Ben Chihaoui

Enit Faten

Imed Kacem
email: kacem@univ-metz.fr

Universite Paul

Verlaine Metz

Informatique Hadj-Alouane

Enit Dridi

Najoua ; Enit

Ben Faten

Chihaoui

Atidel B Hadj-Alouane

Najoua Dridi

Nidal Rezg

shop to Minimize the Makespan under Non-Availability Constraints and Different Release Dates

Keywords: FLOW SHOP SCHEDULING, AVAILABILITY, MAKESPAN, MAINTENANCE SCHEDULING, META-HEURISTICS scheduling, flow-shop, no-wait, non-availability, branch-and-bound algorithm scheduling, flow-shop, no-wait, non-availability, branch-and-bound algorithm

In this paper, we consider the two-machine no-wait flow-shop scheduling problem, when every machine is subject to one non-availability constraint and jobs have different release dates. The nonavailability intervals of the machines overlap and they are known in advance. We aim to find a nonresumable schedule that minimizes the makespan. We propose several lower bounds and upper bounds. These bounding procedures are used in a branch-and-bound algorithm. Computational experiments are carried out on a large set of instances and the obtained results show the effectiveness of our method.

Introduction

In this paper, we study the two-machine no-wait flowshop problem under non-availability constraints, when jobs have different release dates. The aim is to minimize the makespan under the three mentioned assumptions. We assume that each machine is unavailable during a fixed interval.

The intervals overlap and are known in advance. We assume that if a job cannot be finished before the non-availability period of a machine, the job needs to completely restart once the machine becomes available. This practical assumption is motivated by several real practical situations (preventive maintenance for instance). The second practical assumption considered in this work is related to the no-wait constraint. The main reasons of such a constraint consist in the technological structure of the shop itself. In no-wait scheduling, a job has to be continuously processed without idle-time between successive machines. Given the aim of this study, we recall some works related to the considered application and assumptions.

The numerous applications of our first assumption can be found in the paper by [START_REF] Bagchi | A review of TSP based approaches for flowshop scheduling[END_REF], in which they proposed several no-wait and blocking scheduling models. Moreover, they illustrated some ways in which the used modern manufacturing systems such as robotic cells may be modelled as a TSP (Travelling Salesman problem). [START_REF] Ronconi | A Branch-and-Bound Algorithm to Minimize the Makespan in a Flowshop with Blocking[END_REF] considered the minimization of the makespan criterion for the flowshop problem with blocking. A lower bound exploiting the occurrence of blocking is proposed. A branch-and-bound algorithm incorporating this lower bound is described and its efficiency is evaluated on several problem instances. The makespan minimization problem in a two-machine flowshop under no-wait constraints can be solved to optimality in () n n O log time, where n is the number of jobs [START_REF] Gilmore | Sequencing a one-state variable machine: a solvable case of the travelling salesman problem[END_REF]. However, this problem is strongly NP-hard for 3 ≥ m where m is the number of machines, even if the buffer storage is limited [START_REF] Röck | The three machine-machine no-wait flow shop problem is NP-complete[END_REF]. Moreover, if the no-wait constraint is restricted to a sub-set of jobs then, the problem remains NP-hard in the strong sense [START_REF] Finke | Flowshops and extensions[END_REF]. The m-machine no-wait flowshop scheduling problem with the aim of minimizing the makespan and the total completion time was studied in [START_REF] Allahverdi | No-Wait Flowshops with Bicriteria of Makespan and Total Completion Time[END_REF]. A dominance rule and heuristics were proposed and used in a branch-and-bound algorithm. For more details on no-wait and blocking scheduling problems, the reader is invited to consult the state-of-the-art paper by [START_REF] Hall | A survey of machine scheduling problems with blocking and no-wait in process[END_REF].

