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Abstract 

In this paper, we consider the two-machine no-wait flow-shop scheduling problem, when every 

machine is subject to one non-availability constraint and jobs have different release dates. The non-

availability intervals of the machines overlap and they are known in advance. We aim to find a non-

resumable schedule that minimizes the makespan. We propose several lower bounds and upper 

bounds. These bounding procedures are used in a branch-and-bound algorithm. Computational 

experiments are carried out on a large set of instances and the obtained results show the 

effectiveness of our method. 

 

Keywords: scheduling, flow-shop, no-wait, non-availability, branch-and-bound algorithm.
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1. Introduction 

 

In this paper, we study the two-machine no-wait flowshop problem under non-availability 

constraints, when jobs have different release dates. The aim is to minimize the makespan under the 

three mentioned assumptions. We assume that each machine is unavailable during a fixed interval. 

The intervals overlap and are known in advance. We assume that if a job cannot be finished before 

the non-availability period of a machine, the job needs to completely restart once the machine 

becomes available. This practical assumption is motivated by several real practical situations 

(preventive maintenance for instance). The second practical assumption considered in this work is 

related to the no-wait constraint. The main reasons of such a constraint consist in the technological 
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structure of the shop itself. In no-wait scheduling, a job has to be continuously processed without 

idle-time between successive machines. Given the aim of this study, we recall some works related 

to the considered application and assumptions. 

The numerous applications of our first assumption can be found in the paper by Bagchi et al (2006), 

in which they proposed several no-wait and blocking scheduling models. Moreover, they illustrated 

some ways in which the used modern manufacturing systems such as robotic cells may be modelled 

as a TSP (Travelling Salesman problem). Ronconi (2005) considered the minimization of the 

makespan criterion for the flowshop problem with blocking. A lower bound exploiting the 

occurrence of blocking is proposed. A branch-and-bound algorithm incorporating this lower bound 

is described and its efficiency is evaluated on several problem instances. The makespan 

minimization problem in a two-machine flowshop under no-wait constraints can be solved to 

optimality in ( )nnO log  time, where n is the number of jobs (Gilmore and Gomory 1964). However, 

this problem is strongly NP-hard for 3≥m where m is the number of machines, even if the buffer 

storage is limited (Röck, 1980). Moreover, if the no-wait constraint is restricted to a sub-set of jobs 

then, the problem remains NP-hard in the strong sense (Finke et al 1997). The m-machine no-wait 

flowshop scheduling problem with the aim of minimizing the makespan and the total completion 

time was studied in Allahverdi and Aldowaisan (2002). A dominance rule and heuristics were 

proposed and used in a branch-and-bound algorithm. For more details on no-wait and blocking 

scheduling problems, the reader is invited to consult the state-of-the-art paper by Hall and 

Sriskandarajah (1996). 

The second assumption, that is, the non-availability constraint is one of the new modern concepts in 

the scheduling theory. Abundant literature exists on the related problems. Lee was the pioneer of 

this research field in scheduling theory (Lee 1997). Many papers were published during the last two 

decades and they involved various works on the flow-shop configuration. The makespan 

minimization on the two-machine flow-shop problem under non-availability constraints was proven 

to be NP-hard, even with a single non-availability period (Espinouse et al 1999). Aggoune and 

Portmann proposed a heuristic method for the general flow-shop problem under non-availability 

constraints on a subset of the machines (Aggoune and Portmann 2006). Lee studied the two-

machine flowshop problem under the assumption that the non-availability time is known in advance 

(Lee 1999). Moreover, he considered the semiresumable, the resumable and the nonresumable 

cases. Lee also conducted a complexity analysis and elaborated a pseudo-polynomial dynamic 

programming algorithm to solve the problem to optimality. Heuristic algorithms were proposed and 

evaluated in the worst-case (Lee 1999). Allaoui et al. considered the same problem with a single 
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non-availability interval on the first machine under the nonresumable scenario (Allaoui et al 2006). 

