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SPECTRAL INVERSE PROBLEMS FOR COMPACT
HANKEL OPERATORS

PATRICK GERARD AND SANDRINE GRELLIER

ABSTRACT. Given two arbitrary sequences (A;);>1 and (p;);>1 of real
numbers satisfying
Aal > Jpa] > [Aa| > [p2] > - > [N ] > |pi| =0,

we prove that there exists a unique sequence ¢ = (¢n)nez o real valued,
such that the Hankel operators I'c and I'z of symbols ¢ = (Cn)nzo and
&= (Cnt1)n>0 respectively, are selfadjoint compact operators on £%(Z.)
and have the sequences (\;j);j>1 and (u;)j>1 respectively as non zero
eigenvalues. Moreover, we give an explicit formula for ¢ and we describe
the kernel of I'c and of I'z in terms of the sequences (A\;);>1 and (p;);>1.
More generally, given two arbitrary sequences (p;);j>1 and (0j);>1 of
positive numbers satisfying
pL>01>p2>02>->pi >0 =0,

we describe the set of sequences ¢ = (cn)nez+ of complex numbers such
that the Hankel operators T'. and T’z are compact on £*(Z;) and have
sequences (p;);>1 and (0;);>1 respectively as non zero singular values.

1. INTRODUCTION

Let ¢ = (¢)n>0 be a sequence of complex numbers. The Hankel operator
I'. of symbol ¢ is formally defined on ¢2(Z, ) by
o
Vi = (n)nz0 € £(Zy) , Te(@)n = Z CntpTp -
p=0
These operators frequently appear in operator theory and in harmonic anal-
ysis, and we refer to the books by Nikolskii [10] and Peller [13] for an intro-
duction and their basic properties. By a well known theorem of Nehari [9],
I is well defined and bounded on ¢?(Z, ) if and only if there exists a func-
tion f € L>(T) such that Vn > 0, f(n) = ¢,, or equivalently if the Fourier
series u. = Y., < cne™® belongs to the space BMO(T) of bounded mean
oscillation functions. Moreover, by a well known result of Hartman [4], T
is compact if and only if there exists a continuous function f on T such that
Vn > 0, f(n) = ¢n, or equivalently if u. belongs to the space VMO(T) of
vanishing mean oscillation functions. Assume moreover that the sequence ¢
is real valued. Then I, is selfadjoint and compact, so it admits a sequence
of non zero eigenvalues (\;);>1, tending to zero. A natural inverse spectral
problem is the following: given any sequence (\;);>1, tending to zero, does
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there exist a compact selfadjoint Hankel operator I'. having this sequence
as non zero eigenvalues, repeated according to their multiplicity?

A complete answer to this question can be found in the literature as a
consequence of a more general theorem by Megretskii, Peller, Treil [8] char-
acterizing selfadjoint operators which are unitarily equivalent to bounded
Hankel operators. Here we state the part of their result which concerns the
compact operators.

Theorem 1 (Megretskii, Peller, Treil [8]). Let I be a compact, selfadjoint
operator on a separable Hilbert space. Then T is unitarily equivalent to a
Hankel operator if and only if the following conditions are satisfied

(1) FEither ker(I') = {0} or dimker(I') = oo;

(2) For any A € R*, |dimker(I' = A\I) — dimker(I" + AI)| < 1.

As a consequence of this theorem, any sequence of real numbers with
distinct absolute values and converging to 0 is the sequence of the non zero
eigenvalues of some compact selfadjoint Hankel operator.

In this paper, we are interested in finding additional constraints on the
operator I'. which give rise to uniqueness of ¢. With this aim in view, we
introduce the shifted Hankel operator I's, where ¢, := ¢,41 for all n € Z,..
If we denote by (A;);>1 the sequence of non zero eigenvalues of I'. and by
(15)j>1 the sequence of non zero eigenvalues of I'z, one can check —see below—
that

Al > ] > Dol > Jpg| >+ > =0

Our result reads as follows.

Theorem 2. Let (\;)j>1, (145)j>1 be two sequences of real numbers tending
to zero so that

A1] > 1] > |A2] > |p2| > ...> - —=0.

There exists a unique real valued sequence ¢ = (¢y) such that T'. and T'z are
compact selfadjoint operators, the sequence of non zero eigenvalues of I'¢ is
(Xj)j>1, and the sequence of non zero eigenvalues of 'z is (f1;)>1-

Furthermore, the kernel of I is reduced to zero if and only if the following
conditions hold,

(1) Z —)\—; = 00, sup H}\—;:oo.

2
N ANt j=1"

Moreover, in that case, the kernel of I's is also reduced to 0.

In complement to the above statement, let us mention that an explicit
formula for c is available, as well as an explicit description of the kernel of
I'. when it is non trivial — see Theorems 3 and 4 below.

Theorem 2 is in fact a consequence of a more general result concerning
the singular values of non necessarily selfadjoint compact Hankel operators.
Recall that the singular values of a bounded operator T' on a Hilbert space
‘H, are given by the following min-max formula. For every m > 1, denote
by Fi, the set of linear subspaces of H of dimension at most m. The m-th
singular value of T' is given by
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(2) sm(T) = pin - max [T

In this paper, we construct a homeomorphism between some set of sym-
bols ¢ and the singular values of I'. and I'z up to the choice of an element
in an infinite dimensional torus.

In order to state this general result we complexify and reformulate the
problem in the Hardy space. We identify ¢2(Z, ) with

LA(T) ={u : u=>Y_a(n)e™ , > [an)] < +oo }
n=0 n=0

and we denote by II the orthogonal projector from L*(T) onto L2 (T).

Here and in the following, for any space of distributions £ on T, the
notation E stands for the subspace of E consisting of those elements u
of E such that 4(n) = 0 for every n < 0, or equivalently which can be
holomorphically extended to the unit disc. In that case, we will still denote
by wu(z) the value of this holomorphic extension at the point z of the unit
disc.

We endow L% (T) with the scalar product

Mm:/m%

T

and with the associated symplectic form
w(u,v) = Im(ulv) .
For u sufficiently smooth, we define a C-antilinear operator on Li by
H,(h) =TI(uh) , he L2 .

If u = ue,

Hy,(h)(n) =T¢(x)n , xp = h(p) .
Because of this equality, H, is called the Hankel operator of symbol wu.
Similarly, 'z corresponds to the operator K, = H,T, where T, denotes
multiplication by z. Remark that by definition H,, = Hry(,). In the following,
we always consider holomorphic symbols u = II(u).