The second assumption, that is, the non-availability constraint is one of the new modern concepts in the scheduling theory. Abundant literature exists on the related problems. Lee was the pioneer of this research field in scheduling theory [START_REF] Lee | Minimizing the makespan in the two-machine flowshop scheduling problem with an availability constraint[END_REF]. Many papers were published during the last two decades and they involved various works on the flow-shop configuration. The makespan minimization on the two-machine flow-shop problem under non-availability constraints was proven to be NP-hard, even with a single non-availability period [START_REF] Espinouse | Minimizing the makespan in the two-machine no-wait flow-shop with limited machine availability[END_REF]. Aggoune and Portmann proposed a heuristic method for the general flow-shop problem under non-availability constraints on a subset of the machines [START_REF] Aggoune | Flow shop scheduling problem with limited machine availability: A heuristic approach[END_REF]. Lee studied the twomachine flowshop problem under the assumption that the non-availability time is known in advance [START_REF] Lee | Two-machine flowshop scheduling with availability constraints[END_REF]. Moreover, he considered the semiresumable, the resumable and the nonresumable cases. Lee also conducted a complexity analysis and elaborated a pseudo-polynomial dynamic programming algorithm to solve the problem to optimality. Heuristic algorithms were proposed and evaluated in the worst-case [START_REF] Lee | Two-machine flowshop scheduling with availability constraints[END_REF]). non-availability interval on the first machine under the nonresumable scenario [START_REF] Allaoui | Scheduling of a two-machine flowshop with availability constraints on the first machine[END_REF].

They improved the dynamic programming model proposed by [START_REF] Lee | Minimizing the makespan in the two-machine flowshop scheduling problem with an availability constraint[END_REF]. This method allowed them to reduce the computational effort. Some conditions, where Johnson's rule gives the optimal solution were specified. They proved that the worst-case performance bound of Johnson's rule is 2 [START_REF] Allaoui | Scheduling of a two-machine flowshop with availability constraints on the first machine[END_REF]. For more details on the non-availability constraints in scheduling problems, we refer to the survey-papers by [START_REF] Schmidt | Scheduling with limited machine availability[END_REF] and [START_REF] Ma | A survey of scheduling with deterministic machine availability constraints[END_REF].

Finally, our third assumption states that jobs have different release dates. Several literature works considered this case. A sample of them is summarized as follows. First, we note that the classical version consisting in the makespan minimization on two-machine flow-shop subject to jobs release

dates (max / / 2 C r F j
) is NP-hard in the strong sense [START_REF] Lenstra | Complexity of machine scheduling problems[END_REF]. Thus, heuristic approaches were widely studied. In [START_REF] Potts | Analysis of heuristics for two-machine flow-shop sequencing subject to release dates[END_REF] four heuristics were proposed to solve the same problem. For three of them, the worst-case performance ratio is of 2. Each one of the heuristics can be implemented in () . In [START_REF] Kashyrskikh | A (3/2)-approximation algorithm for twomachine flwo-shop sequencing subject to release dates[END_REF], by modifying Potts algorithm [START_REF] Potts | Analysis of heuristics for two-machine flow-shop sequencing subject to release dates[END_REF], the authors reduced the worst-case performance ratio to 2 / 3 however, the time complexity remains in

n n O log time.
) log (3 n n O
. A polynomial time approximation scheme (PTAS) was proposed in [START_REF] Hall | Approximability of flowshop scheduling[END_REF]. In [START_REF] Kovalyov | A polynomial approximation scheme for problem F2/r j /C max[END_REF] a polynomial approximation procedure was elaborated for the max / / 2 C r F j problem. Such a procedure was based on a dynamic programming approach using modified release dates and processing times. Compared to the one proposed in [START_REF] Hall | A polynomial approximation scheme for a constrained flow-shop scheduling problem[END_REF]) a better time complexity was obtained for large values of n. Branch-and-bound methods were exploited in [START_REF] Cheng | A computational study with a new algorithm for threemachine permutation flow shop problem with release times[END_REF] for solving the max / / 3 C r F j problem by incorporating a lower bound determined for some particular cases. Two dominance rules were used to construct an initial schedule. These rules reduced the search space by decomposing the problem into a finite set of sub-problems.