They improved the dynamic programming model proposed by Lee (1997). This method allowed 

them to reduce the computational effort. Some conditions, where Johnson's rule gives the optimal 

solution were specified. They proved that the worst-case performance bound of Johnson's rule is 2 

(Allaoui et al 2006). For more details on the non-availability constraints in scheduling problems, we 

refer to the survey-papers by Schmidt (2000) and Ma et al. (2010). 

Finally, our third assumption states that jobs have different release dates. Several literature works 

considered this case. A sample of them is summarized as follows. First, we note that the classical 

version consisting in the makespan minimization on two-machine flow-shop subject to jobs release 

dates ( max//2 CrF j ) is NP-hard in the strong sense (Lenstra et al 1977). Thus, heuristic approaches 

were widely studied. In (Potts 1985) four heuristics were proposed to solve the same problem. For 

three of them, the worst-case performance ratio is of 2. Each one of the heuristics can be 

implemented in ( )nnO log  time. The fourth one is based on the iterative use of the third heuristic 

and it has a worst-case performance ratio of 3/5  and a time complexity of )log( 3 nnO . In 

(Kashyrskikh 2001), by modifying Potts algorithm (Potts 1985), the authors reduced the worst-case 

performance ratio to 2/3  however, the time complexity remains in )log( 3 nnO . A polynomial time 

approximation scheme (PTAS) was proposed in (Hall 1995). In (Kovalyov and Werner 1997) a 

polynomial approximation procedure was elaborated for the max//2 CrF j  problem. Such a 

procedure was based on a dynamic programming approach using modified release dates and 

processing times. Compared to the one proposed in (Hall 1994) a better time complexity was 

obtained for large values of n. Branch-and-bound methods were exploited in (Cheng et al 2001) for 

solving the max//3 CrF j problem by incorporating a lower bound determined for some particular 

cases. Two dominance rules were used to construct an initial schedule. These rules reduced the 

search space by decomposing the problem into a finite set of sub-problems. 

To conclude, according to this literature review we can mention that in all studied papers, at most 

two of the three assumptions were considered. A sample of these works includes Cheng and Liu 

2003, Espinouse et al 1999, Espinouse et al 2001, Kubzin and Strusevich 2004 and Wang and 

Cheng 2001, where no-wait and non-availability constraints were jointly considered. Finally, the 

non-availability constraint and the different job release dates were considered at the same time by 

França et al 2006, where genetic algorithms were elaborated. Moreover, the same problem was 

solved in Bianco et al 1999 by a mathematical programming method and two heuristics. However, 

according to the best of our knowledge there is no previous work related to the studied problem, 
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that is, the minimization of the makespan in two-machine no-wait flow-shop under non-availability 

constraints and different job release dates assumption. For this reason, this paper is a first successful 

attempt to design a branch-and-bound algorithm with an interesting performance.  

 The reminder of the paper is organized as follows. Section 2 gives a precise formulation. In Section 

3, we describe the proposed branch-and-bound method. Computational results are given and 

discussed in Section 4. Finally, we conclude the paper by some remarks and perspectives in the last 

section. 

 

 

2. Problem formulation 

 

The problem can be stated as follows. We have a set { }nJ ,...,1=  of n jobs to be performed on two 

machines M1 and M2. Every job has to be processed first on M1 then on M2. For every job, the 

second operation has to start immediately at the end of the first operation (no idle-time is allowed 

between two consecutive operations of a given job). Every machine Mi (i=1,2) is unavailable during 

the interval ( ii ts , ). Due to practical requirements we assume that the two intervals ( 11,ts ) and 

( 22 , ts ) overlap and that 21 ss ≤  and 21 tt ≤ . Jobs have to be processed under the nonresumable 

scenario (a job has to completely restart once interrupted by a non-availability interval). Every job j 

(j= n,...,1 ) has a positive release date rj known in advance. Its first (respectively the second) 

operation on the first (respectively the second) machine has a positive processing time of aj 

(respectively of bj). The objective is to find a feasible schedule with the aim of minimizing the 

makespan (i.e., the completion time of the last operation performed on the second machine). From 

Section 1, this problem is NP-hard in the strong sense since it is a generalization of other problems 

of this type (for instance, see the max//2 CrF j problem in Lenstra et al 1977). 

