
HAL Id: hal-00662550
https://hal.science/hal-00662550

Submitted on 24 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast humanoid robot collision-free footstep planning
using swept volume approximations

Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux, Eiichi
Yoshida

To cite this version:
Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux, Eiichi Yoshida. Fast humanoid robot
collision-free footstep planning using swept volume approximations. IEEE Transactions on Robotics,
2012, 28 (2), p.427-439. �hal-00662550�

https://hal.science/hal-00662550
https://hal.archives-ouvertes.fr

1

Fast humanoid robot collision-free footstep planning

using swept volume approximations
Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux and Eiichi Yoshida

Abstract—In this paper, we propose a novel and coherent
framework for fast footstep planning for legged robots on a
flat ground with 3D obstacle avoidance. We use swept volume
approximations computed offline in order to considerably reduce
the time spent in collision checking during the online planning
phase, in which an RRT variant is used to find collision-free
sequences of half-steps (produced by a specific walking pattern
generator). Then, an original homotopy is used to smooth the
sequences into natural motions avoiding gently the obstacles. The
results are experimentally validated on the robot HRP-2.

Index Terms—footstep generation, motion planning, humanoid
robots, obstacle avoidance.

I. INTRODUCTION

ARGUABLY, the one thing that most differentiate hu-

manoid robots from their wheeled counterparts is their

intrinsic ability to step over obstacles on the ground. For

this reason a lot of work has been done on the problem of

humanoid robot walk planning, with the aim of exploiting at

best this unique capability. Since humanoid robots combine

high dimensionality with underactuation, two properties that

tend to drastically increase the complexity of motion planning,

this problem is not easy to solve. Nevertheless, and although

there is no completely satisfying solution so far, a lot of

promising techniques and tools have been introduced over the

past decade.

Probably the most successful approaches are based on the

use of the A* algorithm with a finite transition model, i.e. a

relatively small set of possible steps (see for example [23], [4],

[6], [7]). For each step a corresponding configuration space

trajectory is known, and it is possible to check quite quickly

whether a given step will avoid the obstacles or not. Since

those steps need to be connectable at will, however, it often

requires the initial and final speed of the robot bodies to be

zero for all the steps of the transition model. At least some

parts of the gaits produced are thus static. This is for example

the case in [23], and [1]. Chestnutt et al. avoid it in [7] by using

a search space which consists in sequences of two consecutive

steps. But since this search space has a higher dimensionality,

in order to be expressive, transition models need to be much

larger than when only isolated steps are considered. Yet,

N. Perrin is with CNRS/LAAS, Université de Toulouse UPS, INSA, INP,
ISAE 7 avenue du colonel Roche, F-31077 Toulouse, France, and CNRS-
AIST Joint Robotics Laboratory, UMI3218/CRT, Tsukuba, Japan (e-mail:
nperrin@laas.fr).

E. Yoshida is with CNRS-AIST Joint Robotics Laboratory,
UMI3218/CRT, Tsukuba, Japan (e-mail: e.yoshida@aist.go.jp).

L. Baudouin, O. Stasse and F. Lamiraux are with CNRS/LAAS, Uni-
versité de Toulouse UPS, INSA, INP, ISAE 7 avenue du colonel Roche,
F-31077 Toulouse, France (e-mail: leo.baudouin@ifma.fr, ostasse@laas.fr,
florent@laas.fr).

the use of the A* algorithm strongly constrains the size of

the transition model. Even when the transitions are isolated

steps, the stepping capabilities are often limited because the

complexity of the A* search quickly increases with the size

of the transition model. Recently though, some interesting

refinements have been considered in order to enhance the

stepping capabilities while keeping a small transition model.

In [9] for example, the steps of a set of reference actions (i.e.

the transition model) can be slightly adjusted to avoid bad

terrain locations.

In this paper, we replace the A* search by a sampling-

based algorithm in order to directly deal with a large transition

model, and add several other improvements to the standard

{A* + finite transition model} approach. Here are our main

contributions:

• Thanks to a walking pattern generator specifically de-

signed, we obtain a low-dimensional search space which

can be densely covered by relatively few points. With an

automatically generated finite transition model of about

300 points in this search space, we are able to obtain

very expressive stepping capabilities. To deal with such a

large transition model, we use, instead of the classical A*

search, a specific Rapidly-exploring Random Tree (RRT)

algorithm.

• Each point in the transition model corresponds to a con-

figuration space trajectory of the robot. Through extensive

offline computations, for each of them we approximate

the volume swept in the workspace by a part of the robot

lower body (from the knees down) during the execution

of the trajectory, and store it in an efficient data structure.

It helps to drastically reduce the time consumed by the

online planning phase when checking for collisions with

the environment.

• Finally, with a simple homotopy, we quickly smooth

and accelerate the trajectories obtained after the planning

phase, and as a result the final motions produced are

fully dynamic, a feature that often lacks with current

approaches. On top of that, there is no incoherence

between the planning phase and the smoothing phase,

so we have the guarantee that if the planner returns

a collision-free solution, then the robot will execute a

sequence which will also be collision-free (this guarantee

is up to some details –discrepancies between simulation

and real world, errors of approximation, errors due to

discretization, etc.–).

a) Pattern generation and smoothing homotopy:

One of the key elements of our framework is the combina-

tion between a specific walking pattern generator based on

2

“half-steps” and a simple homotopy that can quickly smooth

sequences of (half-)steps. We present both in section II (we

introduced them in [32]). Before the use of the homotopy, the

generated sequences are called “raw”, and simply correspond

to concatenations of isolated half-steps. Isolated half-steps are

obtained by fixing the position of the swing foot when it

is at its maximum height: this puts us in the conditions of

[23] where two “via point configurations” Qright and Qleft

(corresponding to balanced postures) are fixed and divide steps

into two parts: an upward half-step, and a downward half-step.

In [23] this restriction was used in order to reduce the number

of trajectories to consider; we use it in order to reduce the

dimensionality of the input space. The simple homotopy that

we use to smooth sequences of half-steps is, to our knowledge,

new in the field of humanoid robotics (but it is based on the

same principle as the techniques introduced in [28] and [29]).

b) Finite transition model and swept volume approxima-

tions:

Our pattern generator benefits from an input space of dimen-

sion only 3, and therefore we can cover it with a dense grid

of only relatively few points. Each point corresponds to a

sequence of two half-steps. For each point of the grid we first

simulate the sequence of half-steps and check that it is feasible,

i.e. that it contains no self-collision and does not violate

the joints limits. The points which correspond to feasible

trajectories will be the elements of our transition model. In

section III we explain the construction of this transition model

and show how, for each of its elements, we approximate the

volume swept by the robot lower body during the execution of

the corresponding trajectory. By speeding up collision checks

these approximations will enable us to save a considerable

computation time online.

At first it might seem strange to combine precomputed

swept volumes and a smoothing homotopy that modifies

trajectories, but in fact in the whole process the homotopy is

only applied to one feasible trajectory returned by the planning

process during which the swept volume approximations are

extensively used. When the homotopy is applied we do not

use precomputed swept volumes for the collision checks.

Several efficient swept volume approximation algorithms

exist, such as for example the ones introduced in [22] and

in [17]. Using such advanced specific algorithms will be part

of our future work, but in this paper we validate our framework

with a simpler approach. Since the highest priority is the

evaluation time (because approximations are used multiple

times at each iteration of the RRT algorithm), we use a

generic approximation algorithm which stores the results in

compact tree structures that, in our case, can be used to very

quickly check for collisions with obstacles of the environment.

