Block-modified Wishart matrices and free Poisson laws - Archive ouverte HAL
Article Dans Une Revue Houston Journal of Mathematics Année : 2015

Block-modified Wishart matrices and free Poisson laws

Résumé

We study the random matrices of type $\tilde{W}=(id\otimes\varphi)W$, where $W$ is a complex Wishart matrix of parameters $(dn,dm)$, and $\varphi:M_n(\mathbb C)\to M_n(\mathbb C)$ is a self-adjoint linear map. We prove that, under suitable assumptions, we have the $d\to\infty$ eigenvalue distribution formula $\delta m\tilde{W}\sim\pi_{mn\rho}\boxtimes\nu$, where $\rho$ is the law of $\varphi$, viewed as a square matrix, $\pi$ is the free Poisson law, $\nu$ is the law of $D=\varphi(1)$, and $\delta=tr(D)$.

Dates et versions

hal-00662546 , version 1 (24-01-2012)

Identifiants

Citer

Teodor Banica, Ion Nechita. Block-modified Wishart matrices and free Poisson laws. Houston Journal of Mathematics, 2015, 41 (1), pp.113-134. ⟨hal-00662546⟩
88 Consultations
0 Téléchargements

Altmetric

Partager

More