 

 

3. Branch-and-bound algorithm 
 

Motivated by the practical advantages of the branch-and-bound approach, we elaborated an 

algorithm of this type to solve our considered problem. Such an approach aims to find an optimal 

solution (or an enhanced one) by reducing the search space based on different tools (lower bounds, 

dominance rules, upper bounds…). When it is not possible to obtain the optimal solution such an 

approach allows us to improve the result of other heuristic methods that can be used as an initial 

upper bound. In this section we give the description of our branch-and-bound algorithm. It will be 

noted B&B in the remainder of the paper.  
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3.1. Branching scheme and search strategy  

The B&B starts by computing an initial solution which provides the first upper bound. Every node 

represents a partial schedule. The branching scheme consists in scheduling a new job after a partial 

schedule. The search space is explored by using the depth first strategy. Before creating a new 

node, a lower bound is computed. If the value of such a lower bound is greater than the value of the 

upper bound, then this node is removed. Moreover, before any branching procedure, we increase the 

release date of every jobs Jj∈ satisfying one of the two following conditions: ( 1sar jj >+ ) or 

( 2sbar jjj >++ ). Indeed, in the two cases the first operation of job j cannot be performed before s1. 

Thus, we can increase the release date as follows: { }
jjj attrr −= 21,,max . Consequently, all the 

partial sequences beginning with these jobs verifying one of the conditions are eliminated. 

 

3.2. Upper bounds 

The quality of the used upper bounds is very important to enhance the effectiveness of any branch-

and-bound algorithm. For this reason, we investigated different ways to determine the initial upper 

bound. Three methods are used:  

� A greedy search (denoted as GS):  it consists in applying the B&B for only n nodes by using the 

depth best first strategy.   

� Two Heuristics (H1 and H2) developed by Ben Chihaoui et al 2009. 

� A genetic algorithm (denoted as GA). 

For self-consistency, we recall the principle of of Heuristics (H1 and H2). These two heuristics are 

based on the algorithms in Gilmore-Gomory 1964 and Cheng and Liu 2003. Before describing these 

heuristics, we present additional notations. 

• kI  : Set of jobs arriving at the time kr ; 

• kO ( kD ): Set of jobs of the sub-problem k in H1 (H2); 

• 
1

kσ  ( 2

kσ ): The sequence found by scheduling the jobs of kO ( kD ) in H1 (H2); 

• CL: Algorithm 3 of Cheng and Liu 2003. 

Description of CL 

In Cheng and Liu 2003, the authors study the two-machine no-wait flowshop problem in which 

each machine may have an unavailable interval. A 3/2-approximation algorithm is developed for the 

problem resolution when the unavailable intervals on the two machines overlap. It consists in the 

following steps: 
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1. Try to find a good schedule in which the availability constraint is inactive (a fictitious job is 

added). 

2. Relax the availability constraint, and then move some jobs from the beginning to the end or 

vice versa to meet the unavailability constraint. 

3. Optimally schedule some critical job and its adjacent jobs and schedule the other jobs 

according to Gilmore and Gomory’s algorithm.  

 

Description of H1 

The first heuristic, H1, is based on the decomposition of the problem into many sub-problems. The 

first sub-problem deals with the set 0I of jobs that are available at the date 0r . The (CL) algorithm is 

used for its resolution. From the obtained solution, we keep the sequence 1

0σ  of jobs starting their 

execution on 1M , before the date 1r . The next sub-problem concerns jobs of the set 1O , which 

includes jobs that are in 1I  but not in 1

0σ . The solution obtained for this sub-problem is 

concatenated to 1

0σ  to obtain a new partial sequence. Then, we consider as many sub-problems as 

the number of release dates kr .  