This algorithm is a slight variant of the one introduced in

[31]; the variant is presented in details in [30]. The use of

swept volumes is widespread in robotics, especially for path

planning (see [34], [15]), but relatively absent in the field

of humanoid robotics, where, for the sake of computational

efficiency, simpler bounding volumes are often preferred ([39],

[10]).

c) An RRT variant for footstep planning:

The last part of our framework is the planning phase. Since

we have a large transition model, the traditional A* search

would perform poorly. Alternatives to A* have already been

proposed. For example in [13], Harada uses a PRM (Proba-

bilistic Roadmap Method, see [21]) approach to plan footsteps:

a tree of “milestone configurations” is grown from an initial

configuration to a goal configuration. At first collisions are

checked only at milestone configurations, and only once a

candidate path has been found is the full trajectory verified.

An issue of this approach is that even though the milestones

are collision-free, collisions might occur in the candidate path.

Thus the process might have to be restarted several times,

leading to lengthy computations.

The idea of using an RRT algorithm [26] for footstep plan-

ning was introduced in [38], where a single-node-extending

and a multi-node-extending RRT methods are proposed. In

section IV we follow the single-node-extending method and

present a new variant of the RRT algorithm for footstep

planning, where we deal separately with the sets of left and

right footsteps. When a new transition (i.e. a new footstep) is

considered by the RRT algorithm, we test the corresponding

approximated swept volume against all the points of the ob-

jects that are close enough (we suppose that the environment is

known and that obstacles are represented by point clouds: each

object is contained in a bounding box, and a finite set of points

is covering the object exterior surface). If one of the points

lies inside the swept volume, the transition is discarded. Using

point clouds for collision detection is certainly not the safest

nor the most efficient approach, but we believe that it illustrates

well the performance of our framework: indeed, it is important

to show that we are able to rapidly plan motions even if during

each iteration of the RRT algorithm the number of collision

queries is high, because in real applications unknown obstacles

are often acquired as untreated sets of voxels, or large triangle

soups or meshes. Preliminary experiments are presented in

section V, where the robot HRP-2 quickly solves complicated

footstep planning problems in environments cluttered with 3D

obstacles.

In section VI, we improve our implementation by using

meshes to represent the swept volume approximations and the

PQP algorithm [24] for collision checks. This yields a further

speed-up that enables us to perform some experiments of real-

time replanning.

Section VII contains a brief discussion on an extension

of our framework to a continuous transition model, and

section VIII is the conclusion.

II. A WALKING PATTERN GENERATOR BASED ON

HALF-STEPS AND A SMOOTHING HOMOTOPY

We use a classical simplified model of the robot dynamics:

the Linear Inverted Pendulum Model (see [19]). In this model

the mass of the robot is assumed to be concentrated in its

CoM (center of mass) which is supposed to be rigidly linked

to and above the robot waist at all time. Besides, the robot is

supposed to have only point contacts with the walking surface.

The contact points are coplanar on a horizontal plane. Thus

it behaves like an inverted pendulum, and an analysis of the

subsequent equations leads to a further approximation which

3

enables the decoupling of the dynamic differential equations

for the x-axis and y-axis. They can be written as follows:

px = Z(x) (1)

py = Z(y) (2)

with Z , Id−
zc
g

d

dt2
(3)

(x, y) are the (x-axis,y-axis) coordinates of the CoM of the

robot, and zc the height of the robot center of mass which is

supposed constant during the step. Let us notice that Z is a

linear operator acting on functions of time. (px, py) are the

(x-axis,y-axis) coordinates of the virtual Zero Moment Point

(ZMP). A classical balance criterion for biped walking is that

the ZMP should stay at all time inside the polygon of support

(see [37]).

In the article [14], Harada et al. show how analytical

trajectories for both the CoM and the ZMP can be derived

from these equations. The ZMP trajectory is a polynomial of

the time variable t, and the CoM trajectory
(

x(t)
y(t)

)

has the

general following form:

cosh(

√

g

zc
·t)

(

Vx

Vy

)

+sinh(

√

g

zc
·t)

(

Wx

Wy

)

+

(

rx(t)

ry(t)

)

(4)

where rx(t) and ry(t) are polynomials entirely determined by

px(t) and py(t), respectively.

From this equation we see that for a given ZMP profile,

there are just enough free parameters (Vx, Vy,Wx,Wy) to set

the initial horizontal position and speed of the CoM:
(

x(0)

y(0)

)

=

(

Vx + rx(0)

Vy + ry(0)

)

(5)

(

ẋ(0)

ẏ(0)

)

=







√

g
zc
·Wx + ṙx(0)

√

g
zc
·Wy + ṙy(0)






(6)

Using these equations, next we show how to produce the

C-space (configuration space) trajectory corresponding to an

isolated half-step. We just need to obtain a unique C-space

trajectory from a small number of half-step parameters (as we

will see, in our case it will be 3 parameters). If each of the

robot legs has 6 degrees of freedom or more (the redundancy

can be treated using generalized inverse kinematics, see [27]),

this problem can be reduced to the generation of trajectories

for the waist and the feet. Besides the compulsory constant

waist height, we also made a few arbitrary and convenient

restrictions (which reduce the number of parameters): the pitch

and roll parameters of the waist orientation will stay at zero,

and similarly the swing foot will always stay parallel to the

walking surface. Thus, the lower body trajectory is entirely

defined by 7 functions of the time:

• the waist horizontal position: x(t), y(t) (we recall that

the waist and CoM are rigidly fixed)

• the waist orientation: θ(t)
• the swing foot position: SFx(t), SFy(t), SFz(t)
• the swing foot orientation SFθ(t)

A. Producing isolated half-steps

In this section we only consider upward half-steps, but the

method for the generation of downward half-steps trajectories

is similar.

So, let us consider an upward half-step. In order to reduce

the dimensionality of the parameter space, we make several

assumptions. First, we fix and denote by T the duration of any

half-step. Then, we assume that the initial and final speed of

the ZMP and swing foot are 0, but we do not assume that the

CoM initial and final speed are zero.

ṗx(0) = ṗy(0) = ṗx(T) = ṗy(T) = 0 (7)

θ̇(0) = θ̇(T) = 0 (8)

˙SFx(0) = ˙SFy(0) = ˙SFz(0) = ˙SFθ(0) = 0 (9)

˙SFx(T) = ˙SFy(T) = ˙SFz(T) = ˙SFθ(T) = 0 (10)

Second, the initial vertical projection on the ground of the

CoM is equal to the ZMP initial position, i.e. at the barycenter

of the feet centers. Taking the center of the support foot as

the origin of the Euclidean space, it gives us:

x(0) = px(0) =
SFx(0)

2
(11)

y(0) = py(0) =
SFy(0)

2
(12)

We also assume that the final horizontal position of the CoM

and ZMP coincide at the center of the support foot, and

that the final swing foot orientation and the initial and final

orientation of the waist are equal to the support foot orientation

(at this stage the orientation of the waist changes only during

downward half-steps). Besides, the line passing through the

centers of the final positions of the feet is orthogonal to this

orientation:

x(T) = px(T) = 0 (13)

y(T) = py(T) = 0 (14)

θ(0) = θ(T) = SFθ(T) = 0 (15)

SFx(T) = 0 (16)

As a consequence of these equations, the final and initial

configurations are entirely determined by 5 parameters (as

shown on Fig. 1):

SFx(0), SFy(0), SFθ(0), SFy(T) and SFz(T).

Besides, concerning the derivatives at the boundaries, the only

free parameters are ẋ(0), ẋ(T), ẏ(0), and ẏ(T). This adds up

to a total of 9 free parameters.