To conclude, according to this literature review we can mention that in all studied papers, at most two of the three assumptions were considered. A sample of these works includes [START_REF] Cheng | 3/2 approximation for two-machine no-wait flowshop scheduling with availability constraints[END_REF][START_REF] Espinouse | Minimizing the makespan in the two-machine no-wait flow-shop with limited machine availability[END_REF][START_REF] Espinouse | Complexity results and approximation for the two-machine no-wait flow-shop with limited machine availability[END_REF][START_REF] Kubzin | Approximation Algorithms for Two-Machine Flow Shop No-Wait Scheduling with a Non-Availability Interval[END_REF][START_REF] Wang | Heuristics for two-machine no-wait flowshop scheduling with availability constraints[END_REF], where no-wait and non-availability constraints were jointly considered. Finally, the non-availability constraint and the different job release dates were considered at the same time by [START_REF] França | Genetic algorithms for the no-wait flowshop sequencing problem with time restrictions[END_REF], where genetic algorithms were elaborated. Moreover, the same problem was solved in Bianco et al 1999 by a mathematical programming method and two heuristics. However, according to the best of our knowledge there is no previous work related to the studied problem, that is, the minimization of the makespan in two-machine no-wait flow-shop under non-availability constraints and different job release dates assumption. For this reason, this paper is a first successful attempt to design a branch-and-bound algorithm with an interesting performance.

The reminder of the paper is organized as follows. Section 2 gives a precise formulation. In Section 3, we describe the proposed branch-and-bound method. Computational results are given and discussed in Section 4. Finally, we conclude the paper by some remarks and perspectives in the last section.

Problem formulation

The problem can be stated as follows. We have a set) has a positive release date r j known in advance. Its first (respectively the second) operation on the first (respectively the second) machine has a positive processing time of a j (respectively of b j). The objective is to find a feasible schedule with the aim of minimizing the makespan (i.e., the completion time of the last operation performed on the second machine). From Section 1, this problem is NP-hard in the strong sense since it is a generalization of other problems of this type (for instance, see the [START_REF] Lenstra | Complexity of machine scheduling problems[END_REF].

max / / 2 C r F j problem in

Branch-and-bound algorithm

Motivated by the practical advantages of the branch-and-bound approach, we elaborated an algorithm of this type to solve our considered problem. Such an approach aims to find an optimal solution (or an enhanced one) by reducing the search space based on different tools (lower bounds, dominance rules, upper bounds…). When it is not possible to obtain the optimal solution such an approach allows us to improve the result of other heuristic methods that can be used as an initial upper bound. In this section we give the description of our branch-and-bound algorithm. It will be noted B&B in the remainder of the paper.

Branching scheme and search strategy

The B&B starts by computing an initial solution which provides the first upper bound. Every node represents a partial schedule. The branching scheme consists in scheduling a new job after a partial schedule. The search space is explored by using the depth first strategy. Before creating a new node, a lower bound is computed. If the value of such a lower bound is greater than the value of the upper bound, then this node is removed. Moreover, before any branching procedure, we increase the release date of every jobs J j ∈ satisfying one of the two following conditions: (

1 s a r j j > +) or (2 s b a r j j j > + +
). Indeed, in the two cases the first operation of job j cannot be performed before s 1 .

Thus, we can increase the release date as follows:

{ } j j j a t t r r - = 2 1 , , max
. Consequently, all the partial sequences beginning with these jobs verifying one of the conditions are eliminated.

Upper bounds

The quality of the used upper bounds is very important to enhance the effectiveness of any branchand-bound algorithm. For this reason, we investigated different ways to determine the initial upper bound. Three methods are used:

A greedy search (denoted as GS): it consists in applying the B&B for only n nodes by using the depth best first strategy.

Two Heuristics (H1 and H2) developed by Ben Chihaoui et al 2009.

A genetic algorithm (denoted as GA).

For self-consistency, we recall the principle of of Heuristics (H1 and H2). These two heuristics are based on the algorithms in [START_REF] Gilmore | Sequencing a one-state variable machine: a solvable case of the travelling salesman problem[END_REF]Cheng and[START_REF] Cheng | 3/2 approximation for two-machine no-wait flowshop scheduling with availability constraints[END_REF]. Before describing these heuristics, we present additional notations. 1. Try to find a good schedule in which the availability constraint is inactive (a fictitious job is added).

2. Relax the availability constraint, and then move some jobs from the beginning to the end or vice versa to meet the unavailability constraint.

3. Optimally schedule some critical job and its adjacent jobs and schedule the other jobs according to Gilmore and Gomory's algorithm.

Description of H1

The first heuristic, H1, is based on the decomposition of the problem into many sub-problems.