Description of H2 

The second heuristic, H2, is based on a modification of H1 to use the concept of a reactive 

scheduling. Indeed, a job j can arrive to the shop after a job i. However, the execution of j before i 

may give a better solution.  

In H2, sub-problems are defined as follows. First, jobs arriving at ir are temporarily scheduled to 

obtain their finish date, referred to as if . Then the sub-problem consists in rescheduling all jobs 

arriving at ir  along with jobs arriving before if .  

The first sub-problems concern the jobs in set 0D . We apply CL to schedule set 0I . The makespan 

obtained is considered as 0f . Set 0D  includes jobs of set 0I  and those which release dates verify the 

condition: 00 frr j ≤≤ . Let { }
jjk rr max= . We keep from the solution obtained by the application of 

CL on 0D , the sequence of jobs beginning their execution on 1M  before the date 1+kr . Let 2

kσ  be the 

obtained sequence. 

The second sub-problem concerns jobs of set 1D .   

CL is applied to schedule the set 1+kI  to which we include jobs of the set 0D  not kept in the 

sequence 2

0σ . The makespan of the resulted solution is 1f . Beside the jobs of the set 1+kI , 1D  includes 
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jobs arriving after 1+kr in the time period of 1f . The solution obtained for this sub-problem is 

concatenated to 2

0σ  to obtain a new partial sequence (Ben Chihaoui et al 2009).  

Description of the genetic algorithm: 

We use a classical genetic algorithm in which the solutions or chromosomes are represented as a 

permutation of J indicating for every job its position in the schedule (Fig.1 (a)). The mutation 

operator consists in choosing two random positions of the mutated genes and in swapping the two 

corresponding jobs (Fig.1 (b)). The crossover operator consists in selecting a random position and 

in exchanging the genetic information between two parents to construct two offspring according to 

the selected position (Fig.1 (c)). The construction consists in copying each subset of jobs in the 

same order as they appear in the corresponding parent so that the offspring will be feasible. The 

number of generations is fixed to 100 and the initial population is fixed to 100 chromosomes 

randomly generated by iteratively mutating the FIFO sequence (the FIFO sequence consists in 

scheduling jobs in non-decreasing order of their release dates).   

The initial upper bound used in the B&B is the minimum of the obtained values with these three 

methods. 

 

//Please insert Figure 1 about here 

 

3.3. Lower bounds  

 

It is well known that the quality of the lower bound is one of the most critical elements of any 

branch-and-bound algorithm. In most cases, computing a lower bound consists in relaxing some 

constraints (in different ways) and in solving a new easier problem. In this paper, we consider two 

main relaxations to derive lower bounds. The first one replaces the two non-availability intervals by 

two fictitious jobs. The second relaxation reduces the flow-shop configuration to a single-machine 

problem. Before presenting the proposed lower bounds we need to define the data of the fictitious 

jobs. Let f1 be the first fictitious job and f2 be the second one. Their processing times are defined as 

follows: 121 ssa f −= , 211 stb f −= , 11 sr f = , 212 sta f −= , 122 ttb f −= , 22 sr f = . Moreover, we define 

a global set of jobs fJ as follows { }2,1 ffJJ f ∪= . 

 

We derived five lower bounds denoted: LB1, LB2, LB3, LB4 and LB5. Before computing each lower 

bound the release date of every job Jj∈ , not yet scheduled, is updated according to whether or not 

the completion time of the scheduled jobs is greater than the starting time of the non-availability 

interval on machine M1. The construction of every lower bound is described as follows. 
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3.3.1. LB1 

In this lower bound, we transform the problem into an instance of a single-machine problem of the 

type 1/rj/Cmax. More precisely, the first machine is removed and we only consider the second 

machine. In the new obtained instance, we first generate the two fictitious jobs. Then, with 

every fJj∈  it is associated a new job to be performed on the single-machine such that the release 

date and the processing time are respectively equal to jj ar +  and bj. The resulting problem is 

optimally solved by the FIFO (First In First Out) rule. 

