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Abstract

In this article, we consider the continuous analog of the celebrated Mandelbrot star equation
with infinitely divisible weights. Mandelbrot introduced this equation to characterize the
law of multiplicative cascades. We show existence and uniqueness of measures satisfying the
aforementioned continuous equation. We obtain an explicit characterization of the structure of
these measures, which reflects the constraints imposed by the continuous setting. In particular,
we show that the continuous equation enjoys some specific properties that do not appear in the
discrete star equation. To that purpose, we define a Lévy multiplicative chaos that generalizes
the already existing constructions.

1. Introduction

Mandelbrot [I6] introduced the so-called random multiplicative cascades to exhibit random pro-
cesses with nonlinear power-law scalings. This need of constructing random processes with such a
power-law scaling goes back to the Kolmogorov theory of fully developed turbulence in the sixties
(see [B 22, 23] [6] 12] and references therein). They render the intermittency effects in turbulence.
Random multiplicative cascades are therefore the first mathematical discrete approach of multi-
fractality. Roughly speaking, a (dyadic) multiplicative cascade is a positive random measure M
on the unit interval [0, 1] that obeys the following decomposition rule:

M(dt) " 205 1) (H)MO(2dt) + 213 ()M (2dt — 1), (1)
where M, M are two independent copies of M and (Z°, Z') is a random vector with prescribed
law and positive components of mean 1 independent from M° M'. Such an equation (and its
generalizations to b-adic trees for b > 2), the celebrated star equation introduced by Mandelbrot
in [I5], uniquely determines the law of the multiplicative cascade. Since the seminal work of
Mandelbrot, the star equation () has been intensively studied: of particular interest are the
founding paper by Kahane and Peyriere [14] and the work by Durrett and Ligget [9]. The following
literature on the topic essentially builds on these two works. Let us also mention the article [7]
which shows that the free energy of a directed polymer model can be obtained as the limit of the
free energy of multiplicative cascade models, thus establishing a link between the two models.

Despite the fact that multiplicative cascades have been widely used as reference models in many
applications, they possess many drawbacks related to their discrete scale invariance, mainly they
involve a particular scale ratio and they do not possess stationary fluctuations (this comes from
the fact that they are constructed on a dyadic tree structure).
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Much effort has been made to develop a continuous parameter theory of suitable stationary
multifractal random measures ever since, stemming from the theory of multiplicative chaos intro-
duced by Kahane [I3] [3, 22| 2] 19] 20]. Nevertheless, in comparison with the discrete case, the
state of the art concerning continuous time models sounds rather empty: laying the foundations
like defining a proper continuous star equation is very recent and its solving only concerns the
lognormal situation [I]. The main reasons are technical: first, Gaussian processes are very well
understood and, second, the analysis of Gaussian multiplicative chaos is much simplified by the
use of convexity inequalities for lognormal weights introduced by Kahane (see Kahane’s original
paper [13] or [I, Lemma 10] for instance).

In this paper, we are concerned with solving the continuous star equation:

x-Scale invariance. A stationary random measure M on R? is said to be -scale invariant if for
all 0 < e <1, M obeys the cascading rule

(M(A)) e men law (Ae”é(r)Me(dr))AGB(Rd) (2)

where we s a stochastically continuous stationary process and M€ is a random measure independent
from w, satisfying the relation

(M*(cA)) 2 ed(M(A))

AeB(R4) AEB(RY)’

Intuitively, this relation means that when you zoom in the measure M, you should observe
the same behaviour up to an independent factor. Notice that this definition is stated in great
generality since no constraint on the law of w, is imposed. In the context of discrete multiplicative
cascades, given any law for w. (up to some integrability conditions), this equation can be solved.
However, the continuous case imposes the following constraint on w:

Lemma 1. We consider a non trivial x-scale invariant measure M on R%. We suppose that for
some x (and hence all ) the family € — we(x) is continuous in distribution and

E[(M[0,1]%)7] < 0o, E[eMHM«®)] < 00, Ve <1
for some v > 0. Then, for all €, the process w. is infinitely divisible.