Now, we show how the ZMP trajectory is defined. An

upward half-step is divided into 3 phases: during the first

one, of duration t1, the ZMP stays at the barycenter of the

feet (and the feet keep their positions as well), so we have

px(t) =
SFx(0)

2 , py(t) =
SFy(0)

2 , and thus ṗx(t) = ṗy(t) = 0.

Then there is the “shift” phase, during which the ZMP quickly

shifts from its initial position to its final position, reached

at time t2. Then, from t2 to T , the ZMP stays at its final

position, so we have px(t) = py(t) = ṗx(t) = ṗy(t) = 0.

During the “shift” phase we set px and py as third-degree

4

y

x

(SFx(0), SFy(0), 0)

(0, 0, 0) (0, SFy(T), SFz(T))

SFθ(0)

z

Fig. 1. Here we show an upward half-step from above. It is fully determined
by the 5 parameters SFx(0), SFy(0), SFθ(0), SFy(T) and SFz(T). A
downward half-step is also fully determined by 5 parameters.

polynomials determined by the respective boundary conditions

px(t1) = SFx(0)
2 , px(t2) = ṗx(t1) = ṗx(t2) = 0, and

py(t1) =
SFy(0)

2 , py(t2) = ṗy(t1) = ṗy(t2) = 0. For the

downward half-step, even if the phase of double support and

single support are inverted, we keep the same durations: the

ZMP shift occurs between time t1 and t2. In practice, we set

t1 = T − t2.

Thanks to eq. (4), if we fix SFx(0), SFy(0), ẋ(0), and ẏ(0),
we can get an analytical expression of the unique C2 solution

for x(t) and y(t) over [0, T]. The solution is unique because

during the first phase, Vx, Vy , Wx and Wy are fixed by the

following equations (obtained from eq. (5) and eq. (6)):

Vx =
SFx(0)

2
− rx(0) (17)

Vy =
SFy(0)

2
− ry(0) (18)

Wx =

√

zc
g
(ẋ(0)− ṙx(0)) (19)

Wy =

√

zc
g
(ẏ(0)− ṙy(0)) (20)

Moreover, the unique solution during the first phase leads to

unique values for x(t1), y(t1), ẋ(t1), and ẏ(t1). This fixes

the free parameters of the unique C2 extension of the solution

on [t1, t2], and subsequently the free parameters of the unique

C2 extension over [t2, T]. Nevertheless, those two unique C2

solutions might violate the constraints x(T) = 0 and y(T) = 0
(eq. (13) and eq. (14)). Analyzing the impact of ẋ(0) and

ẏ(0) in the anayltical solutions, we can see that they have a

monotonic influence over respectively x(T) and y(T), and that

to one value of x(T) (resp. y(T)) corresponds a unique value

ẋ(0) (resp. ẋ(0)). We implemented a dichotomic search for

those values, and with simple methods avoided problems of

numerical unstability (using the fact that with only one ZMP

shift and the boundary conditions CoM(0) = ZMP (0) and

CoM(T) = ZMP (T), the solution CoM trajectories x and y
are necessarily monotone).

−0.1

−0.02

 0

 0.02

 0.04

 0 0.2 0.4 1 1.2

−0.08

(m)

SFy(0)

2

t2t1 (s)

the ZMP shift

T

Fig. 2. We consider the upward half-step of Fig. 1, and show the
corresponding ZMP trajectory along the y-axis: py(t) (solid line). To this
trajectory corresponds an infinity of C2 solutions for y(t) which all verify

y(0) = py(0) =
SFy(0)

2
, each of them being fully defined by ẏ(0). We

show several such C2 solutions (dotted lines); the thick dotted line is the
solution retained: it is the unique one verifying y(T) = 0.

Fig. 2 considers the half-step of Fig. 1, and it shows the

trajectory of the ZMP along the y-axis as well as several

C2 solutions for y(t), for different values of ẏ(0). Only one

solution is retained, the one with y(T) = 0. If the durations

t1 and T − t2 are long enough, the values obtained for

ẋ(0), ẋ(T), ẏ(0) and ẏ(T) can be neglected, and thus the

CoM trajectories obtained are supposed to be C2 continuous

over (−∞,∞). Performing tests on a real humanoid robot

empirically validated this asumption: time discretization of the

control law itself makes the neglected velocity unnoticeable.

For the trajectories other than x(t) and y(t) (θ(t), SFx(t),
SFy(t), SFz(t), SFθ(t)), we simply use polynomials of

degree 3 that ensure C2 smoothness and satisfying profiles,

with a few specific constraints (e.g. in our implementation

the swing foot always leaves the ground and lands vertically).

So, we can completely define a half-step with 5 parameters

(whether it is an upward half-step or a downward half-step).

In our application, we decided to fix the maximum height of

the swing foot (SFz(T)), and the horizontal distance between

the feet when the maximum height is reached (which fixes

SFy(T)). This puts us in the conditions of [23] where two “via

point configurations” Qright and Qleft are fixed. With these

constraints only 3 parameters are needed to completely define

a half-step. Once these parameters are set, we are capable of

generating unique analytical solutions for the 7 functions of

time that are required to produce the lower body trajectory in

the C-space.

B. Smoothing a sequence of half-steps

Using the results of the previous section, we can generate

C-space trajectories for isolated half-steps. Since they start and

finish with zero speed, we can simply join them to produce

sequences of half-steps. Alternating upward and downward

half-steps will produce a walking motion. Each half-step

trajectory is dynamic in the sense that the inertial forces play

an important role in maintaining the balance (the trajectories

are not quasi-static). However at the end of each half-step a

5

half-step
first

t

half-step
second

δ2

δ3

g1∆1
(y1) + g2∆1

(y2)

g1∆1
(py1) + g2∆1

(py2)

g1∆2
(y1) + g2∆2

(y2) g1∆3
(y1) + g2∆3

(y2)

g1∆2
(py1) + g2∆2

(py2) g1∆3
(py1) + g2∆3

(py2)

∆2 = δ1 + δ2

∆3 = δ1 + δ2 + δ3

δ1

T

CoM ZMP

y = g10(y1) + g20(y2)

0

∆1 = δ1

y

T

The plot on the left shows the trajectories y(t) and py(t) for a raw sequence of two half-steps,

shown on Fig. 2. Notice that the CoM reaches the ZMP between the half-steps. On the other plots,
we show the effect of progressively increasing the overlap, using the operators g1∆ and g2∆.
We can see that the CoM trajectory becomes more natural: it does not need to reach the ZMP curve

between the two ZMP shifts anymore. Indeed, the overlap works a bit
like a preview control: the first CoM trajectory is influenced by the
second one during the overlap, so it is as if it already ”knew” that
there will be another ZMP shift, and adapted consequently.

with no overlap, the first half-step being the one of Fig. 1, whose CoM and ZMP trajectories are

py = g10(py1) + g20(py2)

000
SFy(0)

2

Fig. 3. Progressively increasing the overlap between two half-steps.

balanced posture is reached with zero speed. This is not a

satisfactory result because between each half-step the robot

comes to a stop, so the walk motion is not visually smooth,

and rather slow. Recent walking pattern generators achieve

much better results by using preview control (see [19]). In

this section, we show how to continuously modify a sequence

of half-steps using a simple homotopy, in order to make it

faster and smoother along the same footstep sequence. We first

show how to do so for a sequence of two half-steps, and start

with the case of an upward half-step followed by a downward

half-step.