 

3.3.2. LB2 

In this lower bound, we transform the problem into an instance of the type 1, h1/rj, qj/Cmax. More 

precisely, the second machine is removed and the second operation of every job fJj∈  is replaced 

by a tail (or a delivery time) equal to bj. In the new obtained instance, we first generate the two 

fictitious jobs. Then, with every fJj∈  it is associated a new job to be performed on the single-

machine such that the release date, the processing time and the tail are respectively equal to jr , ja  

and bj. Moreover, the new fictitious jobs must start exactly at their respective release dates. The 

resulting problem is NP-Hard, but the lower bound is obtained by solving the preemptive version to 

optimality using Jackson’s rule (see Carlier et al 2010). 

  

3.3.3. LB3 

The principle of this bound is similar to the previous one. We follow the same relaxations as in LB2 

to transform the problem into an instance of the type 1/rj, qj/Cmax. The only difference is the fact that 

the new jobs associated with the fictitious jobs are not constrained to start exactly at their respective 

release dates. The resulting problem is solved by the branch-and-bound proposed in Carlier (1982). 

 

3.3.4. LB4 

The principle of this bound is based on the relaxations used in LB1. We follow the same relaxations. 

The only difference is that the new jobs associated with the fictitious jobs are constrained to be 

performed exactly in the interval ( 22 ,ts ). Thus, they can be considered as a non-availability interval. 

Moreover, the resumable scenario is considered. The resulting problem belongs to the 

max1 /,/,1 Crsrh j  family and it is solved to optimality by the preemptive FIFO rule. Note that an 

analytical comparison can easily show that LB4 gives the same result as LB1. Hence, this bound 

will be omitted. However, we felt it is very important to report it to show that this idea is not more 
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productive than LB1.   

 

3.3.5. LB5 

The fifth lower bound is obtained by transforming the problem into an instance of the 1, h1/rj, 

nrs/Cmax type. In such a case, the first machine is removed and we only consider the second 

machine. In the new obtained instance, we do not generate any fictitious job. Then, with every Jj∈  

it is associated a new job to be performed on the single-machine such that the release date and the 

processing time are respectively equal to jj ar +  and bj. Moreover, the single-machine is considered 

as non-available during the interval ( 22 ,ts ). The resulting problem is solved (under the non-

resumable scenario) by the dynamic programming algorithm proposed in Kacem and Haouari 

(2009). Clearly, this bound outperforms LB1. However, it needs more computation time. 

 

4. Numerical experiments 

In this section, we describe the numerical experiments carried out in order to evaluate our 

algorithms. The B&B was implemented in the C language and tested on an Intel Pentium IV 3 GHz 

processor and 512 M RAM, in the WINDOWS XP environment. The instances were randomly 

generated. For the experiments, we generated ten instances for every combination of parameters as 

follows. The number of jobs n was chosen in{ }20,15,10,5 . The release dates were uniformly 

distributed in the interval ]*100,1[ R , where { }nnR 2,,2,1∈ . Processing times aj and bj were 

uniformly distributed in the interval ]100,1[ . The horizon T of the schedule is defined as the sum of 

all the processing times ∑∑
∈∈

+=
Jj

j

Jj

j baT . Then, the non-availability periods were fixed at the 

beginning ( Ts ×= 25.01 ) or in the middle ( Ts ×= 5.01 ) of the defined horizon, where 

nTst /11 += , nTss /25.012 ×+=  and nTst /25.122 ×+= . Based on the values of parameters R 

and s1, we define eight groups of instances (1, 2, 3, 4, 5, 6, 7 and 8) as it is shown in Table 1.   