Hence, with minimal assumptions on w, and the solution M, the process w, is infinitely divisible.
In view of the above lemma, we can suppose that the process we is infinitely divisible: we will make
this assumption in the sequel. As suggested by the Gaussian case [I], this naturally leads to the
issue of constructing random measures formally defined by

M(dz) = e*= dz,

where the process X is infinitely divisible with logarithmic correlations. We carry out this con-
struction in Section 2] which generalizes already existing such attempts [2, B} 10, [20]. We call
such measures Lévy multiplicative chaos. This construction enables us not only to give non trivial
solutions to (@) (in Section[]) but also to characterize all the solutions to ([2) (up to a few additional
technical assumptions). These solutions share the property of a specific structure for the law of the
process we. This structure reflects the fact that the continuous star equation is far more restrictive
than the discrete one (similarly, Lévy processes are in some sense more restrictive than discrete
simple random walks which can be considered with any law for the increments).

1.1 Notations

We will use the following notations throughout the paper. B(FE) stands for the Borelian o-field
of a topological space E. A random measure M is a random variable taking values into the set



of positive Radon measures defined on B(R?). We will say that M possesses a moment of order
p > 0if E[M(K)?] < +oo for every compact set K. A random measure M is said to be stationary
if for all y € R? the random measures M (-) and M (y + -) have the same law. A stochastic process
(X¢)sere is said to be stochastically continuous if, for each t € RY, X;,}, converges towards X;
in probability when h goes to 0. We will also use the shortcut ID in place of infinitely divisible.
We remind the reader that every stochastically continuous random process admits a measurable
version (see |4, Chapter 6]). We will only deal with measurable versions of stochastically continuous
process in this paper.

2. Generalized Lévy chaos

This section is devoted to the construction of measures that can formally be written as
M (dx) = e dx,

where L is a stationary ID process with a logarithmic spatial dependency. As in the Gaussian case,
such a singularity of the spatial structure imposes to construct these measures through a limiting
procedure where the singularity has been ”cut off”. Hence we will understand these measures as a
limit
M (dz) = lim e*% d,
e—0

where X € is a stationary ID process that converges in some sense towards L. The process X ¢ will
basically depend on two parameters: a generator (any stationary ID process) and a rate function.
We detail below the construction.

2.1 Generator and rate function

Let (X:);epre be a stochastically continuous stationary ID random process. It follows from [I7]
that X admits a version given by

X, = b+ /R cos(t:X) W (dA)+ /R sin(t-\) W' (d\)+ /S F(Tu(s)) [N (ds)— (L[ £(Ti(s))~10(ds)] (3)

d
where:

e heR,

—

o W,W ,N are independent,

o W, W are identically distributed centered Gaussian random measures on R? with covariance

kernel given by E[W (A)W (B)] = R(AN B) for some symmetric positive finite measure R on
(R, B(R?)),

e N is a Poisson random measure on a Borel space S with a o-finite intensity measure 6,

f S8 — R is a measurable deterministic function such that
)2 A 1y6(ds) < +oc,
s

e (T,); is a measure preserving flow on (S, 6).

In what follows, we will say that a stochastically continuous ID process is associated to (S, W, WI, N,0,R, f,(Ty)z)
if it is given by (B]) where all the involved items are defined as described above.



We define the Laplace exponents ¢ of X for p > 1 by
E[equtl Jr"'JrqPti] — 611%1 ,,,,, tp (q150,qp)
for all (t1,...,t,) € (R!)P? and ¢1,...,q, € R such that the above expectation makes sense. For
the sake of clarity, 1y (i.e. the Laplace exponents of Xo, or equivalently of X; for any ¢ € R?) will
be denoted by .