1) Upward then downward: We consider an upward half-

step followed by a downward half-step. Together the two half-

steps make a classical full step: double support phase, then

single support phase, and then double support phase again.

We recall that the whole C-space trajectory of the lower

body during one half-step is generated by inverse geometry

from 7 functions of the time. Since here we are dealing

with two consecutive half-steps (with the same support foot),

we have to consider 14 functions. Let us first consider for

example the position of the waist (or CoM) along the y-axis,

respectively for the upward half-step: y1(t), and the downward

half-step: y2(t). We have y1(T) = y2(0) = 0. Let us define

two operators g1∆ and g2∆ such that:

g1∆(f)(t) =

{

f(t) for t ∈ (0, T)

f(T) for t ∈ (T, 2T −∆)
(21)

g2∆(f)(t) =

{

0 for t ∈ (0, T −∆)

f(t− T +∆)− f(0) for t ∈ (T −∆, 2T −∆)
(22)

g10(y1) + g20(y2) corresponds to the simple concatenation of

y1 and y2 without overlap. Knowing that py1
= Z(y1), py2

=
Z(y2), and y1(T) = y2(0) = 0, it is quite easy to verify

that for any 0 ≤ ∆ ≤ T , g1∆(py1
) = Z(g1∆(y1)), g

2
∆(py2

) =
Z(g2∆(y2)). And, since Z is a linear operator:

g1∆(py1
) + g2∆(py2

) = Z(g1∆(y1) + g2∆(y2)) (23)

Operators g1∆ and g2∆ enable us to obtain new combined

CoM and ZMP trajectories that still verify the Linear Inverted

Pendulum equations (eq. (1) and eq. (2)). Starting with ∆ = 0
and progressively increasing the value of ∆ continuously

modifies the CoM trajectory (starting from the initial trajectory

g10(y1)+g20(y2)) to make the second ZMP shift (the one of py2
)

happen earlier, creating an overlap of duration ∆ between the

two trajectories y1 and y2. Fig. 3 illustrates this effect: when

we increase the value of ∆ we can see that the position of the

CoM does not need to reach the center of the support foot.

We use the same operators, g1∆ and g2∆, to produce an

overlap between the functions of time corresponding to the

waist orientation and swing foot position and orientation. Since

the inverse geometry for the legs is a continuous function as

long as we stay inside the joint limits, these operators used on

the bodies trajectories actually implement a simple homotopy

that continuously deforms the initial C-space trajectory into a

smoother, more dynamic trajectory. The linearity of simplified

differential equations has already been used in a similar way to

produce mixtures of motions ([28] and [29]), but the purpose

was to create new steps, not to smooth them nor speed them

up.

In the case of an upward half-step followed by a downward

half-step, increasing ∆ reduces the duration of the single

support phase, and therefore it increases the speed of the swing

foot. To limit this effect we must bound ∆. Besides, if ∆ is

too large undesirable phenomena can occur, such as a negative

swing foot height. To avoid these problems we set an upper

bound such that the maximum overlap results in a moderately

fast gait.

2) Downward then upward: We can apply the same tech-

nique to produce an overlap in the case of a downward half-

step followed by an upward half-step. Since the last phase of

the downward half-step and the first phase of the upward half-

step are double support phases, the constraint on the swing foot

motion disappears and the maximum bound on ∆ becomes

simply T (that is if t1 = T − t2, and it results in a double

6

Fig. 4. We illustrate the “smoothing” of a raw sequence of half-steps. On
the initial raw sequence (on the left), the support paths of the ZMP and CoM
trajectories are superimposed. Then, after adjusting the overlaps, the ZMP
support path stays the same but the CoM support path becomes smoother (on
the right). We can smooth even more, but it reduces the duration of the single
support phase that is directly linked with the swing foot speed. Therefore
limitations on the swing foot speed constrain the smoothing process.

support phase whose duration is t2− t1).

For longer sequences of half-steps, we can simply repeat the

procedure to smooth the whole trajectory, setting the overlaps

one by one. Fig. 4 shows the results obtained with an example

of raw sequence. After the smoothing, the CoM trajectory

is visually smoother and besides, the new trajectory is much

faster (about 3 times faster).

Changing overlaps inside a sequence of half-steps modifies

the whole C-space trajectory: not only the CoM and ZMP, but

also the swing foot trajectory: when the overlap is increased,

the swing foot tends to move faster and closer to the ground.

If one property must be preserved (for instance absence of

collision), it must be checked after every modification. Since

the smoothing by overlap is a continuous operator, we can

use dichotomies to quickly find large acceptable values of

overlaps. Let us consider an example for two consecutive half-

steps. We predefine a maximum overlap ∆max and, first, we

simulate the part of the trajectory modified by the overlap

∆max, and check for collisions, self-collisions and joint limit

violations. If none of these events occur, we set the overlap

to ∆max. Otherwise, we use a dichotomy starting at ∆max/2
to quickly converge towards the largest “good” overlap value

below ∆max. Fig. 5 shows the effect of the smoothing process

on the swing foot trajectory: with the dichotomy we can

quickly find a large overlap that keeps the trajectory collision-

free.

III. BUILDING THE TRANSITION MODEL AND THE SWEPT

VOLUME APPROXIMATIONS

A. The transition model

Thanks to the walking pattern generator described in the

previous section, we can produce isolated half-steps with only

three parameters. If we join a downward half-step with the

corresponding upward half-step, we obtain a trajectory that

goes from Qleft to Qright or Qright to Qleft, and which is

entirely defined by only three parameters, as shown on Fig. 6.

Fig. 5. On the left: a raw sequence of two half-steps avoiding a box on
the ground. We can see that the swing foot reaches a high position. After
smoothing (on the right), the trajectory has been modified so that the foot
moves very close to the obstacle.

(0, 0)(0, 0)
x

(x, y)

y

Qleft

Qright

x

y

θ

Fig. 6. Thanks to the two via point configurations Qleft and Qright, a raw
sequence of two half-steps can be entirely defined by only three parameters:
x, y, and θ. Qleft and Qright were chosen such that the swing foot is quite
high. This provides good obstacle avoidance capabilities to raw sequences
of steps and in the absence of obstacles, smoothing significantly reduces the
height.

We denote such a trajectory (expressed in the frame of the left

foot) by 〈Qleft, (x, y, θ), Qright〉 or (expressed in the frame

of the right foot) 〈Qright, (x, y, θ), Qleft〉. We also denote:

Tl = {〈Qleft, (x, y, θ), Qright〉 | (x, y, θ) ∈ R
3},

and:

Tr = {〈Qright, (x, y, θ), Qleft〉 | (x, y, θ) ∈ R
3}

We will interchangeably call the elements of Tl or Tr
points (because of the bijection with R

3), transitions (because

the transition model will be a finite set of elements of Tl),
sequences (each element corresponds to a downward half-step

- upward half-step sequence), or trajectories. By concatenating

alternatively trajectories from Tl and trajectories from Tr, we

obtain walk motions. With a symmetric robot (like HRP-2),

Tl and Tr are symmetric in the sense that the feasibility of a

sequence 〈Qleft, (x, y, θ), Qright〉 is equivalent to the feasibil-

ity of the sequence 〈Qright, (x,−y,−θ), Qleft〉, and that the

corresponding swept volumes are symmetric. Therefore, only

7

initial grid

37cm

70cm

y

x

pruned grid
after feasibility tests:
the transition model

Fig. 7. An initial grid of 600 points covers the input space. To each of the
120 values of (x, y) correspond 5 possible orientations. All the corresponding
trajectories (generated by the walking pattern generator presented in section II)
are sequences of two half-steps. We test each of them, checking for self-
collisions and joint limit violations, and remove all the unfeasible ones. The
276 remaining points form the transition model Ml used for planning.