 

//Please insert Table 1 about here 

 

 

4.1. Lower and upper bounds evaluation 

To evaluate the performance of the lower bounds presented in this paper, we compute the average 

value obtained from ten instances for every combination of parameters. In order to check the 

effectiveness of GS and GA compared with H1 and H2, we compute the average value obtained 

from the ten instances. The different results are reported in Tables 2-6.  
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For every group the best lower bound (LB) is written in boldface. For the upper bound (UB) the 

Gap in percentage is calculated with respect to the best lower bound. 

 

//Please insert Table 2 about here 

 

//Please insert Table 3 about here 

//Please insert Table 4 about here 

 

//Please insert Table 5 about here 

 

//Please insert Table 6 about here 

 

 

 

From Tables 2-6, we can make the following remarks: 

• Except for the case where n=5, one can remark that either GS or GA gives the best results in 

most cases.  

• For the lower ranges of release dates, H2 gives better results than H1. This is due to the reactive 

aspect of H2. However, for a larger range of release dates, H1 gives better results than H2.  

• For the lower range of the release dates, LB5 is the best lower bound. However, we can remark 

that LB1 gives almost the same results as LB5. Hence, LB1 represents an interesting bound with 

a good quality and a short computation time. 

• For a larger range of the release dates values, the different lower bounds give similar results. 

• When the non-availability is in the middle of the horizon, the bounds values are generally better 

(the gap is smaller), and we notice that LB5 and LB1 generally remain the best in the two cases.  

• The computation time of the different lower bounds is close to zero. However, the computation 

time of LB5 for n=20 is about 120 s.  

• The gap between the lower and upper bounds values is relatively small. This allows us to 

elaborate an efficient B&B. 

Given the above remarks, and taking into account the time complexity of every lower bound, we 

have decided to mainly use LB1 in the B&B and to employ LB3 and LB5 in the Greedy Search. 

 

 

4.2. B&B performance 

In order to evaluate the B&B performance, computational experiments are conducted on the same 

instances used to evaluate the LB and UB. The computation time is limited to 7200s. For the node 

evaluation we use first LB1, if the node is not eliminated, we use LB5. The B&B performances are 
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presented in Tables 7-10, where the following parameters are reported: 

 

• Copt: average of the optimal makespan values 

• UB: average of the best upper bound values 

• CPU: average of the B&B computation time values in seconds 

• Nd: average number of eliminated nodes in the preliminary elimination 

• Nex: average number of explored nodes  

• Nel: average number of eliminated nodes  

• Gap (%): average value of the gap between UB and Copt  

 

//Please insert Table 7 about here 

 

//Please insert Table 8 about here 

 

//Please insert Table 9 about here 

 

//Please insert Table 10 about here 

 

 

 

 

From Tables 7-10, we can make the following remarks: 

• The average value of the gap is about 3%. This value clearly shows the good performance of the 

B&B and the tightness of the upper and lower bounds. 

• The average value of the gap decreases when n increases.   

• Computation time is larger for higher values of n. 

• Computation time and average number of the explored nodes are relatively high when the 

release dates range is independent of n (rj in [1,100] and in [1,200]) and the non-availability 

interval is in the middle of the horizon. Consequently, the problem is more difficult for lower 

range of release dates and when the non-availability is in the middle of the horizon. Indeed, if 

the non-availability is in the beginning of the horizon, it is skipped early in the horizon (after 

sequencing some jobs), then the two machines become available.  

• The B&B can solve instances with up to 20 jobs, except for instances of groups 1 to 4 (rj in 

[1,100] and in [1,200]). Indeed, the low range of release dates in these groups increases the 

search space. Consequently, the search tree is bigger and the problem is difficult to solve. 

• The preliminary elimination is more efficient when n is large. 

• The lower bounds and, in particular, LB1 and LB5 allow for an extensive elimination of nodes. 
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Thus, they enhance the B&B effectiveness. 