We assume that X possesses a second order exponential moment and we consider the following
generalized covariance function:

F(x) =tho..(1,1) — 2¢(1), = € RY. (4)
Assumption 2. Let g be a nonnegative function in L (Ry,dy) such that

loc

> Egw)] <Flny — + h(a,x) (5)

u alx|

Ve € RY\ {0} and a > 1, /

where h is some bounded continuous function on Ry x R? and F is some positive constant. The
function g will be called rate function.

2.2 Limiting procedure

For any € €]0, 1], we define a new stochastically continuous ID random process:

X; =b ln% + /; /Rd cos(tg(y) - A) W(dA, dy) + /1; /Rd sin(tg(y) - A) W'(dX, dy) (6)

7 [T () ¥ s dy) = (191 Ty () 0(05) 2 !

where:

-W, W', N are independent,

-W, W' are identically distributed centered Gaussian random measures on R? x R* with covariance
kernel given by E[W (A)W(B)] = [,z R(d\)%,

-N is a Poisson random measure on the Borel space S x R* with intensity measure 6(ds) ®
-f:S — R and (Ty), are the same as above.

dy
77

Clearly, X€ is a stationary ID process. From [I7, Theorem 5], it is stochastically continuous. In
what follows, we will say that a family (X€). of stationary stochastically continuous ID processes
is an approximating family associated to (S,W, W', N,0, R, f,(T.).) if it is given by (@) where
all the involved items are defined as described above. Notice that the whole law of the processes
(X)ee)o,1] can be recovered from the law of the process X introduced in the previous subsection
and the rate function g. For this reasons, the ID process X will be called the generator of the
approximating sequence (X€). and g the rate function.

We have )
Vg > 0,Vz € RY, E[e?:] = E[e%0] = I c¥(@), (8)
We stress that, in great generality, ¥ takes values into Ry U {400} but it is finite at least for
q € [0,2].

For € > 0, we define a random measure

VA € B[RY), M(A) = / UL )
A

Clearly, for each fixed A with finite Lebesgue measure, the family (M€(A))ccjo,1 is a positive

martingale. Thus it converges almost surely. We deduce that the family (1\7 “)e almost surely
weakly converges towards a limiting random measure M on B(RY). This measure will be called
Lévy multiplicative chaos associated to (S, W, W' N,0, R, f,(T:)z)-



2.3 Main properties
By stationarity and the 0 — 1 law , we deduce (as in [I3} 21])
Proposition 3. FEither of the following events occurs with probability one:
{M =0} or {VB non empty ball, M(B) > 0}.
In the second situation, we will say that the measure M is non degenerate.
The non-degeneracy is expectedly related to the Laplace exponents of the generator:
Theorem 4. Under Assumption[d, the measure M is non degenerate as soon as ¥'(1) —1(1) < d.

Corollary 5. Under Assumption [d and provided that ¢)'(1) — (1) < d, the measure M almost
surely does not possess any atom.

In some particular situations, it can be proved that the condition ¢'(1) — ¥ (1) < d is optimal
(see [13, Bl 2] for instance). But the situation presented here is far more intricate and it is not
optimal in great generality since we only require the correlation structure to be sub-logarithmic
(Assumption ). To illustrate the situation, let us focus on the second order moment. It is well
known that, in the particular situations presented in [I3} [3, 2], the measure M admits a second
order moment if and only if ¥(2) < d. In our case, the situation is not that clear. For instance,
choose 6 equal to the Lebesgue measure on S = R?, # any Lévy measure on R? and R = 0. The
flow (T}); is the usual group of translations. Take any positive bounded function f with compact
support over R? and g(y) = y? (for ¢ > 1). Notice that the associated function F reduces to 0
for all 2 such that the supports of f and T, f are disjoint, say for |x| > R. Then for a > 0 and
x € R\ {0}, we have (where e, = z/|z]):

[ g, [ e,
1 \

= u
U z|1/a u
:F(O)ln_"_i:M]n_i_i as ¢ — 0. (10)
¢ " al q 2]

Hence it can be proved that M admits a second order moment if and only if M < d, which
is quite a different condition from [13] [3] 2].