C(p) < 0

C(p) > 0

C(p) = 0
On the left, a 2D representation of a cube
moving along a discretized trajectory. We
denote its successive configurations by c0,
c1, . . . , cq . For a point p of the Euclidean
space, C(p) is defined as the minimum
distance from p to any configuration of
the cube, minus a fixed margin τ . The
margin is important to avoid errors due to
the discretization, and besides, it makes the

thus easier to approximate.
level set {p ∈ R

3 | C(p) = 0} smoother,

C(p) = min (dist(p, ci)− τ, i = 0, . . . , q)

The 2D plot on the bottom-left shows how the approximation algorithm
recursively divides the Euclidean space into small boxes in order to

plot on the bottom right.

A view of this swept volume approximation is displayed on the 3D

adaptively approximate the surface C(p) = 0. The approximated
surface defines an approximation of the volume swept by the cube.

Fig. 8. An example of swept volume approximation. The data structure
obtained is a bit similar to an adaptively sampled distance field (see [11]).

one transition model was built, on the space Tl, but it can be

used by symmetry on Tr. To build it, as explained on Fig. 7,

we first covered a reasonably large domain of Tl with regularly

spaced points. Considering the robot (HRP-2) dimensions and

joint limits, this domain was defined as the following box:

Bl = {〈Qleft, (x, y, θ), Qright〉 | x ∈ [−0.35m,+0.35m],

y ∈ [−0.37m,−0.02m], θ ∈ [−30◦,+30◦]}

We covered the box Bl with 600 points (15 possible values

for x, 8 possible values for y, 5 possible values for θ),

and for each point, using discretized trajectories –one for

each body of the robot legs–, we verified the feasibility

of the corresponding downward half-step - upward half-step

sequence. If any self-collision (which were checked using the

algorithm introduced in [3]) or joint limit violation occurred,

the point was discarded.

The 276 remaining points all correspond to feasible se-

quences, and they form the transition model.

We denote by Ml ⊂ Bl this finite transition model, Mr ⊂
Br is defined by symmetry. We denote by S(Ml,Mr) the set

of finite feasible sequences (s1, s2, . . . sn) alternating left foot

and right foot support.

B. The swept volume approximations

For each of the 276 points of the transition model, we build

an approximation of the volume swept by the lower part of the

robot (from the knees down) during the corresponding down-

ward half-step - upward half-step sequence. The algorithm

used is the one described in [30]: given a transition z ∈ Ml

it learns through adaptive sampling the sign of the mapping

Cz(p) which returns the distance (minus a fixed margin –1cm

in our case–) between a point p of the Euclidean space and the

finite set of polyhedra consisting of all the configurations of

the robot legs bodies along their discretized trajectories during

the sequence corresponding to z. Fig. 8 illustrates an example

of this process. The important property of the approximation

algorithm used is that it stores the result in a tree structure

which can be evaluated extremely quickly. The computation

time saved is considerable: with the approximation, checking

whether a point is outside or inside one of the swept volumes

we consider is done in 4µs. This is about 2,000 times faster

than with the normal evaluation of Cz(p).

For a transition z = 〈Qleft, (x, y, θ), Qright〉 ∈ Ml, we de-

note by Vz(p) the corresponding swept volume approximation

(Vz(p) > 0 if and only if p is outside the approximated swept

volume). If z′ = 〈Qleft, (x,−y,−θ), Qright〉 ∈ Mr, we can

easily obtain the approximation Vz′ by applying a symmetry to

Vz; thus only 276 swept volume approximations are needed.

With an Intel(R) Xeon(R) 2.00Ghz CPU, it took a bit less

than 48 hours to generate them all, but we believe that by

using state-of-the art swept volume approximation algorithms

(and maybe only afterwards apply our algorithm to obtain

reapproximations that can be evaluated very fast), we should

be able to significantly reduce this offline computation time.

Fig. 9 shows 5 of the 276 swept volume approximations.

8

Fig. 9. 3D representations of 5 swept volumes approximations

IV. FOOTSTEP PLANNING WITH A VARIANT OF RRT

In this section, we present a simple adaptation of the

RRT algorithm for footstep planning, quite similar to the one

introduced in [38].

Let us first define the search space. Since in our formal-

ism we connect single support phases, the search space is

S = {(q, x, y, θ) | q ∈ {Qleft, Qright}, (x, y, θ) ∈ R
3}, where

q is the support foot, (x, y) the position of the support foot

(relatively to a fixed reference), and θ its orientation (relatively

to a fixed reference). The transition model being an alternation

between Ml and Mr, we can apply transitions to states of

the search space using the operator δ:

δ ((q, x, y, θ), 〈q, (x′, y′, θ′), q〉)

= (q, x′cos(θ)− y′sin(θ), x′sin(θ) + y′cos(θ), θ + θ′),

where Qleft = Qright and Qright = Qleft. In practice, we

will use only a compact subset of the search space, depending

on the environment E . We denote it by S|E . For example, if

the robot stays in a 5m × 5m room, we naturally use these

dimensions to define S|E and bound x and y. Considering

the classical RRT algorithm (see [26]), the only operation

that cannot be straightforwardly adapted to the context of

footstep planning is the extension towards random samples

(to find the nearest neighbor we use the Euclidean metric,

ignoring the orientations). Let (q, x, y, θ) ∈ S be a random

sample of the search space, and (q′, x′, y′, θ′) the nearest

state in the search tree. In [38], two options are considered:

either add to the tree all the successors of (q′, x′, y′, θ′), or

just one random successor. Due to the size of our transition

model, we chose to follow the latter strategy. Fig. 10 shows

one issue of this approach: in some cases, it is difficult to

extend the search tree towards a given region. To cope with

this problem, many options are possible. We simply chose

to alternatively look for nearest states with left support foot

and nearest states with right support foot. It leads to our RRT

variant presented in Algorithm 1 (we stop the while loop when

a path to the goal region has been found, or when a sufficiently

short path has been found). We based our implementation on

a fast and modular open-source code by Karaman and Frazzoli

which uses kd-trees for fast nearest neighbor queries (this code

implements RRT and RRT*, the algorithm introduced in [20]).

Further analyses and improvements of the variants of RRT

for footstep planning can probably help to obtain faster results,

but are out of the scope of this paper.

Qleft

Qleft
Qleft

Qright Qright

Qleft

Qright

3

1

2

3

1

2

Fig. 10. The advantage of separating left and right support feet during nearest
neighbor queries.
- On the left (global nearest neighbor): all the points in the gray region have the
same nearest neighbor (Qright, x, y, θ), but no successor of (Qright, x, y, θ)
is inside the gray region. Therefore numerous samples are required before
extending the search tree towards the gray region.
- On the right (alternate nearest neighbors): when only states with left support
foot are considered, the nearest neighbor will not be (Qright, x, y, θ), but
maybe one of its successors. With the alternation strategy, the search tree is
more likely to quickly grow inside the gray region.

V. PRELIMINARY EXPERIMENTS

The framework presented in this paper was experimentally

tested on the robot HRP-2.

We studied the two Experimental Setups described on

Fig. 11, where 2D obstacles (holes in the ground) are com-

bined with 3D obstacles. The 3D obstacles shown on Fig. 11

have the same size as the ones in the real environment (see

Fig. 12), but are smaller than the ones used for the collision

checks (a margin is needed because of the robot drift during

the real-world experiments).