As stated before, by the Nehari theorem ([9]), H, is well defined and
bounded on L2 (T) if and only if u belongs to II(L>°(T)) or to BMO4(T).
Moreover, by the Hartman theorem ([4]), it is a compact operator if and only
if u is the projection of a continuous function on the torus, or equivalently
if and only if it belongs to VMO, (T) with equivalent norms. Furthermore,
remark that this operator H, is selfadjoint as an antilinear operator in the
sense that for any hq, ho € Li,

(h1|Huy(h2)) = (h2|Hy(h1)).

A crucial property of Hankel operators is that H, 1, = T, H, so that, in
particular,

3) K = Hy — (Ju)u.
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Assume v € VMO4(T) and denote by (pj)j>1 the sequence of singular
values of H, labelled according to the min-max formula (2). Since, via the
Fourier transform, H?2 identifies to I'.I'; with ¢ = 4, (p;);>1 is also the
sequence of singular values of I';. Similarly, K, is a compact, so it has
a sequence (0;);j>1 of singular values tending to 0, which are the singular
values of I'z, since K2 identifies to I'zI's. From Equality (3) and the min-max
formula (2), one obtains

pr =012 py =022 =0

We denote by VMO gen the set of u € VMO, (T) such that H, and K,
admit only simple singular values with strict inequalities, or equivalently
such that H2? and K2 := H?2 — (-|u)u admit only simple positive eigenvalues
pPr>pi>-->-..=>0ando? >05>--->---— 0 so that

Pl >0l >pa>08 > > 0.

For any integer N, we denote by V(2N) the set of symbol u such that
the rank of H, and the rank of K, are both equal to N. By a theorem of
Kronecker (see [5]), V(2N) is a complex manifold of dimension 2N consisting
of rational functions. One can consider as well the set V(2N — 1) of symbols
u such that H, is of rank N and K, is of rank NV — 1. It defines a complex
manifold of rational functions of complex dimension 2N — 1.

By the arguments developed in [2], it is straightforward to verify that
VMOy gen is a dense G subset of VMO, (T). Indeed, let us consider the
set Uy which consists of functions u € VMO, (T) such that the N first
eigenvalues of H2 and of K2 are simple. This set is obviously open in
VMO4(T). Moreover, in Lemma 4 of [2], it is proved that Uy N V(2N) :=
V(2N )gen is a dense open subset of V(2N). Now any element w in VMO,
may be approximated by an element in V(2N'), N’ > N, which can be itself
approximated by an element in V(2N")gen C Un, since N’ > N. Eventually,
VMOy gen is the intersection of the Ux’s which are open and dense, hence
VMOy gen is a dense G set.

Let w € VMO4 gen. Denote by ((pj);>1 the singular values of H, and by
(0j)j>1 the singular values of K. Using the antilinearity of H, there exists
an orthonormal family (e;);>1 of the range of H, such that

Notice that the orthonormal family is determined by w up to a change of
sign on some of the e;. We claim that (1]e;) # 0. Indeed, if (1|e;) = 0 then
(ulej) = pj(ej]1) = 0 and, in view of (3), ,0? would be an eigenvalue of K2,
which contradicts the assumption. Therefore we can define the angles

j(u) == alrg(1|ej)2 j>1.

We do the same analysis with the operator K, = H,T,. As before, by the
antilinearity of K, there exists an orthonormal family (f;);>1 of the range
of K, such that

K. (f;)=o0jf;, i>1,
and the family is determined by u up to a change of sign on some of the f;.
One has also (u|f;) # 0 because of the assumption on the p;’s and o;’s. We
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set
0;(u) = arg(ul f;)* j > 1.
Our main result is the following.

Theorem 3. The mapping

X =u € VMO gen — ¢ = ((C2jo1 = pje )31, (Coj = oje %) ;31)

s a homeomorphism onto

2= {(G)iz1 € C, |Gl > (Gl > Gl > (Gl -+ > -+ = 0}

Moreover, one has an explicit formula for the inverse mapping. Namely, if
¢ is given in =, then the Fourier coefficients of u are given by

(4) a(n) = X.A"Y |
where A = (Aji);k>1 is the bounded operator on (2 defined by

[e.e]

2
5 Ay — ViVgCok—1K7,Com es 1
) 7" Z (1G2j-11% = [C2m|?) (IC2r—11> = [C2m[?) ph=t

m=1

2 2 2
2. 95 Pj ~— %k

(6) Vj-:<1__2>H<2_2 )
P vy P — Pk

VIV =Y vjw; if V= ()21, W = (w))j21 -
j=1

Theorem 3 calls for several comments. Firstly, it is not difficult to see
that the first part of Theorem 2 is a direct consequence of Theorem 3 (see
the end of Section 3 below). More generally, as an immediate corollary of
Theorem 3, one shows that, for any given sequences (p;j);>1 and (0;);j>1
satisfying

pL> 01 > p2 > 09> — 0
there exists an infinite dimensional torus of symbols ¢ such that the (p;);>1’s
are the non zero singular values of I';, and the (0;);>1’s are the non zero
singular values of I';.

Next we make the connection with previous results. In a preceding arti-
cle ([3]), we have obtained an analogue of Theorem 3 in the more restricted
context of Hilbert-Schmidt Hankel operators. This result arises in [3] as
a byproduct of the study of the dynamics of some completely integrable
Hamiltonian system called the cubic Szegd equation (see [2] and [3]). In
this setting the phase space of this Hamiltonian system is the Sobolev space

Hi/ 2, which is the space of symbols of Hilbert-Schmidt Hankel operators,
and the restriction of the mapping x to the phase space can be interpreted
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as an action-angle map. In the present paper, we extend this result to com-
pact Hankel operators, which is the natural setting for an inverse spectral
problem.

Finally, we would like to comment about the above explicit formula giving
@(n). The boundedness of operator A defined by (5) is not trivial. In fact,
it is a consequence of the proof of the theorem. However, it is possible
to give a direct proof of this boundedness, see Appendix 2. Furthermore,
from the complicated structure of formula (4), it seems difficult to check
directly that the corresponding Hankel operators have the right sequences
of singular values, namely that the map x is onto. Our proof is in fact
completely different and is based on some compactness argument, while, as
in [3], the explicit formula is only used to establish the injectivity of x.

We now state our last result, which describes the kernel of H,, in terms
of the ¢ = x(u).

As ker H,, is invariant by the shift, the Beurling theorem — see e.g. [14]—
provides the existence of an inner function ¢ so that ker H,, = chi. We use
the notation of Theorem 3 to describe . Denote by R the range of H,.