Hence, it appears that the condition ¢'(1) — (1) < d should be optimal when the rate function
g is "not far” from the function ¢g(y) = y. In that spirit, we claim:

Theorem 6. If the measure M admits a moment of order 1 + 9 for some 6 > 0 and if the rate
function g satisfies g(y) <y for y > 1 then

B(1+0) — (1+8)w(1) < do.

In particular ¢'(1) — (1) < d.

3. x-scale invariant random measures

In this section, we explain the connection between x-scale invariant random measures and Lévy
multiplicative chaos. On the first hand, we show that every Lévy multiplicative chaos defines a
*-scale invariant random measure provided that the rate function is defined by g(y) = y for all
y > 1. Then we show that all x-scale invariant random measures with a moment of order strictly
greater than 1 are Lévy multiplicative chaos, up to a few additional assumptions.



3.1 Construction

We consider X¢, M¢ and M as constructed in Section B with generator X and rate function g
given by ¢g(y) =y for all y > 1. Hence the process X€ is given by

1 1
X5 :blml + / / cos(ty - \) W(d\, dy) + / / sin(ty - A) W' (dX, dy) (11)
€ 1 JRd 1 JRe

: . dy
4 / /S F(Tiy () [N (s, dy) = (1Y | (T ()~ 0(d5) ) (12)

Let us state a simple criterion to check Assumption
Proposition 7. Assumption[d is satisfied if and only if
+o0 F
sup / [Fue)l du < 4o0. (13)
le]=1J1 u

Theorem 8. Assume that Assumption[d (or equivalently [I3)) holds and that ' (1) — (1) < d.
Then M is non trivial and x-scale invariant.

Hence, the *x-scale invariance property only depends on the choice of the rate function. This
shows in a way that there are as many *-scale invariant random measures as stochastically contin-
uous ID processes (up to the condition #’'(1) — ¢(1) < d).

The existence of a second order moment is ruled by the following condition, which seems to be
more conventional than the counter-example described in ([I0):

Proposition 9. The measure M admits a second order moment if and only if F(0) < d.
A straightforward adaptation of our proofs shows that:
Proposition 10. A *-scale invariant random measure M is multifractal in the sense that:

lim InE[M([0,¢])9]

10 Int =q—Y(q) +q¥(1),

where 1 is the Laplace exponent of its generator.

3.2 Uniqueness

Conversely, we now want to describe as exhaustively as possible the set of all x-scale invariant
random measures. For that purpose, we introduce a few additional assumptions:

Assumption 11. We will say that a stationary random measure M is a good %-scale invariant
random measure if M is x-scale invariant and satisfies:

1. the process w. admits exponential moments of order 2, that is E[e2“€(0)] < 00.
2. for e <1, the generalized covariance kernel associated to the ID process we:
Ve e RY,  F.(x) := log(E[ew:@+w:(0)))
satisfies

+oo
Vo #£0, |F(r)| < C’E/ 0(u) du. (14)

||

for some positive constant C. and some decreasing function 0 :)0,+oco[— Ry such that

+oo
/ 0(u) In(u) du < +00. (15)



3. there is €y €]0, 1] such that, for eachp > 1, q1,...,qp € R and t1,...,t, € RP, the mapping
(6,1, ..., tp) —r E[einr@e(ti)Fiwe(tn)]
is differentiable w.r.t. €y with a derivative continuous w.r.t. (ti,...,tp).

It turns out that the condition on the exponential moments of order 2 of w, is also necessary
as soon as the measure M possesses a moment of order 2. Point 2 is a decorrelation property at
infinity whereas point 3 is a regularity property. In what follows, we denote by . the Laplace
exponent of we:

Ve(q) = InE[e®©)]

for all ¢ € R such that the above quantity is finite. Notice that, as soon as the measure M possesses
a moment of order 1, the condition (1) = 0 is a necessary condition for the solution of (2] to be
non trivial.