Description of H2

The second heuristic, H2, is based on a modification of H1 to use the concept of a reactive scheduling. Indeed, a job j can arrive to the shop after a job i. However, the execution of j before i may give a better solution.

In H2, sub-problems are defined as follows. First, jobs arriving at i r are temporarily scheduled to obtain their finish date, referred to as i f . Then the sub-problem consists in rescheduling all jobs arriving at i r along with jobs arriving before i f .

The first sub-problems concern the jobs in set 0 D . We apply CL to schedule set 0 I . The makespan obtained is considered as 0 f . Set 0 D includes jobs of set 0 I and those which release dates verify the condition:

0 0 f r r j ≤ ≤ . Let { } j j k r r max = .
We keep from the solution obtained by the application of CL on 0 D , the sequence of jobs beginning their execution on 1 M before the date 1

+ k r . Let 2 k σ be the obtained sequence.
The second sub-problem concerns jobs of set 1 D .

CL is applied to schedule the set

Description of the genetic algorithm:

We use a classical genetic algorithm in which the solutions or chromosomes are represented as a permutation of J indicating for every job its position in the schedule (Fig. 1 (a)). The mutation operator consists in choosing two random positions of the mutated genes and in swapping the two corresponding jobs (Fig. 1 (b)). The crossover operator consists in selecting a random position and in exchanging the genetic information between two parents to construct two offspring according to the selected position (Fig. 1 (c)). The construction consists in copying each subset of jobs in the same order as they appear in the corresponding parent so that the offspring will be feasible. The number of generations is fixed to 100 and the initial population is fixed to 100 chromosomes randomly generated by iteratively mutating the FIFO sequence (the FIFO sequence consists in scheduling jobs in non-decreasing order of their release dates).

The initial upper bound used in the B&B is the minimum of the obtained values with these three methods.

//Please insert Figure 1 about here

Lower bounds

It is well known that the quality of the lower bound is one of the most critical elements of any branch-and-bound algorithm. In most cases, computing a lower bound consists in relaxing some constraints (in different ways) and in solving a new easier problem. In this paper, we consider two main relaxations to derive lower bounds. The first one replaces the two non-availability intervals by two fictitious jobs. The second relaxation reduces the flow-shop configuration to a single-machine problem. Before presenting the proposed lower bounds we need to define the data of the fictitious jobs. Let f1 be the first fictitious job and f2 be the second one. Their processing times are defined as follows:

1 2 1 s s a f - = , 2 1 1 s t b f - = , 1 1 s r f = , 2 1 2 s t a f - = , 1 2 2 t t b f - = , 2 2 s r f = . Moreover, we define a global set of jobs f J as follows { } 2 , 1 f f J J f ∪ = .
We derived five lower bounds denoted: LB1, LB2, LB3, LB4 and LB5. Before computing each lower bound the release date of every job J j ∈ , not yet scheduled, is updated according to whether or not the completion time of the scheduled jobs is greater than the starting time of the non-availability interval on machine M 1 . The construction of every lower bound is described as follows.

LB1

In this lower bound, we transform the problem into an instance of a single-machine problem of the type 1/r j /C max . More precisely, the first machine is removed and we only consider the second machine. In the new obtained instance, we first generate the two fictitious jobs. Then, with every f J j ∈ it is associated a new job to be performed on the single-machine such that the release date and the processing time are respectively equal to j j a r + and b j . The resulting problem is optimally solved by the FIFO (First In First Out) rule.

LB2

In this lower bound, we transform the problem into an instance of the type 1, h 1 /r j , q j /C max . More precisely, the second machine is removed and the second operation of every job

f J j ∈
is replaced by a tail (or a delivery time) equal to b j . In the new obtained instance, we first generate the two fictitious jobs. Then, with every

f J j ∈
it is associated a new job to be performed on the singlemachine such that the release date, the processing time and the tail are respectively equal to j r , j a and b j . Moreover, the new fictitious jobs must start exactly at their respective release dates. The resulting problem is NP-Hard, but the lower bound is obtained by solving the preemptive version to optimality using Jackson's rule (see [START_REF] Carlier | Exact resolution of the one-machine sequencing problem with no machine idle time[END_REF].