Theorem 4. We keep the notation of Theorem 3. Let u € VMO gen. The
kernel of H, and the kernel of K, are reduced to zero if and only if 1 € R\ R
or if and only if the following conditions hold.

e 0,2 1 NO'2-
(9) Z(l——]>:oo, sup — H—;:oo

2
= Pj N PN+1 i=1 P

When these conditions are not satisfied, ker H, = @Li with @ inner satis-
fying B
(1) if 1 does not belong to the closure of the range of Hy, i.e. 1 ¢ R,

then
p(z) = (1= v) 21 => an2")
n>0
where

(10) an = Y.A"Y

Furthermore, ker K,, = ker H,, = chi.
(2) if 1 belongs to the range of H,, i.e. 1 € R, then ¢(z) = z¢(z) with

oo 2 —1/2
]/,
Y(z) = Z p_é Z Bp2"
j=1"1J n>0
where
(11) Bo = WAY | W = (v;Cj-1p; )j=1 -

Furthermore, ker K,, = ker H, & CH; (1) = L% @ Cy.

We end this introduction by describing the organization of this paper.
In Section 2, we start the proof of Theorem 3. We first recall from [3]
a finite dimensional analogue to Theorem 3. Then we generalize from [3]
an important trace formula to arbitrary compact Hankel operators. We
then use this formula and the Adamyan-Arov-Krein theorem to derive a
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crucial compactness lemma about Hankel operators. Using this compactness
lemma, we prove Theorem 3 in Section 3, and we infer the first part of
Theorem 2. Section 4 is devoted to the proof of Theorem 4, from which the
second part of Theorem 2 easily follows. Finally, for the convenience of the
reader, we have gathered in Appendix 1 the main steps of the proof of the
finite dimensional analogue of Theorem 3, while Appendix 2 is devoted to a
direct proof of the boundedness of operator A involved in Theorem 3.

2. PRELIMINARY RESULTS

The proof of Theorem 3 is based on a finite rank approximation of H,. We
first recall the notation and a similar result obtained on finite rank operators
in [3].

2.1. The finite rank result. By a theorem due to Kronecker ([5]), the
Hankel operator H,, is of finite rank if and only if w is a rational function,
holomorphic in the unit disc. As in the introduction, we consider V(2N)
the set of rational functions u, holomorphic in the unit disc, so that H,
and K, are of finite rank N. It is elementary to check that V(2N) is a
2N-dimensional complex submanifold of L2 (we refer to [2] for a complete
description of this set and for an elementary proof of Kronecker Theorem).
We denote by V(2N )gen the set of functions u € V(2N) such that H2 and
K2 have simple distinct eigenvalues (p?)lgjg N and (J,Qn)lgmg N respectively
with
P2 >0t >pa> ... p% > 0% > 0.

As in the introduction, we can define new variables on V(2N )gen and a

corresponding mapping yn. The following result has been proven in [3].

Theorem 5. The mapping
XN =1 € V(2N )gen > ¢ = (o1 = pje™ "7, (o5 = e ¥ )1jen
1s a symplectic diffeomorphism onto
By ={CeC™, |l > I¢al > [¢s] > [¢al > -+ > [Gan-1] > [Gan| > 0}
in the semse that the image of the symplectic form w by xn satisfies
(12) (=5 3 dGAdG.
1<j<2N

There is also an explicit formula for the inverse yn analogous to the
one given in Theorem 3 except that the sums in formulae (4) run over the
integers 1,..., N.

In order to prove the extension of Theorem 5 to VMO, gen, we have to
extend some tools introduced in [3].

2.2. The functional J(z). Let H be a compact selfadjoint antilinear op-
erator on a Hilbert space H. Let A = H? and e € H so that || = 1.
Notice that A is selfadjoint, positive and compact. We define the generating
function of H for |z| small, by

J(x)(A) =1+ i "Iy,
n=1
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where J,, = J,(A) = (A"(e)|e). Consider the operator
B:=A—(-|H(e))H(e)

which is also selfadjoint, positive and compact. Denote by (a;)j>1 (resp.
(bj)j>1) the non-zero eigenvalues of A (resp. of B) labelled according to the
min-max principle,

a1 > by >ay > ...

Notice that )
J(x)(A) = (I = zA) " (e)le)

which shows that J extends as an entire meromorphic function, with poles
at T = %, 7> 1.
J

Proposition 1.

o0

13 @ =I1=2 o¢ {Tiz1}.

1—ajx y

Jj=1

Proof. We first assume A and B in the trace class. In that case, we can
compute the trace of (I —zA)™! — (I —xB)~!. We first write

X

(=24 = (1=2B))(f) = (/1 = ad) " H(e)) - (1 = 2A) He)
Consequently, taking the trace, we get
Te[(I - 2A)™ — (I —2B)™Y] = ﬁnu —zA) T H (e)|*.

As, on the one hand,
I(I —2zA) " H(e)||” = (I —xA) " Ale)le) = J'(x)

and on the other hand

Te[(I —zA) ™ — (I —2B)™'] = 2Tr[A(I —2A)"' = B(I —2B)™]
N (% b
B jz;<1—ajx 1—bj3:>
we get
> aj B bj _ J’(m) . i l .
) ; (1—%90 1 —bﬂ) T "F {aj’ b= 1} '

From this equation, one gets easily formula (13) for A and B in the trace
class. To extend it to compact operators, we first recall that

aj Z bj Z a/jJrl.

Hence, zj(aj—bj) converges when A is compact since 0 < a;—b; < a;—a;4+1
and a; tends to zero by compactness of A. Hence, the infinite product in
Formula (13) converges, and the above computation makes sense for compact
operators. U
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Lemma 1. Let e € H with |le| = 1. Let (Hp) be a sequence of compact
selfadjoint antilinear operators on a Hilbert space H which converges strongly
to H, namely

VheH , Hh — Hh .

p—00
We assume that H is compact. Let A, = H2, By, = Ay, — (- |[Hp(e))Hy(e),
and A= H? et B= A—(-|H(e))H(e) their strong limits. For everyj > 1,
denote by F; the set of linear subspaces of H of dimension at most j, set

P _ A
G T peR, heFTfﬁ)/i”:l( p()IR)

b — mi B,(h)|h) .
i Fren;ﬁlhgrgm:l( p(h)[h)

Assume there exist (@;) and (b;) such that

sup|a§p) -aj| — 0, sup|b§p) —b;| — 0,
i>1 p=oo > p—00

and the non-zero a;, by, are pairwise distinct. Then the positive eigenvalues
of A are simple and are exactly the a;’s; similarly, the positive eigenvalues
of B=A—(-|H(e))H(e) are simple and are exactly the by, ’s.