The main result of this paper is the following:

Theorem 12. Consider a good *-scale invariant measure M. Assume that M admits a finite
moment of order 1+ § for some 6 > 0 (i.e. E[M(B)'*9] < oo for some open ball B). Then there
exists a random variable Y € L' and a Lévy multiplicative chaos Q (independent from Y and
non-degenerate) with associated rate function g(y) =y such that

M(dz) 'Y YQ(dx).

We conjecture that the same theorem holds if M is a %-scale invariant measure with a finite
moment of order 1 4 ¢ for some ¢ > 0. Therefore, we think Assumption [I1]is just a technical
assumption (which we can not avoid at present) and that our theorem characterizes all *-scale
invariant measure with a finite moment of order 1 + ¢ for some § > 0. The general case of x-scale
invariant measures with no finite moment assumption is currently under investigation and requires
the introduction of a different set of measures (work in progress).

Remark 13. When M is a good x-scale invariant random measure, the law of M is entirely
characterized by the law of the process we in @) for some € €]0,1[. Furthermore, the law of the
finite dimensional distributions of the generator X can be recovered from those of w. by the following
procedure: define the Lévy exponents n¢, n of we and X, that is

E[eiqlwe(h)+---+ique(tp)] — ené(q17~~,qp7t1,~~~7tp), ]E[eiqut1+~v+iqunp] — M5 sp tsensty)

Then we have ;

1 1
Oen(q1y -+ qpyt1, ..., tp) = _6_277((]1"""]1”?""’

o ST
~

4. Examples

4.1 Lognormal case

The lognormal case, that is when the generator of the x-scale invariant measure is a Gaussian
process, has been entirely treated in [I]. Of course, the assumptions are less restrictive concern-
ing good *-scale invariant measures since their generator can be entirely described with its two
marginals, that is its covariance function. As a consequence, we do not require Assumption [I1]
point 3) in the lognormal case.



4.2 Reminder about log-ID independently scattered random measures

The next examples are based on log-ID independently scattered random measures so that we first
collect a few well known facts about these measures. The reader is referred to [I8] for further
details.

We remind the reader that an ID independently scattered random measure p distributed on a
measurable space (S, B(S)) with control measure I" and kernel K is a collection of random variables
(u(A), A € B(S)) such that:

1) For every sequence of disjoint sets (A,,), in B(S), the random variables (u(A,,)), are inde-

pendent and
,U(UAn) = Z,U(An) a.s.,

2) for any measurable set A in B(S), pu(A) is an ID random variable whose characteristic
function is characterized by

E(e#(4)) = E[(4)] = exp ( /A K(q, s)F(ds)).

The control measure I' is a positive o-finite measure on S and the kernel K takes on the form

K(q,s) = iqa(s) — %q202(8) + /R(eiqz —1—1iq7(2))o(s,dz), (16)
where
la(s)| + o*(s) + / min(1, 2%)o(s,dz) =1 Ha.e. (17)
R

Here o,a belong to L*(S,T") (o non-negative) and ¢ : S x B(R) — [0,+00] is such that for
each fixed s € S, o(s, dz) is a Lévy measure on R and for each B € B(R) the function o(-, B)
is measurable and finite whenever 0 does not belong to the closure of B. The function 7 is
any truncation function. The random measure p is characterized by the triple of measures
(a(s)0(ds), 02 (s)0(ds), o(s,dz)0(ds)). Conversely, to such triple corresponds a unique (in law)
ID independently scattered random measure.