LB3

The principle of this bound is similar to the previous one. We follow the same relaxations as in LB2

to transform the problem into an instance of the type 1/r j , q j /C max . The only difference is the fact that the new jobs associated with the fictitious jobs are not constrained to start exactly at their respective release dates. The resulting problem is solved by the branch-and-bound proposed in [START_REF] Carlier | The one-machine sequencing problem[END_REF].

LB4

The principle of this bound is based on the relaxations used in LB1. We follow the same relaxations.

The only difference is that the new jobs associated with the fictitious jobs are constrained to be performed exactly in the interval (2 2 ,t s). Thus, they can be considered as a non-availability interval.

Moreover, the resumable scenario is considered. The resulting problem belongs to the productive than LB1.

LB5

The fifth lower bound is obtained by transforming the problem into an instance of the 1, h 1 /r j , nrs/C max type. In such a case, the first machine is removed and we only consider the second machine. In the new obtained instance, we do not generate any fictitious job. Then, with every J j ∈ it is associated a new job to be performed on the single-machine such that the release date and the processing time are respectively equal to j j a r + and b j . Moreover, the single-machine is considered as non-available during the interval (2 2 ,t s). The resulting problem is solved (under the nonresumable scenario) by the dynamic programming algorithm proposed in [START_REF] Kacem | Approximation algorithms for single machine scheduling with one unavailability period. 4OR[END_REF]. Clearly, this bound outperforms LB1. However, it needs more computation time.

Numerical experiments

In this section, we describe the numerical experiments carried out in order to evaluate our algorithms. The B&B was implemented in the C language and tested on an Intel Pentium IV 3 GHz) of the defined horizon, where

n T s t / 1 1 + = , n T s s / 25 . 0 1 2 × + = and n T s t / 25 . 1 2 2 × + = .
Based on the values of parameters R and s 1 , we define eight groups of instances (1, 2, 3, 4, 5, 6, 7 and 8) as it is shown in Table 1.

//Please insert Table 1 about here

Lower and upper bounds evaluation

To evaluate the performance of the lower bounds presented in this paper, we compute the average value obtained from ten instances for every combination of parameters. In order to check the effectiveness of GS and GA compared with H1 and H2, we compute the average value obtained from the ten instances. The different results are reported in Tables 23456. For every group the best lower bound (LB) is written in boldface. For the upper bound (UB) the Gap in percentage is calculated with respect to the best lower bound. From Tables 23456, we can make the following remarks:

//Please insert

• Except for the case where n=5, one can remark that either GS or GA gives the best results in most cases.

• For the lower ranges of release dates, H2 gives better results than H1. This is due to the reactive aspect of H2. However, for a larger range of release dates, H1 gives better results than H2.

• For the lower range of the release dates, LB5 is the best lower bound. However, we can remark that LB1 gives almost the same results as LB5. Hence, LB1 represents an interesting bound with a good quality and a short computation time.

• For a larger range of the release dates values, the different lower bounds give similar results.

• When the non-availability is in the middle of the horizon, the bounds values are generally better (the gap is smaller), and we notice that LB5 and LB1 generally remain the best in the two cases.

• The computation time of the different lower bounds is close to zero. However, the computation time of LB5 for n=20 is about 120 s.

• The gap between the lower and upper bounds values is relatively small. This allows us to elaborate an efficient B&B.

Given the above remarks, and taking into account the time complexity of every lower bound, we have decided to mainly use LB1 in the B&B and to employ LB3 and LB5 in the Greedy Search.

B&B performance

In order to evaluate the B&B performance, computational experiments are conducted on the same instances used to evaluate the LB and UB. From Tables 7-10, we can make the following remarks:

• The average value of the gap is about 3%. This value clearly shows the good performance of the B&B and the tightness of the upper and lower bounds.

• The average value of the gap decreases when n increases.

• Computation time is larger for higher values of n.

• Computation time and average number of the explored nodes are relatively high when the release dates range is independent of n (r j in [1,100] and in [1,200]) and the non-availability interval is in the middle of the horizon. Consequently, the problem is more difficult for lower range of release dates and when the non-availability is in the middle of the horizon. Indeed, if the non-availability is in the beginning of the horizon, it is skipped early in the horizon (after sequencing some jobs), then the two machines become available.