Proof. By assumption, for every h € H, we have
(15) Aylh) —> A(h)

Since the norm of A, is uniformly bounded, we conclude that (15) holds
uniformly for h in every compact subset of H, hence

Vi > 1, A% (h) — A™(h) .
pP—00

In particular, for every n > 1,
Tn(Ay) = (A3(e)le) — (A™(e)le) i= a(A)

and there exists C' > 0 such that
Vn > 1, sup Jp(A4,) < C".
P

Choose § > 0 such that 6C' < 1. Then, for every real number x such that
|x| < d, we have, by dominated convergence,

o

J(x)(Ap) =1+ le Jn(Ap) =2 1+ _13: Ju(A) == J(z)(A) .
On the other hand, in view of the assumption about the convergence of
(agp))jzl and (bgp))jzl and the convergence of the product in Formula (13),

we also have, for |z| < 4,

/1 _plP), > /1—bx
(16) J(z)(Ap) = <7J> — ).

1 —-a;x

Hence, we obtain

(17 s =11 (1522).
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By assumption, the non-zero @;, b, are pairwise distinct so no cancellation
can occur in the right hand side of (13), and the poles are all distinct.

On the other hand, denote by (a;) the family of eigenvalues of A and by
(bj) the one of B. By a classical result (see e.g. Lemma 1, section 2.2 of
31);

{a’j7j > 1} - {ajvj > 1} ’ {bj7j > 1} - {ijj > 1}
and the multiplicity of positive eigenvalues is 1. Consequently, there is no
cancellation in the expression of J(x)(A) and all the poles are simple. We
conclude that a; =@, b; = Ej for every j > 1. O

2.3. A compactness result. From now on, we choose H = LEL and e = 1.
As a first application of Proposition 1, we obtain the following.

Lemma 2. For any u € VMO+(']I‘), we have

13:0

xT) = x 3 = 1 p] v 1
J(z) = J(z)(H?) jHH o a =14z Z xpj ¢{p§(u)}j21.

Here vj := |(1lej)|. In particular,

2 2_ 2
y2:< _Q>H</’j—%>
j 2 2 _ 2

P Py P = Pk

The first equality is just a consequence of (13). For the second equality,
we use the formula J(z) = (I — 2H2)~!(1)|1) and we expand 1 according
to the decomposition

Li = @jleej @ ker H,,.

From Lemma 1, we infer the following compactness result, which can be
interpreted as a compensated compactness result.

Proposition 2. Let (u,) be a sequence of VMO (T) weakly convergent to
u in VMO (T). We assume that, for some sequences (p;) and (T;),

?gll) 1pj(up) — Pj’ pjo 0, ?uP loj(up) — 7] pjo 0,
and the following simplicity assumption: all the non-zero p;, o, are pairwise
distinct. Then, for every j > 1, pj(u) = p;, oj(u) =7, and the convergence
of up to u is strong in VMOL(T).

Remark 1. Let us emphasize that this result specifically uses the structure
of Hankel operators. It is false in general for compact operators assumed
to converge only strongly. One also has to remark that the simplicity of the
eigenvalues is a crucial hypothesis as the following example shows. Denote
by (up), |p| < 1, p real, the sequence of functions defined by

Z—Dp
up(z) = T

Then, the selfadjoint Hankel operators Hy,, and K,, have eigenvalues \; =
w1 =1 and Ao = =1 and p, = Apr1 = 0 for m > 2 independently of p . As
p goes to 1, p < 1, u, tends weakly to the constant function —1, hence the
convergence is not strong in VMO. Indeed, H_1 is the rank one operator
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given by H_1(h) = —(1|h) hence H?, is a rank one projector while ng is
a rank two projector. Therefore

HH?LP — H?{| > 1 since RanHﬁp Nker H2, # {0} .

Proof. Let us first recall the Adamyan-Arov-Krein (AAK) Theorem on ap-
proximation of Hankel operators by finite rank Hankel operators.

Theorem 6 (Adamyan-Arov-Krein [1]). Let I' be a bounded Hankel operator
on L2(T). Let ($m(T))m>1 be the family of singular values of T' labelled
according to the min-max principle. Then, for any m > 1, there exists a
Hankel operator Iy, of rank m — 1 such that

sm(I) = [T = D]

In other words, AAK Theorem states that the m-th singular value of a
Hankel operator, as the distance of this operator to operators of rank m —1,
is exactly achieved by some Hankel operator of rank m — 1, hence, with a
rational symbol.

This result is crucial to obtain our compactness result. We want to apply
Lemma 1 with A = H2 and B = K2 and e = 1. One has to prove that, for
any h € L%, H?Lp(h) — H2(h). By AAK Theorem, for any p and any j > 1,
there exists a function w, ; € V(25) UV(2j — 1) so that

||Hup - Hup,jH = pj+1(up)'

In particular, we get

lup = upjlirz < pjea(up).

On the other hand, one has

1 2 \Wil/2 o 1
HHup,J” 2 W(TT(HUP,J')) = WHUPJHHI/Q'

Hence, for fixed j, the sequence (u, ;), is bounded in H'/2. We are going
to prove that the sequence {u,}, is precompact in Li. We show that, for
any € > 0 there exists a finite sequence v, € L%_, 1 <k < M so that
{up}tp, C U,ZCVIZIBLi (vr,€). Let j be fixed so that sup, pjy1(up) < €/2. As
the sequence (uy_;), is uniformly bounded in H'/2, there is a subsequence
which converges weakly in H /2 1n particular, it is precompact in LEL hence
there exists v, € L2, 1 < k < M so that {u,}, C UBLi(vk,e/Q). Then,
for every p there exists a k such that

lup — vrllrz < pjea(up) + llup; — villr2 <e.
Therefore {u,} is precompact in L%r and, since L? is complete, some subse-
quence of (uy) has a strong limit in L2 . Since u,, converges weakly to u, this
limit has to be u, and we conclude that the whole sequence (uy) is strongly
convergent to w in L. Since ||Hy,|| > |Jup|Brmo is bounded, we infer the
strong convergence of operators,

2
Vh € L% Hy,(h) — Hu(h) .

By Lemma 1, for every k we have pi(u) = p;, and ox(u) = 7. We now want
to prove that
|Hy, — Hyl| = 0.
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Let us distinguish two cases.