The construction of the solution trajectory is divided into

two parts: first, during the planning phase, just as explained in

the previous section, we use a specific variant of RRT to find

a sequence (s1, s2, . . . , sn) ∈ S(Ml,Mr) which reaches the

goal. Then, we use the homotopy of section II-B to smooth

the sequence (s1, s2, . . . , sn), so that to obtain the final fast

9

Algorithm 1 RRT variant for footstep planning

1: T.init(xinit ∈ S|E)

2: i← 0
3: stop condition← false

4: while ¬stop condition do

5: Pick a random state xrand ∈ S|E

6: i++

7: if i == 0 mod 2 then

8: xnear ←
{ among states with left support foot,

nearest neighbor of xrand in the tree T

9: Pick a random transition srand ∈Ml.

10: else

11: xnear ←
{ among states with right support foot,

nearest neighbor of xrand in the tree T

12: Pick a random transition srand ∈Mr.

13: end if

14: Using the approximated swept volumes, verify that

starting from state xnear, the transition srand does not

collide with any point of the obstacle point clouds.

15: if NO COLLISION then

16: T.add node(δ(xnear, srand))
17: T.add edge(xnear, srand, δ(xnear, srand))
18: if δ(xnear, srand) is close enough to the goal and

the path to δ(xnear, srand) is short enough then

19: stop condition← true

20: end if

21: end if

22: end while

and dynamic trajectory that will be performed by the robot.

A. The planning phase: RRT vs. A*

We implemented a classical A* search algorithm and com-

pared it with the RRT variant introduced in the previous

section. For the costs required by A* we used a simple

heuristic where the estimated remaining cost is derived from

the Euclidean distance, and the cost of a path is the sum

of each (fixed) transition cost. Better heuristics can often

be obtained, such as for example heuristics derived from a

mobile robot planner that looks for continuous paths between

the initial position and the goal, but because they do not take

stepping over capabilities into account, such heuristics tend to

severly misjudge costs in very constrained environments like

the ones we consider here (for a review on the association {
A* + heuristic } see [5], chapter 8). Finding a robust heuristic

that would perform well in challenging environments is as hard

as solving the problem without using A*: that is why we tried

to directly apply RRT. Other approaches of interest include

planning algorithms based on inflated heuristics (see [12]):

they usually find solutions faster than a classical A* search, but

they are not as efficient as RRT to avoid local minima. Their

main advantage over RRT is that they provide suboptimality

bounds; however, due to the particularity of the problem of

footstep planning, it is not clear whether such bounds can still

be obtained in our context. Finally it might be interesting to

try to adapt control-based strategies such as [35] , but the

adaptation would be far from straightforward.

A* search:

of calls to thetime to

the solution

number

is to touch the

one foot.

is to touch the

Setup 2: the goal

reach a

solution

Setup 1: the goal

8.60s

(average on 10 attempts)

approximations

1,700,000

– –

one foot.

circled zone with
24.3 steps

6 steps7.14s

circled zone with

A* search:

RRT variant:

of steps of swept volumes

number

21.1 steps

(>10min)

FAIL

1,920,00029.8s

RRT variant: (average on 10 attempts)

1,560,000

Fig. 11. Experimental setups and results of the planning. The computations
are made with an Intel(R) Xeon(R) 2.00Ghz CPU. Remark: in Setup 1, the
exterior surface of the 3D obstacles (the boxes on the ground) is covered by
250 points. In Setup 2, the exterior surface of the 3D obstacles is covered by
75 points.

Fig. 12. Experimental results: the robot HRP-2 executing planned trajectories.
Above: the so-called toy problem of walking in a child’s bedroom avoiding
toys on the ground.

10

In Setup 1 and 2 we fixed an upper bound, and stopped the

execution of RRT or A* as soon as a path of cost smaller than

this upper bound was found.

As shown by the results on Setup 1, without strong local

minima, the time needed by RRT and A* to find a solution is

approximately the same, but A* finds a better trajectory cost

(it finds solutions with fewer steps).

On the other hand we can see with the results on Setup 2

that when the transition model is large, A* seems much more

sensitive to local minima than RRT: indeed A* fails to find

a solution on Setup 2, whereas the RRT method consistently

finds solutions in less than 40 seconds (and 29.8 seconds in

average).

This is easily explainable because A* usually has to explore

a subtree of fixed height h (which depends on the heuristic

costs used) before being able to avoid a local minimum.

Therefore it will try about (|M|h − 1)
(

|M|
|M|−1

)

transitions

(|M| being the size of the transition model) before overcoming

the local minimum. This can be done if both |M| and h
are relatively small, but since in our case |M| = 276, the

complexity can quickly become insurmountable.

As a randomized approach, RRT does not have this caveat,

and that is why we think it is more suitable than A* when the

transition model is large.

A remark on the time saved thanks to the swept volume

approximations: on the Setup 1 whose environment contain

a lot of points (250), we can see that during their execution

both the RRT variant and A* make about 200,000 calls to

a swept volume approximation every second. Without the

approximations, these 200,000 calls would be replaced by

more than 26 minutes spent in collision checking.

B. The smoothing phase

Once a trajectory avoiding the obstacles has been found by

the planner, since it consists in a concatenation of isolated half-

steps, we can use the homotopy described in section II-B to

smooth it. One overlap parameter has to be set for each pair of

consecutive half-steps, and since the overlaps are independant,

they can be set sequentially. This means that we can start to

execute the trajectory on the robot even if only a few initial

overlaps have been set, the next overlaps being computed

during the execution of the trajectory. Let us notice that the

dichotomy search for the best overlap time is an “any-time

process” that can be interrupted if computation time is too

long, the current result being anyway not worse than the initial

raw motion. Another important remark: since we cannot know

in advance the swept volumes for the trajectories involved in

the smoothing processes, we have to use classical collision

checks. We measured the overlaps computation time for 10

raw sequences of half-steps obtained in Setup 1, and 10 raw

sequences obtained in Setup 2. In all cases, the duration of

the smoothing was less than the final trajectory execution

time. For the solutions in Setup 1, the average time needed

for the smoothing was 14.4s, and the average execution time

of the final trajectory was 31.1s. For the solutions in Setup

2, the average duration of the smoothing was 13.4, and the

Fig. 13. Above: a raw sequence of two half-steps. Below: the smoothed
sequence. When there are no obstacles, the swing foot trajectory of the
smoothed sequence depends on the minimum time between two ZMP shifts,
which is fixed in advance in order to bound the speed of the feet.

average execution time of the final trajectory was 41.6s. Fig. 13

illustrate the effect of the smoothing on the foot trajectories.

VI. A MORE ADVANCED IMPLEMENTATION

The way we deal with collisions in the preliminary ex-

periments is clearly not optimal: we represent obstacles by

covering them with points on their exterior surface, and all the

points are always taken into account. The results showed that

the swept volume approximations can be called a great number

of times in a short period, proving that significant speed-up

can be obtained compared to frequent collision checks along a

priori unknown trajectories. What is more, in some case, point

clouds are a very natural input, and it would be interesting to

see if we can organize them in a good structure so that to

use our approximation functions in an efficient way. This is

beyond the scope of this paper, but we can already obtain better

results by using state-of-the-art collision detection algorithms.

First, we can notice that our swept volume approximations are

defined by intersections of small boxes with planes. Thus, it

is easy to construct meshes that describe the swept volume

approximations (we actually use simplified meshes, i.e. they

have a slightly simpler geometry than the initially precomputed

approximations). With these 276 meshes, we will use the PQP

algorithm [24] for collision checks. The main advantage we

obtain by doing so is that when the obstacles are represented

by classical meshes as well, PQP stores them in bounding

volume hierarchies that reduce the complexity of collision

checks.