• The B&B can solve instances with up to 20 jobs, except for instances of groups 1 to 4 (r j in [1,100] and in [1,200]). Indeed, the low range of release dates in these groups increases the search space. Consequently, the search tree is bigger and the problem is difficult to solve.

• The preliminary elimination is more efficient when n is large.

• The lower bounds and, in particular, LB1 and LB5 allow for an extensive elimination of nodes. Thus, they enhance the B&B effectiveness.

For larger values of n (30, 40 and 50) we tested the performance of the Greedy Search heuristic by reporting the following parameters in Table 8:

• LB: average of the best lower bound values

• t_GS: average of the GS computation times

• G_H(%): average value of the gap between H (H can be H1, H2, GA and GS) and LB.

The average values of the computation times required by H1, H2 and GA are close to zero second.

The obtained performances are reported in Table 11.

//Please insert Table 11 about here

From Table 11, we can make the following conclusions:

• The maximum value of the gap obtained for the different methods is in average of 11% and the minimum is of 1%. Thus, the methods that we developed as well as the elaborated lower bounds yield good results.

• The value of G_GS is of 1% whereas G_GA ≈ 8%, G_H1 ≈ 4% and G_H2 ≈ 11%. Hence, the Greedy Search clearly outperforms all the other algorithms. The GS has a larger computation time (about 0,4s in average) than the other algorithms. Nevertheless, such a value is very small in practical situations.

• In conclusion, our GS algorithm seems to be a very interesting method in order to obtain a nearoptimal solution (gap of 1%) in a short computation time (in less than 1s) despite the strong NP-Hardness of the studied problem.

Conclusion

This paper studied the two-machine no-wait flow-shop scheduling problem, when every machine is subject to one non-availability constraint and jobs have different release dates. The aim is to minimize the makespan. Several lower and upper bounds are proposed and incorporated in a branch-and-bound algorithm. Numerical experiments were carried out on a large set of instances.

The obtained results showed that we can find the optimal solution for problems with up to 20 jobs within a reasonable amount of computation time. Moreover, the branch-and-bound algorithm can be converted into a greedy search heuristic, GS, that has a good performance. Such a heuristic is able to give a near-optimal solution (gap of 1%) in a short computation time (in less than 1s) despite the

 of jobs arriving at the time k r ; • k O (k D): Set of jobs of the sub-problem k in H1 (H2); The sequence found by scheduling the jobs of k O (k D) in H1 (H2); • CL: Algorithm 3 of Cheng and Liu 2003. Description of CL In Cheng and Liu 2003, the authors study the two-machine no-wait flowshop problem in which each machine may have an unavailable interval. A 3/2-approximation algorithm is developed for the problem resolution when the unavailable intervals on the two machines overlap. It consists in the following steps:

Iσ

 to which we include jobs of the set 0 D not kept in the sequence 2 0 σ . The makespan of the resulted solution is 1 f . Beside the jobs of the set 1 to obtain a new partial sequence (Ben Chihaoui et al 2009).

 processor and 512 M RAM, in the WINDOWS XP environment. The instances were randomly generated. For the experiments, we generated ten instances for every combination of parameters as follows. The number of jobs n was chosen in{

Fig. 1 .

 1 Fig. 1. Representation and operators

 The fourth one is based on the iterative use of the third heuristic

	and it has a worst-case performance ratio of	5	/	3	and a time complexity of	O	(3 n	log	n)

Table 2 about here //Please insert Table 3 about here //Please insert Table 4 about here //Please insert Table 5 about here //Please insert Table 6 about here

insert Table 7 about here //Please insert Table 8 about here //Please insert Table 9 about here //Please insert Table 10 about here

 The computation time is limited to 7200s. For the node evaluation we use first LB1, if the node is not eliminated, we use LB5. The B&B performances are

	presented in Tables 7-10, where the following parameters are reported:
	• Copt: average of the optimal makespan values
	• UB: average of the best upper bound values
	• CPU: average of the B&B computation time values in seconds
	• N d : average number of eliminated nodes in the preliminary elimination
	• N ex : average number of explored nodes
	• N el : average number of eliminated nodes • Gap (%): average value of the gap between UB and Copt F o r //Please
	P
	e
	e r
	R
	e
	v i e
	w
	O n l
	y
	11/19