4.3 Barral-Mandelbrot’s type x-scale invariant MRMs

We consider the situation when the dimension d is equal to 1. We introduce an ID independently
scattered random measure y distributed on (R x R*, B(R x R% )) with control measure

L(dt,dy) = dty =2 dy

and kernel

. 1 iqx .
K(g, (t,9)) = ¢(q) = img — 507¢’ +/ (€' =1 —iqaly < 1) v(dx)
where v(dz) is a Lévy measure on R and m,o0 € R. We denote by ¢ the Laplace exponent
associated to ¢, that is ¥(q) = ¢(—iq) whenever it makes sense to consider such a quantity. We
assume that ¢ (1) = 0.
We can then define the stationary stochastically continuous ID process (w;(t))ier for I > 0 by

wi(t) = p(Ai(t))

where A;(t) is the triangle like subset A;(t) := {(s,y) e RxR: : I <y < T,—y/2<t—s<y/2}

Define now the random measure M; by M;(dt) = et dt. Almost surely, the family of measures
(M;(dt))i>0 weakly converges towards a random measure M. When ’(1) —(1) < 1, this measure
is not trivial (see [2, []).



Ai(t)

Let us check that M is a good x-scale invariant random measure. Fix ¢ < 1 and define
the sets Ajer(t) == {(s,y) : | < y < I,—y/2 < t —s < y/2} and Acrr(t) = {(s,y) :
el <y<T,—y/2 <t—s < y/2}. Note that A;(t) = Ajr(t) U A r(t) and that those two
sets are disjoint. Thus, we can write for every measurable set A

M;(A) :/ ewer, T () gwi,er (t) gy (18)
A

with wer () = p(Aerr(t)) and wy er(t) = p(Aper(t)).

Acrr(t)

0 t

We then study equation (I8)) in the limit [ — 0; we obtain
M(A) = / eer MV e(dt) (19)
A

where M€ is the limit when [ — 0 of the random measure My (dt) := e“t<7()dt. We easily verify
that M¢<(eA) faw eM(A) writing
Me(eA) = / eter () gy (20)
A

and checking that the finite-dimensional marginals of the process (w1 (€t))icr are the same as
the one of (w7 (¢))icr (see [3]).



By computing the Lévy exponents of the process wer (t):

]E[eiqlweT,T(t1)+"'+iqueT,T(tp)] — ewe(lhwqu;tl )~~~)tp)7 (21)

we obtain: . .
€ dy
VG, s Gpatl, ...yt :/ / E @i f(Tye; (1)) ) dr— 22
(1 ps U1 p) . R‘P(j_l Jf( yt())) y (22)

where f(r) = 1[7%7%1(@ and T, : t € R — t —s € R is the usual shift on R. It is then

straightforward to check that M is good provided that [,_, e**rv(dz) < +oo. We stress that the
Lévy exponents of the generator, say X, are given by

E[eiqu(tl)-F"'+iqu(tP)] = exp (/R@(i q; (T, (”)) dr).
j=1

In this example, the x-scale invariance property is easily understood via the geometric properties
of the process, namely the scaling properties of the cones. Generalizing this example by means
of geometric considerations is far from being obvious and has never been done in the literature.
On the other hand, in view of the results in this paper, the generalization is straightforward. It
suffices to change the function f. To get things simpler, we can, for instance, choose f equal to
any measurable function bounded by 1 with compact support.

4.4 Stable Lévy chaos

We focus now on another situations of interest. We consider an infinitely divisible independently
scattered random measure p distributed on R with the Lebesgue measure ds as control measure

and kernel - J
— - —iqx <

K(q,t)zw(Q)zzmq+/ (7 = 1) ==

O :I;

for some « €]0, 1[. Then the associated Laplace exponent is given by

'l -—a)

(63

¥(q) = mq —

Let (T3)ter be the family of usual shifts on R. Let f : R — R, be any integrable function with
compact support. We define

1l = /Rf(S) ds < 400, ||flla = /Rf@a ds < 4o,

We consider the stationary ID random process:

VieR, X;= /f(Tt(s)) wu(ds).

