs of Ir. Denoting by uη,r,s their
solutions, sufficient conditions would be verified in order to guarantee the
convergence with s of uη,r,s towards uη,r. The effect of the regularization of I
is illustrated in section 4.3.3.
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