First case : for every j > 1, p; > 0 . We come back to the AAK situation
above. For every j, we select u,; € V(2j) UV(2j — 1) so that

||Hup - Hup,jH = pj+1(up)'

Since the operator norm is lower semicontinuous for the strong convergence,
we infer that any limit point @; of u, ; in Li as p — 00, satisfies

|Hy — Hg, || <Pjyq -

In particular, [7; — 0;(@;)| < pj;q, hence o;(i;) > 0 and thus @; € V(25).
Using the following elementary lemma, the proof is then completed by the
triangle inequality.

Lemma 3. Let N be a positive integer and w, € V(2N )UV(2N —1) such that
w, — win L3 . Assumew € V(2N)UV(2N —1). Then ||Hy,,—H,| — 0.
pP—00 pP—00

Let us postpone the proof of Lemma 3 to the end of the argument.
Second case : there exists k > 1 such that p,=0. We denote by j the greatest
k > 1 such that p, > 0. Of course we may assume that there exists such a
J, otherwise this would mean that || H,,|| tends to 0, a trivial case. For such
a j, we again write

|Hu, = Hup, | = o311 (up),
and, passing to the limit, we conclude that u, ; is strongly convergent to u
in L% . Using again Lemma 3, we conclude that ||H,, , — H,|| tends to 0,
and the proof is again completed by the triangle inequality.

Finally, let us prove Lemma 3. Recall the explicit description of V(D), see
e.g. [2]. Elements of V(2N) are rational functions of the following form,
A(z)
’U)(Z) - B(Z) )

where A, B have no common factors, B has no zeroes in the closed unit disc,
B(0) =1, and deg(A) < N — 1, deg(B) = N. Elements of V(2N — 1) have
the same form, except that the last part is replaced by deg(A) = N — 1,
deg(B) < N —1.

Write similarly
Ap(2)
U)p(z) - Bp(z) .
By the Cauchy formula, we have, for every z in the unit disc,

wp(z) = w(z) .

Since
N

p(2) = H(1 — brp2)
k=1
with |bk7p| < 1,we may assume that, up to extracting a subsequence,
N
B,(z) — B(2) = H(l — bp2) |

k=1
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with ]Bk\ < 1. Multiplying by B),(z) and passing to the limit, we get
A(z)
B(z)
Since BA is divisible by B, B is divisible by B. On the other hand, we
claim that deg(B) < deg(B). Indeed, either w € V(2N), and deg(B) =
N > deg(B) ; or w € V(2N — 1), and deg(A) = N — 1 > deg(A). In both
cases, we conclude B = B, which means that the numbers by, stay away
from the unit circle. Consequently, the convergence of wy(z) to w(z) holds
uniformly on a disc D(0,r) for some r > 1, thus, say, w, — w in H*(T) for

every s > 0. Choosing s = %, we conclude that H,,, converges to Hy, in the
Hilbert-Schmidt norm, hence in the operator norm. O

Ay(2) — B(2) = A(2) .

3. PROOF OF THEOREM 3 AND OF THE FIRST PART OF THEOREM 2

3.1. The surjectivity of x. Let ((;)p>1 be an element in 2. We want
to prove the existence of u € VMO gen so that x(u) = (¢p)p>1. We are
going to use the finite rank result. By Theorem 5, for every N we construct
un € V(2N) via the diffeomorphism xy by letting

XN (un) = (Cp)i<p<an -
The sequence (uy) satisfies ||Hy, || = p1(un) = |¢1], hence is bounded in
VMO, and therefore has a subsequence, still denoted by (upy), which is
weakly convergent to u in VM O,. We can then apply Proposition 2, hence
u is the strong limit of (uy) in VMO, (T), so that

pi(u) = [Cj1l = pj , oj(u) = |Ca5] := 0.
In particular, u € VMO, gen. It remains to consider the convergence of the
angles and hence of the eigenvectors. Let j be fixed. For N > j, denote by
ej,n the normalized eigenvector of H? y Trelated to the simple eigenvalue p?
so that Hy, (e; n) = pjlejn. As (ejn) is a sequence of unitary vectors, it
has a weakly convergent subsequence to some vector €;. We now show that
the convergence is in fact strong. Let us consider the operator

Pin = /(Zf —H.))
Cj

e
2

where C; is a small circle around p?. If C; is sufficiently small
Pjn(h) = (hlejn)ejn.
By the convergence of H,, to H,, we have for any h € L?,
Pjn(h) — Pj(h)

where P; is the projector onto the eigenspace of H? corresponding to p?

Denoting by e; a unitary vector of this eigenline, we get that, for any h € L%,
(hlejn)ejn = (hlej)e;.

As (hlejn) converges to (h|é;) by weak convergence, and on the other
hand |Pjn(ejn)| = [(hlejn)| tends to [[P(h)[| = [(hle;)|, we get that
|(R|€;)] = |(hlej)| for any h in L? hence é; = e'Ve; is unitary. We con-
clude that the convergence of e; y to €; is strong since the convergence is
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weak and the vectors are unitary. Hence H,, (ejn) = pj,nej,N converges
to Hy(é;) = pjéj, and the angles arg(1|e; v)? converge to arg(1|é;)%. The
same holds for the eigenvectors of K,,. We conclude that there exists
u € VMO4 gen with x(u) = ({p)p>1. The mapping x is onto.

The second step is to prove that x is one-to-one. It comes from an explicit
formula giving u in terms of x(u).

3.2. An explicit formula via the compressed shift operator. We are
going to use the well known link between the shift operator and the Hankel
operators. Namely, if T, denotes the shift operator, one can easily check the
following identity,

(18) H,T, =T H,.
With the notation introduced in the introduction, it reads
K,=T;H,.
Moreover,
K:=H/T.T'H,=H,I - (.|1)H, = H> — (. |u)u .
We introduce the compressed shift operator ([10], [11], [13])
S:=P,T,,

where P, denotes the orthogonal projector onto the closure of the range of
H,. By property (18), ker H,, = ker P, is stable by T, hence

S = P,T.P,

so that S is an operator from the closure of the range of H, into itself. In
the sequel, we shall always denote by S the induced operator on the closure
of the range of H,, and by S* the adjoint of this operator.

Now observe that operator S arises in the Fourier series decomposition of
u, namely

u(z) = Zﬂ(n)z",
n=0
where
(19) a(n) = (ul2") = (u[T'(1)) = (ulS"Pu(1)) .

As a consequence, we have, for |z] < 1,
(20) u(z) = (ul(I = 28) ' P,(1)).

which makes sense since ||S|| < 1. By studying the spectral properties of
K2, one obtains the following lemma.