For larger values of n (30, 40 and 50) we tested the performance of the Greedy Search heuristic by 

reporting the following parameters in Table 8: 

• LB: average of the best lower bound values 

• t_GS: average of the GS computation times 

• G_H(%): average value of the gap between H (H can be H1, H2, GA and GS) and LB. 

 

The average values of the computation times required by H1, H2 and GA are close to zero second. 

The obtained performances are reported in Table 11. 

 

 

//Please insert Table 11 about here 

 

 

 

From Table 11, we can make the following conclusions: 

• The maximum value of the gap obtained for the different methods is in average of 11% and the 

minimum is of 1%. Thus, the methods that we developed as well as the elaborated lower bounds 

yield good results. 

• The value of G_GS is of 1% whereas G_GA≈8%, G_H1≈4% and G_H2≈11%. Hence, the 

Greedy Search clearly outperforms all the other algorithms. The GS has a larger computation 

time (about 0,4s in average) than the other algorithms. Nevertheless, such a value is very small 

in practical situations.  

• In conclusion, our GS algorithm seems to be a very interesting method in order to obtain a near-

optimal solution (gap of 1%) in a short computation time (in less than 1s) despite the strong NP-

Hardness of the studied problem. 

 

 

5. Conclusion 

This paper studied the two-machine no-wait flow-shop scheduling problem, when every machine is 

subject to one non-availability constraint and jobs have different release dates. The aim is to 

minimize the makespan. Several lower and upper bounds are proposed and incorporated in a 

branch-and-bound algorithm. Numerical experiments were carried out on a large set of instances. 

The obtained results showed that we can find the optimal solution for problems with up to 20 jobs 

within a reasonable amount of computation time. Moreover, the branch-and-bound algorithm can be 

converted into a greedy search heuristic, GS, that has a good performance. Such a heuristic is able 

to give a near-optimal solution (gap of 1%) in a short computation time (in less than 1s) despite the 
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strong NP-Hardness of the studied problem. 

In a future work, we aim to develop new lower bounds with possibly other types of relaxations, as 

well as a branch-and-cut method to optimally solve instances of larger sizes. Moreover, the study of 

new metaheuristic algorithms and representations seems to be interesting in order to improve the 

B&B performances. 
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Fig. 1. Representation and operators 
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Table1. Group identification 

Parameter R Ts ×= 25.01  Ts ×= 5.01  

1 1 2 

2 3 4 

n 5 6 

2n 7 8 

 

 

Table 2. Results of lower and upper bounds for n=5 

 Average values of LB Gap of UB (in %) 

Groups LB1 LB2 LB3 LB5 H1 H2 GA GS 

1 430 399 411 451 22 11 17 22 

2 464 415 440 473 18 2 12 16 

3 511 420 432 531 3 2 5 6 

4 448 395 414 478 15 7 13 18 

5 563 565 567 563 8 18 17 11 

6 570 564 586 582 12 16 12 8 

7 792 792 792 792 0 2 9 0 

8 868 868 868 868 4 8 10 1 

 

 

Table 3. Results of lower and upper bounds for n=10 

 Average values of LB Gap of UB (in %) 

Groups LB1 LB2 LB3 LB5 H1 H2 GA GS 

1 693 651 651 693 27 15 12 30 

2 632 535 654 633 30 18 15 28 

3 708 634 626 713 15 2 9 20 

4 758 548 668 761 15 12 7 18 

5 1039 1036 1036 1039 10 24 5 3 

6 1060 1073 1072 1061 5 9 4 3 

7 1889 1884 1884 1889 2 4 3 0 

8 1963 1939 1939 1963 2 3 3 1 

 

 

 

Table 4. Results of lower and upper bounds for n=15 

 Average values of LB Gap of UB (in %) 