With this method a significant speed-up is reached: with the

Setup 2 of Fig. 11, we performed 1000 trials with a slightly

faster CPU (Intel(R) Xeon(R) 2.40GHz) but overall in similar

conditions. A solution was always found, and the average time

required was only 1.60 seconds, which is almost 20 times

11

Fig. 14. On the left: a sequence of steps found in a complex environment.
On the right, we show for one sequence of steps the concatenation of the
swept volumes which are simplified meshes obtained from the original swept
volume approximations. For the upper body simpler bounding boxes are used
for the collision checks.

faster than the preliminary results. The average number of

steps of the solution was 28.5 steps, and in average 18,000

collision checks were needed before finding a solution.

With this new implementation we tested our algorithm in

more complex environments in simulation and also used it to

perform real-time replanning in experiments where the posi-

tion of the robot and obstacles is acquired by motion capture.

The details of the framework used for these experiments are

described in [2]. Fig. 14 shows two simulations, and Fig. 15

shows an experiment during which a bar placed 5cm above

the ground is moved while the robot is executing its initial

plan. The robot is then able to quickly find a new plan and

successfully steps over the bar in its new configuration before

reaching the goal.

VII. DISCUSSION ON AN EXTENSION TO CONTINUOUS

TRANSITION MODELS

Even if the expressiveness of a continuous transition model

can be approached by the one of a large finite transition model,

a continuous transition model would still be preferable.

Several useful techniques would be easier to apply with

a continuous transition model: local footstep modifications

([9], [8]), extraction of convex regions in the transition model

in order to use optimization techniques to determine foot

placements ([16]), path deformation ([18]), etc.

RRT and other sampling-based algorithms (e.g. PRM, see

[21]) would be easier to adapt with a continuous transition

model, so it would cause no problem at the planning phase.

Besides, it would not be difficult to approximate the feasibility

regions so as to obtain continuous transition models Ml and

Mr (although it might be hard to obtain the guarantee that all

transitions are indeed feasible). But then, the main issue would

be the need to approximate swept volumes which depend on a

continuous parameter z ∈ Ml: instead of approximating (the

sign of) Cz(p) for a finite set of values of z, we would need to

approximate C(z,p) which depends on 6 parameters. It does

not correspond anymore to the approximation of a single swept

volume, so the state-of-the-art algorithms for swept volume

approximation cannot be directly used, and we would probably

need to keep a generic approximation algorithm, like the one

used in this paper. Since it took already almost 48 hours to

approximate the swept volumes of the finite transition model,

for a continuous transition model an accurate approximation

Fig. 15. (1): HRP-2 starts to execute the sequence initially found. (2): the bar
is suddenly moved, and the current sequence of step would lead to collisions.
(3): while walking, HRP-2 is able to compute a new sequence of steps towards
the goal (we show the concatenation of the swept volumes which indeed avoid
the bar). (4): the robot finally steps over the bar while at the same time it tries
to optimize the rest of the path towards the goal. Remark: due to uncertainty
on positions, we use a model of bar that is thicker than the actual bar.

would probably be excessively time consuming. In that case it

is likely that instead of trying to compute the swept volumes

more efficiently, other collision detection routines should be

taken into account, such as continuous collision detection [40],

GPU-based approaches [25] or other variants (e.g. [36], [33],

. . .).

VIII. CONCLUSION

In this paper, we have described a novel and coherent

framework for footstep planning, which includes a walking

pattern generator based on half-steps, a simple homotopy for

trajectory smoothing, swept volume approximations for fast

collision checking, and an RRT variant for footstep planning.

12

We used this framework on the robot HRP-2 to quickly plan

dynamic sequences of walk in environments cluttered with

3D and 2D obstacles. Although computed in a few seconds

and with the theoretical guarantee that they actually avoid

the obstacles, the executed trajectories seem very natural: no

pauses, no exaggerated motions to avoid small obstacles, and

a large diversity of foot placements.

ACKNOWLEDGMENT

This work was supported by a grant from the RBLINK

Project, Contract ANR-08-JCJC-0075-01.

REFERENCES

[1] Y. Ayaz, K. Munawar, M. Bilal Malik, A. Konno, and M. Uchiyama.
Human-like approach to footstep planning among obstacles for hu-
manoid robots. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS’06), 2006.
[2] L. Baudouin, N. Perrin, T. Moulard, O. Stasse, and E. Yoshida. Real-

time replanning using 3D environment for humanoid robot. Sub-
mitted to the 11th IEEE-RAS Int. Conf. on Humanoid Robots (Hu-
manoids’11). Available at http://homepages.laas.fr/nperrin/submitted/
humanoids11-lbaudouin.pdf, 2011.

[3] M. Benallegue, A. Escande, S. Miossec, and A. Kheddar. Fast c1 prox-
imity queries using support mapping of sphere-torus-patches bounding
volumes. In IEEE Int. Conf. on Robotics and Automation (ICRA’09),
pages 483–488, 2009.

[4] J.-M. Bourgeot, N. Cislo, and B. Espiau. Path-planning and tracking
in a 3D complex environment for an anthropomorphic biped robot. In
IEEE Intl. Conf. on Intelligent Robots and Systems (IROS’02), pages
2509–2514, 2002.

[5] J. Chestnutt. Navigation Planning for Legged Robots. PhD thesis,
Carnegie Mellon University, 2007.

[6] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami. Planning biped
navigation strategies in complex environments. In IEEE Int. Conf. on

Humanoid Robots (Humanoids’03), 2003.
[7] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade.

Footstep planning for the honda asimo humanoid. In IEEE Int. Conf.

on Robotics and Automation (ICRA’05), pages 631–636.
[8] J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, and S. Kagami. An

intelligent joystick for biped control. In IEEE Int. Conf. on Robotics

and Automation (ICRA’06), pages 860–865, 2006.
[9] J. Chestnutt, K. Nishiwaki, J.J. Kuffner, and S. Kagami. An adaptive

action model for legged navigation planning. In IEEE/RAS Int. Conf.

on Humanoid Robots (Humanoids’07), pages 196–202, 2007.
[10] M. Elmogy, C. Habel, and J. Zhang. Online motion planning for hoap-2

humanoid robot navigation. In IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS’09), 2009.
[11] S.F. Frisken, R.N. Perry, A.P. Rockwood, and T.R. Jones. Adaptively

sampled distance fields: a general representation of shape for computer
graphics. In 27th annual conference on Computer graphics and

interactive techniques (SIGGRAPH’00), pages 249–254, 2000.
[12] J. P. Gonzalez and M. Likhachev. Search-based planning with provable

suboptimality bounds for continuous state spaces. In 4th Annual

Symposium on Combinatorial Search (SOCS’11), 2011.
[13] K. Harada. Motion planning for a humanoid robot based on a biped

walking pattern generator. In Motion Planning for Humanoid Robots,
pages 192–197. Springer, 2010.

[14] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa. An analytical
method for real-time gait planning for humanoid robots. I. J. Humanoid

Robotics, 3(1):1–19, 2006.
[15] T. Hasegawa, K. Nakagawa, and K. Murakami. Collision-free path plan-

ning of a telerobotic manipulator based on swept volume of teleoperated
manipulator. In 5th IEEE Int. Symp. on Assembly and Task Planning,
2003.

[16] A. Herdt, N. Perrin, and P.-B. Wieber. Walking without thinking about
it. In IEEE Int. Conf. on Intelligent Robots and Systems (IROS’10),
2010.