Lemma 4. The sequence (gj)j>1 defined by g; = (H2 — o;1)"(u) is an
orthogonal basis of the range of K, on which the compressed shift operator
acts as

S(gj) =0 ' hj , hj:= (Hi — U?I)_lPu(l) .
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To obtain an explicit formula from Formula (20), it is sufficient to express
the action of S on a basis of the closure of the range of H,,.

Hence, when the closure of the range of H, and the closure of the range
of K, coincide, one can conclude from this Lemma, Lemma 2 and Equation
(20) and obtain the explicit formula writing everything in the basis (€;);>1
of R, where

(21) & =e%il2e;

If the range of K, is strictly included in the range of H,,, there exists g in the
range of H,, so that K,g =0 =1} H,g hence H,g is a non-zero constant, in
particular 1 belongs to the range of H,. Let us write 1 = H,gg. In this case,
an orthogonal basis of the closure of the range of H,, is given by the sequence
(gm)m>0 and, as K, (go) = 0 = H,S(g0), S(go) = 0. So we obtain the same
explicit formula for w in terms of x(u). This proves that the mapping y is
one-to-one.

To prove that x is a homeomorphism, it remains to prove that y~! is con-

tinuous on =. One has to prove that if x(u,) tends to x(u) then (u,) tends
to win VMO. It is straightforward from Proposition 2 that (u,) has a sub-
sequence which converges strongly to v in VMO. As x is continuous and
one-to-one, we get v = u.

3.3. The case of real Fourier coefficients. Finally, let us infer the first
part of Theorem 2 from Theorem 3. Firstly, we claim that the elements
of VMOy gen With real Fourier coefficients correspond via the map x to
elements ¢ € = which are real valued. Indeed, if { is real valued, the explicit
formula (4) clearly implies that w(n) is real for every n. Conversely, if
u € VMO gen has real Fourier coefficients, then H, and K, are compact
selfadjoint operators on the closed real subspace of Li consisting of functions
with real Fourier coefficients. Consequently, they admit orthonormal bases
of eigenvectors in this space. Therefore we can write

Hu(éj) = )‘jéj 5 )‘j = :l:pj 5 Ku(fm) = ,U'mfm s Um = £0pm

where €; and fm are unitary vectors with real Fourier coefficients. Since p?
and o2, are simple eigenvalues of H2 and K2 respectively, we conclude that

€; is collinear to e;, and similarly f,, is collinear to f,,. More precisely, since
H, and K, are antilinear,

N _{iej if A; = p; . {ifmif,um:am

€j = ) = . .
! +ie; if A\j = —p; Jm +ifo if o = —om

Since (1|¢;) and (u|fn) are real, we conclude that

0if A\; = p; 0if p, = om
%’:{.J_]' ;9m={

mif py, = —0om

Therefore, (2;_1 = A\; and (25 = p;. This completes the proof.
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4. PROOF OF THEOREM 4

Proof. We already observed that ker H,, C ker K,, and that the inclusion is
strict if and only if 1 € R and in that case, ker K,, = ker H, U CH'(1).
Hence, in the following, we focus on the kernel of H,.

We first prove that ker H,, = {0} if and only if 1 € R\ R.

As ker H, = {0} is equivalent to R = L%, ker H, = {0} implies 1 € R.
If 1 € R, then there exists w € R so that 1 = H,(w). If we introduce the
function ¢ = zw, then H,(¢) = TS H,(w) = T;(1) = 0. It implies that 1
belongs to ker H, and 1 # 0. Hence, ker H, = {0} implies 1 € R\ R.

Let us prove the converse. Assume that ker H,, # {0} and that 1 € R. Let
us show that 1 € R. By the Beurling Theorem, we have ker H,, = <pLi for
some inner function . As 1 belongs to R, it is orthogonal to ker H, hence
(1J¢) = 0. It implies that ¢ = zw for some w and, as H,(¢) =0 =T, H,(w),
we get that H,(w) is a non zero constant (if H,(w) = 0, w should be
divisible by ¢ which is impossible since ¢ = zw). Eventually, we get that
the constants are in R and so is 1. Hence we proved that ker H,, # {0} if
and only if either 1 belongs to R or 1 does not belong to R.

It remains to prove that the property 1 € R\ R is equivalent to equations
(9) that we recall here,

[e%S) 0_]2 N O_JQ
) = 00, Sup —2:

Firstly, 1 € R if and only if Z 1 1/] = 1 which, in turn, letting = tend to
oo in formula giving J(z) in Lemma 2, is equivalent to

I

It gives the first condition. We claim that 1 belongs to R if and only if

:0.

QMIQM

ooy2

- < o0
p]

Indeed, it is a necessary and sufficient condition to be able to define
v
- 23w /2,
w = e e;
25

so that H,(w) = 1. We now show that this condition is equivalent to

sup H—J<oo

N pN+1] 1/0]

Let us denote by py the quantity
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and let us show that supy py < oo. Indeed, the sequence (py) is increasing
and

12 = 1+ y02
22 < = lim 2J(z) = lim F(y), F(y) := S
(22) 321 pe lim 2.7 (x) S (), Fy) yj:1 T

(here we used Lemma 2 and the equality > 22, 1/]2 = 1 so that J(z) =
2

o] v
> o ijf(u)) Let us define

Y ﬁl%—ya?

14 ypR s Lye)

Fn(y)
j=1
Then, this quantity is increasing with respect to N and to y hence
suppy = supsup Fy(y) = supsup Fy (y) = sup F(y) < oc.

N N vy y N Yy

Now, we prove the formulae (10) and (11) which give the generators of
the kernels. We first consider the case when 1 ¢ R. As 1 — P,(1) belongs
to ker H,, 1 — P,(1) = ¢f for some f € L2. Let us remark that for any

h € ker H,, 1 — P,(1)h is holomorphic. Indeed, for any k > 1, one has
(1 - P,(1)h|Z") = (2"h|1 — P,(1)) = 0 — (2"h|P,(1)) =0,
the last equality coming from the fact that z*h € ker H,,. Since the modulus

of ¢ is 1, it implies that f is holomorphic hence it is a constant. We get

1P
that ¢ = =p@y-

1= Py(1) = 1= (Pu(1)[S"Pu(1))2"
and the explicit formula is obtained by writing this equality in the orthogonal
basis (€;) defined by (21).
It remains to consider the case 1 € R. Then, one can choose w € R so

that H,(w) = 1. In particular, H,(zw) = T;H,(w) = 0 so that zw = ¢f
for some f in Li. As before, one can prove that, for any h € ker H,,, Zwh

One can write, as for formula (19),

is holomorphic hence f is holomorphic hence is constant. Eventually, in
this case, we obtain ¢ = zm. The explicit formula follows from direct

computation as before.
O

5. APPENDIX 1: THE FINITE RANK CASE

In this appendix, we give a sketch of the proof of Theorem 5, referring
to [3] for details. The mapping yy is of course well defined and smooth on
V(2N )gen- The explicit formula of u in terms of x n(u) is obtained as before
thanks to the compressed shift operator and it proves that yy is one to one.