Groups LB1 LB2 LB3 LB5 H1 H2 GA GS 

1 1002 895 904 1002 28 20 11 21 

2 962 815 938 962 23 6 9 14 

3 930 906 906 930 33 14 14 27 

4 925 665 851 927 25 16 7 22 

5 1564 1563 1563 1564 3 9 5 2 

6 1542 1507 1507 1542 8 14 4 4 

7 2962 2948 2948 2962 6 10 1 1 

8 2826 2810 2817 2826 7 15 3 0 
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Table 5. Results of lower and upper bounds for n=20 

 Average values of LB Gap of UB (in %) 

Groups LB1 LB2 LB3 LB5 H1 H2 GA GS 

1 1126 1140 1128 1138 20 20 13 32 

2 1199 1195 1195 1199 8 16 13 30 

3 1221 1109 1099 1231 13 18 8 27 

4 1244 1154 1154 1250 12 19 12 22 

5 2034 2034 2029 2034 0 6 3 0 

6 2060 2068 2068 2060 2 6 5 1 

7 4022 4022 4022 4022 2 4 2 0 

8 4016 4015 4015 4016 1 2 2 1 

 

 

Table 6. Summary of computational times of LB and UB (in seconds) 

 

n LB1 LB2 LB3 LB5 H1 H2 GA GS 

5 0 0 0 0 0 0 0,15 0,02 

10 0 0 0 0 0 0 0,15 0,02 

15 0 0 0 2 0 0 0,31 0,05 

20 0 0 0 120 0 0 0,31 0,05 

 

 

Table 7. B&B performance for n=5  

Groups UB  Copt  CPU Nd Nel  Nex Gap 

1 453 443 0 3 12 33 2 

2 484 467 0 0 23 45 3 

3 520 489 0 6 7 25 6 

4 594 562 0 1 19 33 6 

5 592 553 0 7 10 15 7 

6 644 628 0 5 10 19 2 

7 906 902 0 2 5 7 0 

8 1009 1009 0 2 4 3 0 

 

 

 

Table 8. B&B performance for n=10 

Groups UB  Copt  CPU Nd Nel  Nex Gap 

1 748 708 0 4 146217 134475 6 

2 749 713 1 0 287549 143090 5 

3 766 736 0 6 131878 147749 4 

4 780 745 0 2 95430 42601 5 

5 1094 1084 0 10 2220 1760 1 

6 1052 1034 0 17 11246 9482 2 

7 1899 1899 0 3 2333 1571 0 

8 1968 1957 0 5 4424 2518 1 
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Table 9. B&B performance for n=15 

Groups UB  Copt  CPU Nd Nel  Nex Gap 

1 1045 1010 1154 3 247862574 316505246 3 

2 1059 1019 3483 0 1623109776 495159902 4 

3 1065 1019 952 9 170304340 254320785 5 

4 1024 974 2247 5 1039966545 404465743 5 

5 1616 1604 320 14 4941954 3579316 1 

6 1611 1550 3600 24 24620459 16281991 4 

7 2937 2935 180 6 4771824 2984638 0 

8 2925 2920 1600 17 91077335 130196286 0 

 

Table 10. B&B performance for n=20 

Groups UB  Copt  CPU Nd Nel  Nex Gap 

1,2,3,4 The B&B failed to improve the upper bound before the time limit 

5 2089 2065 1356 18 10440088 16649816 1 

6 2225 2145 7200 57 218131733 192697602 4 

7 3899 3887 5360 12 138114617 58012023 0 

8 3810 3809 6200 5 152033322 232010045 0 

 

Table 11. Performance of algorithms H1, H2, GA and GS for n=30 to 50 

n LB GA GS H1 H2 G_H1 G_H2 G_GA G_GS t_GS 

30 3087 3245 3104 3195 3403 3% 10% 5% 1% 0,1 

40 4042 4318 4077 4154 4441 3% 10% 7% 1% 0,3 

50 4971 5524 4999 5189 5521 4% 11% 11% 1% 0,6 
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