 Hardness of the studied problem.In a future work, we aim to develop new lower bounds with possibly other types of relaxations, as well as a branch-and-cut method to optimally solve instances of larger sizes. Moreover, the study of new metaheuristic algorithms and representations seems to be interesting in order to improve the

	strong NP-B&B performances.
	F o r F o r F o r F o r
	P P P P
	e e e e
	e r e r e r e r
	R R R R
	e e e e
	v i e v i e v i e v i e
	w w w w
	O n l O n l O n l O n l
	y y y y
	13/19 16/19

Table 5 . Results of lower and upper bounds for n=20

 5

		Average values of LB	Gap of UB (in %)
	Groups LB1 LB2 LB3 LB5 H1 H2 GA GS
	1	1126 1140 1128 1138 20 20 13 32
	2	1199 1195 1195 1199	8 16 13 30
	3	1221 1109 1099 1231 13 18	8 27
	4	1244 1154 1154 1250 12 19 12 22
	5	2034 2034 2029 2034	0	6	3	0
	6	2060 2068 2068 2060	2	6	5	1
	7	4022 4022 4022 4022	2	4	2	0
	8	4016 4015 4015 4016	1	2	2	1

Table 6 . Summary of computational times of LB and UB (in seconds)

 6

	n LB1 LB2 LB3 LB5 H1	H2	GA	GS
	5	0	0	0	0	0	0 0,15 0,02
	10	0	0	0	0	0	0 0,15 0,02
	15	0	0	0	2	0	0 0,31 0,05
	20	0	0	0 120	0	0 0,31 0,05

Table 7 .

 7 B&B performance for n=5Groups UB Copt CPU N d N el N ex Gap

	1	453 443	0	3 12 33	2
	2	484 467	0	0 23 45	3
	3	520 489	0	6	7 25	6
	4	594 562	0	1 19 33	6
	5	592 553	0	7 10 15	7
	6	644 628	0	5 10 19	2
	7	906 902	0	2	5	7	0
	8	1009 1009	0	2	4	3	0

Table 8 . B&B performance for n=10

 8

	Groups UB Copt CPU N d	N el	N ex	Gap
	1	748 708	0 4 146217 134475	6
	2	749 713	1 0 287549 143090	5
	3	766 736	0 6 131878 147749	4
	4	780 745	0 2 95430 42601	5
	5	1094 1084	0 10	2220	1760	1
	6	1052 1034	0 17 11246	9482	2
	7	1899 1899	0 3	2333	1571	0
	8	1968 1957	0 5	4424	2518	1

Table 9 . B&B performance for n=15

 9

	Groups UB Copt CPU N d	N el	N ex	Gap
	1	1045 1010 1154 3 247862574 316505246	3
	2	1059 1019 3483 0 1623109776 495159902	4
	3	1065 1019 952 9 170304340 254320785	5
	4	1024 974 2247 5 1039966545 404465743	5
	5	1616 1604 320 14	4941954	3579316	1
	6	1611 1550 3600 24	24620459 16281991	4
	7	2937 2935 180 6	4771824	2984638	0
	8	2925 2920 1600 17	91077335 130196286	0
		Table 10. B&B performance for n=20	
	Groups UB Copt CPU N d	N el	N ex	Gap
	1,2,3,4	The B&B failed to improve the upper bound before the time limit
	5	2089 2065 1356 18 10440088 16649816	1
	6	2225 2145 7200 57 218131733 192697602	4
	7	3899 3887 5360 12 138114617 58012023	0
	8	3810 3809 6200 5 152033322 232010045	0

Table 11 . Performance of algorithms H1, H2, GA and GS for n=30 to 50

 11

	n LB	GA	GS	H1	H2	G_H1 G_H2 G_GA G_GS t_GS
	30 3087 3245 3104 3195 3403	3%	10%	5%	1%	0,1
	40 4042 4318 4077 4154 4441	3%	10%	7%	1%	0,3
	50 4971 5524 4999 5189 5521	4%	11%	11%	1%	0,6

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.ukInternational Journal of Production Research

Acknowledgements:

We thank referees for their constructive comments which significantly improved the paper.