5.1. A local diffeomorphism. To prove that yy is a local diffeomorphism,
we establish some identities on the Poisson Brackets. This set of identities
imply that the differential of yp is of maximal rank so that yy is a local
diffeomorphism. As a consequence, it is an open mapping.

Let us first recall some basic definitions on Hamiltonian formalism. Given
a smooth real-valued function F' on a finite dimensional symplectic manifold
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(M, w), the Hamiltonian vector field of F' is the vector field X on M defined
by
VYm € M,Yh € T, M,dF(m).h = w(h, Xr(m)) .

Given two smooth real valued functions F, G, the Poisson bracket of F' and
G is
{F, G} = dGXF = w(XF,Xg) .

The above identity is generalized to complex valued functions F,G by C-
bilinearity.

To obtain that the image of the symplectoc form w by xn is given by
Formula (12), one has to prove equivalently that

(Xn)ww = Y pidpj A dpj + ojdoy A d;
j

which includes the following identities.

Proposition 3. For any j,k € {1,...,N} , one has

{pj,px} = {pj,or} = {0,006} =0
{pir o1} = pj ' Sik, {0, 06} =0,
{pj, 0k} =0, {0}, 0r} = 05 "0 .

In order to compute for instance {0}, 8} one has for instance to differ-
entiate 6y along the direction of X, .. As the expression of X, is fairly
complicated, we use the ”Szego hierarchy” studied in [2]. More precisely, we
use the generating function J(z) = (I — zH2)"1(1)]1) =1+ >.°% 2™ Jay,.
In the sequel, we shall restrict ourselves to real values of z, so that J(x) is
a real valued function.

We proved in [2] that the Hamiltonian flow associated to J(z) as a function
of u admits a Lax pair involving the Hankel operator H,. From this Lax
pair, one can deduce easily a second one involving the operator K.

Theorem 7 (The Szeg6 hierarchy, 2], Theorem 8.1 and Corollary 8). Let
5 > % The map w — J(x) is smooth on H7. Moreover, the equation
O = X j(py(u) implies OyH,, = [By, H,], or to 0, K, = [C}, K], where By
and CZ are skew-adjoint if x is real.

Remark 2. As a direct consequence, the spectrum of H, as well as the
spectrum of K, are conserved by the Hamiltonian flow of J(x). We infer
that the Poisson brackets of J(x) with p; or o; are zero, which implies, in
view of Lemma 2, that the brackets of py or oy with p; or oy, are zero, hence
it gives the first set of commutation properties stated in Proposition 3.

Using the Szeg6 hierarchy, we can also compute the Poisson brackets of
J(z) with the angles.

Lemma 5.

(). ;) = 2 2/2)

51—/)?56 21—0]256'
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Using again the expression of J(z), these commutation properties allow to
obtain by identification of the polar parts the last commutation properties
of Proposition 3.

To conclude that the image of the symplectic form w is given by Formula
(12), we need to establish the following remaining commutation properties,

{SDJ’SDIC} = {ij’ak} = {Qj,ek} =0.

In [3], these identities are obtained as consequences of further calculations.
Here we give a simpler argument. By Lemma 3, one can write

(XN)sw = ijdpj Ndpj+ojdo; ANdb; + @,
J

where @ is a closed form depending only on variables p;, 0y,. Consider the
following real submanifold of V(2N)gen,

AN ={u€V(@2N)gen : 1= =¢pn=01=--- =0y =0}.

By formula (4), every element u of Ay has real Fourier coefficients. Conse-
quently, w = 0 on Ay. On the other hand, (xn)«w = @ on xn(Ayn), and
the pj, 0y, are coordinates on Ax. We conclude that & = 0.

5.2. Surjectivity: a compactness result. As =y is connected, it suffices
to prove that yxn is proper. Let us take a sequence (C(p))p in Znx which
converges to ( € Zp, and such that, for every p, there exists u, € V(2N )gen
with

xn(up) = C(p) ]
Since
_ _ )y _ (p)
Jupllvaro = 1H, )| = masx (o) = masx (G5,

(up) is a bounded sequence in VMO, (T). Up to extracting a subsequence,
we may assume that (u,)pez, converges weakly to some u in VMO, (T). At
this stage we can appeal to Proposition 2 and conclude that the convergence
of u, to u is strong and that

p](u) = |C2j71|? Jj(u) = |<2_7|a .] = 1’ ,N

with pj(u) = 0, oj(u) = 0if j > N. Therefore u € V(2N)gen . This
completes the proof of the surjectivity of x .

6. APPENDIX 2: THE BOUNDEDNESS OF OPERATOR A.

In this appendix, we prove the boundedness of operator A defined by
(5) in Theorem 3. Of course, this boundedness follows from the theorem
itself, since it implies that A is conjugated to the compressed shift operator.
However, we found interesting to give a self-contained proof of this fact. We
need the following two lemmas.

Lemma 6. Let (p;)j>1 and (0;)j>1 be two sequences such that

pPr>0r>pa>- > = 0.
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Then, the following quantities are well defined and coincide respectively out-

side {5 }j21 and {5} 21
J

< 1 —z0? < v2p?
(23) T P L
jzll—x,oj jzll—x,oj
> 1 — zp? . K2
24 f=1-z(C 2
(24) Hl—x02 v +Zl—xa2-
Jj=1 J j=1 J
where
2fzj1 <107"Z]1 —1andzjlj 2 =0
C =

(2?1] 5t lfzj1 _1andZ]1j ? < oo
Here the 1/]2 s are given by formula (6) and the /@? 's by formula (7).

Remark 3. Notice that formulae (23) and (24) can be interpreted in light
of Theorem 3, as we did in Lemma 2. More precisely, formula (23) gives the
value of J(x) = (I —xH2)"Y(1)[1) = 1+ 2((I — 2H2) tulu), while formula
(24) gives the value of 1/J(x) =1 — 2((I — xK2) tulu). This provides an
interpretation of constant C, as the contribution of ker(K,) NRanH,,) in the
expansion.