[17] J.C. Himmelstein, E. Ferre, and J.-P. Laumond. Swept volume approx-
imation of polygon soups. IEEE Transactions on Automation Science

and Engineering, 7(1):177–183, 2009.
[18] L. Jaillet and T. Simon. Path deformation roadmaps. In 7th Workshop

on the Algorithmic Foundations of Robotics (WAFR’06), 2006.

[19] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, and K. Yokoi.
Biped walking pattern generation by using preview control of zero-
moment point. In IEEE Int. Conf. on Robotics and Automation

(ICRA’03), pages 1620–1626, 2003.
[20] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for

optimal motion planning. In Robotics Science and Systems VI, 2010.
[21] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-

bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12:566–580,
1996.

[22] Y.J. Kim, G. Varadhan, M.C. Lin, and D. Manocha. Fast swept volume
approximation of complex polyhedral models. In 8th ACM symposium

on Solid modeling and applications, pages 11–22, 2003.
[23] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep

planning among obstacles for biped robots. In IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS’01), pages 500–505, 2001.
[24] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha. Fast proximity

queries with swept sphere volumes. In IEEE Int. Conf. on Robotics and

Automation (ICRA’00), pages 3719–3726, 2000.
[25] C. Lauterbach, Q. Mo, and D. Manocha. gproximity: Hierarchical gpu-

based operations for collision and distance queries. Comput. Graph.

Forum, pages 419–428, 2010.
[26] S.M. LaValle and J.J. Kuffner. Rapidly-exploring random trees: Progress

and prospects. In 4th Workshop on the Algorithmic Foundations of

Robotics (WAFR’00), pages 293–308, 2000.
[27] Y. Nakamura and H. Hanafusa. Optimal redundancy control of robot

manipulators. Int. Journal of Robotics Research, 6:32–42, 1987.
[28] K. Nishiwaki, K. Nagasaka, M. Inaba, and H. Inoue. Generation of

reactive stepping motion for a humanoid by dynamically stable mixture
of pre-designed motions. In IEEE Int. Conf. on Systems, Man, and

Cybernetics, pages 902 – 907, 1999.
[29] K. Nishiwaki, T. Sugihara, S. Kagami, M. Inaba, and H. Inoue. On-

line mixture and connection of basic motions for humanoid walking
control by footprint specification. In IEEE Int. Conf. on Robotics and

Automation (ICRA’01), pages 4110–4115, 2001.
[30] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. Adaptive sampling-

based approximation of the sign of multivariate real-valued functions.
Technical report, 2010. Available at http://hal.archives-ouvertes.fr/docs/
00/54/48/91/PDF/approx.pdf.

[31] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. Approximation
of feasibility tests for reactive walk on hrp-2. In IEEE Int. Conf. on

Robotics and Automation (ICRA’10), pages 4243–4248, 2010.
[32] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. A biped walking

pattern generator based on ”half-steps” for dimensionality reduction. In
IEEE Int. Conf. on Robotics and Automation (ICRA’11), pages 1270–
1275, 2011.

[33] H. Schmidl, N. Walker, and M. C. Lin. Cab: Fast update of obb trees
for collision detection between articulated bodies. Journal of Graphics

Tools, 9:1–9, 2004.
[34] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact collision checking

of robot paths. In 5th Workshop on the Algorithmic Foundations of

Robotics (WAFR’02), 2002.
[35] I.A. Sucan and L.E. Kavraki. Kinodynamic motion planning by

interior-exterior cell exploration. In 8th Workshop on the Algorithmic

Foundations of Robotics (WAFR’08), 2008.
[36] M. Tang, Y. J. Kim, and D. Manocha. CCQ: Efficient local planning

using connection collision query. In 9th Workshop on the Algorithmic

Foundations of Robotics (WAFR’10), pages 229–247, 2010.
[37] M. Vukobratovic and B. Borovac. Zero-moment point – thirty five years

of its life. Int. Journal of Humanoid Robotics, 1(1):157–173, 2004.
[38] Z. Xia, G. Chen, J. Xiong, Q. Zhao, and K. Chen. A random

sampling-based approach to goal-directed footstep planning for hu-
manoid robots. In IEEE/ASME Int. Conf. on Advanced Intelligent

Mechatronics (AIM’09), pages 168–173, 2009.
[39] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond. Humanoid

motion planning for dynamic tasks. In IEEE/RAS Int. Conf. on

Humanoid Robots (Humanoids’05), pages 1–6, 2005.
[40] X. Zhang, S. Redon, M. Lee, and Y. J. Kim. Continuous collision

detection for articulated models using taylor models and temporal
culling. ACM Transactions on Graphics (Proceedings of SIGGRAPH

2007), 26(3):15, 2007.

13

Nicolas Perrin graduated from the Ecole Normale
Supérieure de Lyon in 2009. He received the M.Sc.
degree in Mathematical Logic and Foundations of
Computer Science from the University of Paris VII
in 2008. He is currently Ph.D. student at LAAS-
CNRS, Toulouse, France. During his Ph.D. studies
he worked from 2008 to 2011 at CNRS-AIST JRL
(Joint Robotics Laboratory), Tsukuba, Japan. His
current research is in humanoid robots and motion
planning.

Olivier Stasse is a Senior Researcher (CR-1) at
LAAS-CNRS, Toulouse. He has been assistant pro-
fessor in Computer Science at University of Paris 13.
He received a Ph.D. in Intelligent Systems (2000)
from University of Paris 6. His research interests
include humanoids robots, and more specifically
motion generation motivated by vision. From 2003
to 2011, he was with the Joint French-Japanese
Robotics Laboratory (JRL) in Tsukuba, Japan. He
has been Finalist for the Best Paper Award at ICAR
2007, finalist for the Best Video Award at ICRA

2007 and received the Best Paper Award at ICMA 2006.

Léo Baudouin graduated in Master Image and
Vision from Blaise Pascal University of Clermont-
Ferrand in 2011. He will graduate from Clermont-
Ferrand IFMA engineering school of mechatronics
in 2012. In 2011 he worked at CNRS-AIST JRL
(Joint Robotics Laboratory) in Japan and at LAAS-
CNRS in France on humanoid robot real-time re-
planning.

Florent Lamiraux graduated from the Ecole Poly-
technique Paris in 1993. He received the Ph.D. de-
gree in Computer Science from the Institut National
Polytechnique de Toulouse in 1997 for his research
on Mobile Robots. He worked two years at Rice
University as a Research Associate. He is currently
Directeur de Recherche at LAAS-CNRS, working in
humanoid robots.

Eiichi Yoshida received M.E. and Ph.D. degrees
on Precision Machinery Engineering from Graduate
School of Engineering, the University of Tokyo in
1993 and 1996 respectively. In 1996 he joined for-
mer Mechanical Engineering Laboratory, Tsukuba,
Japan. He is currently senior research scientist, in
Intelligent Systems Research Institute, National In-
stitute of Advanced Industrial Science and Technol-
ogy (AIST), Tsukuba, Japan. From 1990 to 1991,
he was visiting research associate at Swiss Federal
Institute of Technology at Lausanne (EPFL). He

served as Co-Director of AIST/IS-CNRS/ST2I Joint French-Japanese Robotics
Laboratory (JRL) at LAAS-CNRS, Toulouse, France, from 2004 to 2008. He
is currently Co-Director of CNRS-AIST JRL (Joint Robotics Laboratory),
UMI3218/CRT, AIST, Japan, since 2009. His research interests include robot
task and motion planning, modular robotic systems, and humanoid robots.