Proof. We first consider finite sequences (p;)i1<j<n and (0;)1<j<n such that
p3 >0t >pd>---> 0% >0. We claim that, for z ¢ {Lz}jzl

N 2 N ) 2 2
1— zo* V
(25) =
jlll—mp? Z:: —xpj
where
2 2 2
(N)y2 95 Pj — 9%k
(Vj )_<__2> H ]2_ 2"
Pi) w2z Pi ™ Pk
1<k<N

Indeed, both functions have the same poles, the same residue hence their
difference is a polynomial. Moreover, this polynomial function tends to a
constant at infinity, hence is a constant. As both terms coincide at x = 0,
they coincide everywhere. It remains to let NV — oco. The left hand side in
(25) tends to

00 2
H 1-— zo;
— xp?
j=1 1= zp;
since this product converges in view of the assumption on the sequences (p;)

and (o;).
Let us consider the limit of the right hand side in Equality (25). Let x
tend to —oo in Equality (25). We get

N N
[ =120

J=1 J=1

Fw | qu
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In particular, SV (1/(.N))2 is bounded by 1 s0 Y%, v? converges by Fatou’s
VL= J=177
lemma. For z <0,

N
P07 _
Z 1— 2 2 S P
N>j>M Pj
A

hence the series }_y~ 54 e

is uniformly summable, and we infer

N N
LA M S
2 7
=) L =ap; j:ll_xpj
It gives the first equality (23) for x < 0 and for x ¢ {p%}jzl by analytic
J

continuation.

For Equality (24), we do almost the same analysis. As before, as N tends
to oo,

N 2 00 2
1 —zpz 1 —xpz 1
J J
I1 [ v ¢ {5
2 29 355>
ooy o 1-zog o;
On the other hand, for = ¢ {0—12}21,
j
H 1—zo2 :1_le—x02
j=1 J j=1 J
where
(N)\2 2 2 o} = i
(I{J )" = (pj = 77) H é_ 2
R "
1<k<N

N (K(N))Q
o j
(26) Hy(z):=)_ s
7j=1 J
The preceding equality reads
N 2
1 1 —zp?
(27) Hy(z)=~[1-]1 2
T o 1-— T0;

Using Formula (27) and the logarithmic derivative of
N1 xp?
H 1—z0?

j=1 J

at z = 0, we get that Hy(0) = YN (p? — 0?). As by Formula (26),
Hy(0) = Z;yzl(/ig»N))2, we obtain

P CADEED A

N N
j=1 j=1



SPECTRAL INVERSE PROBLEMS 22

and this last sum is bounded independently of N namely

N
> (k=] <Z —pfa) < ot
j=1

Hence the sum /@? converges by Fatou’s lemma. We use this property to
justify the convergence of Hly(x). Indeed, for z # aj_Q, 1<j<N,

N (N)y2 2

(ky )07

H],V(x) = Z ! QJ .

_ 2

= (1 —z03)

So, a proof analogous as the one used before allows to show that

HN( ) - 2\2
= (1 —z0%)

Furthermore, the convergence holds uniformly for < 0. Therefore, on one

hand, as N tends to oo,

N 2 0o 2

1 1—$p 1 1—;[:/).

H =—\|1- A N 1— J
~(z) T Hl—xajz x Fll—:wj2

and on the other hand, as

Hy(w) = [ Hy(0dt+ Hy ()

we get at the limit as N goes to oo, for x < 0, and hence everywhere by

analytic continuation,
2

1 oo 1 ) oo
- 1_H7x’072 g ?E

T i 1- x5
It remains to compute C' by taking the limit as x goes to —oo.
1~ 1—xp? 1
C=—- lim — ——2 =~ lim
T——00 I 31_[ 1— .%'O'JQ z——oo zJ ()
where
< ] — x0?
J(z) =] z.
j=1 1= xpj

This limit has been computed in (22) whenever

ZV =1 and Z—<oo

and is equal to
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This calculation easily extends to the other cases writing for x < 0

5 2
Jx) = 14z 5
j=1 1= xpj
e’} [e’e} V2
_ 2 J
- 1_Zyj +Zl—$p2'
7j=1 7j=1 J
O
Corollary 1. For any m > 1, we have
212
(28) 7;] =1
j pj —Om
(29) > 5 ¢ _4
+ =
~ P05 P
piv3
(30) 373 LY
; (05 —o%) (5 —op) ki
2,2
O5KS 1
(31) S = —Omp — 1
; (02 —p2)(02 —p3) w2, "™

Proof. The first two equalities (28) and (29) are obtained by making x = é
and = é respectively in formula (23) and formula (24). For equality (30)
in the case m = p, we first make the change of variable y = 1/x in formula
(23) then differentiate both sides with respect to y and make y = o2,.
Equality (31) in the case m = p follows by differentiating equation (24)
and making z = p%. Both equalities in the case m # p follow directly

respectively from eqnlllality (28) and equality (29). O

Lemma 7. Let m be a fized positive integer. Let (¢;) and (0,,) be two
sequences of elements of T. Denote by A™) the rank 1 operator of matriz

v,  uvppre”ir ;
A(m) _ < J kPk O’m:‘ignewm> )
ik

2 2 2 2
pj_am P = 0m

Then A := Zle A™) defines a bounded operator on (2 with AA* < 1I.

Proof. First we notice that A™) satisfies [|A(™)| < 1. This follows from
Cauchy-Schwarz inequality, formula (30) and from the estimate

2 2 2.2
Ve 1 Vi 1 pAyA
J J JJ
- J - ___ 4+ — __J J
;(pi—ff%ﬂ)z Ufnzj:/)?—ff%ﬂ ff%zj:(/ﬁ—ofnﬁ
1 Zjujz—l 1
S 2\ 2 Tw
m m m
< 1
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so that
2 2.2
vi Vi Pk 2 4
HA(m)H2 < J k o2k
Zj: (0} — 02,)? Zk: (pf —ad)2 ™™
< 1.

Let us consider the well defined operator A (A®))*. An elementary cal-
culation gives

(A(m)(A(p))*)jk — ZAE'ZI)AIEI?
¢

ViVk 2 2
e o, R 6
(7= o2 = o) "

Taking the sum of both sides over m and p, we get by (31) that the sum
converges and equals 0;, — vjv;. Consequently, the sum of Alm) (A(p))*
defines a bounded positive operator majorated by I and coincides with the
operator AA*. It gives the boundedness of A and completes the proof.

O
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