We have
E[erXt] = e ¥ (a79) ds _ gmall 11 =05 f g
r-a)|fla

allfll
check that X possesses exponential moments of second order. We assume that ¢’(1) < 1, that is

So we must set m = to ensure the normalizing condition (1) = 0. It is obvious to

(0%

I flla < m

Hence, we can consider the Lévy chaos with generator X and rate function g(y) = y. It is
a non trivial good x-scale invariant random measure. The scaling factor w. appearing in @) is a
stable ID process.

10



A. Proof of Lemma [

We first state the following intermediate lemma:

Lemma 14. Let (F(z))ecra and (G(x))zere be two stationary and non negative stochastically
continuous processes. We consider a non trivial stationary random measure n on R? independent
of F,G. We suppose that there exists v > 0 such that E[F(z)'T7] < oo, E[G(x)'] < oo, and
E[n(K)7] < oo for all compact set K. If the following equality on measures holds:

law
F(x)n(dz) = G(x)n(dx)
then the two processes F' and G have same law.

Proof. We consider the case d = 1 (the higher dimensions work the same). Let § > 0. Notice that
E[n([0,0])*] > 0 for all & €]0,7]. Indeed, the measure is stationary and non trivial. Choose now a €
10, min(y, 1)[. Notice that the mapping z € Ry — z* is sub-additive. Therefore |z*—y®| < |z —y|*

for any z,y > 0. We deduce the following inequality:
s s o
|| Pt - [ o)

</06F(x)77(dx)> a] _E </06F(0)77(d3:)> a] <k
=|( [ 1F6 In(dl‘))a] .

The mapping © € R4 — 2% is concave. So we use Jensen’s inequality applied to E[.|n] and we get:

’IE

’E[(/OJ F(a;)n(d:z;))a} —E[(/OJ F(O)n(dx)) a} ’
<g[([ "EIF) - FO)las) ]

< sup E[|F(z) — F(0)[]*E 1[0, 6]].
z€(0,0]

Since sup,¢o,5) E[|F'(x) — F(0)[] e 0, we get that:

JE{ (foé F(x)”(dx))a} — E[F(0)°].

E [n]0, §]%] 50
Similarly, we get the above convergence with F' replaced by G: this shows that F'(0) and G(0)
have the same distribution. We show similarly, for all z1,--- ,x,, that (F(z1), -+, F(x,)) and
(G(x1),- -+ ,G(xy)) have the same distribution. O

Now, we can finish the proof of lemma [T
Proof. By iterating (2) and using the above lemma, the process (we(x)) cre is such that (e, < 1):

(weer () rens "2 (@) + B (5)) e (23)

~ . . . 1
where w, and we are independent copies of w. and w.,. We fix € and consider €, = e=». Of course
€" = e. By iterating the cascade rule (23), we get:

au k
(wﬁ zGRd = E W( ) _k zGRda
n

11



where the wgf) are independent processes of law w,, . Fix z,y € R%. We therefore have for all \, u:

n

n—1
law € Y
Noel) + poe(y) 23 et () w2
k=0 n

The stochastic continuity of the process w with respect to € entails, for all n > 0:
x Y
sup  P(luw® () + Aol (

) >n) — 0.
0< k< n-1 € €

n—00

3

By a classical theorem on independent triangular arrays (see chapter XVII in [I1]), this shows that
the couple (we(x),we(y)) is ID. One proceeds similarly to show that, for all (x4, -, z,), the vector
(we(x1), -+ ywe(zy)) is ID.

O

B. Proof of Theorem M

We adapt the proofs of [13, [20].

e The class R,,.

Let B be a non empty ball of R?. We introduce the set R,, of Radon measures v on B satisfying:
for any € > 0, there exist 6 > 0, D > 0 and a compact set K. C B with v(B\ K.) < ¢ such that
the measure v, := 1 _(x)v(dz) satisfies, for every open set U C B,

v.(U) < D x diam(U)>*?. (24)

We further define the set of Radon measures R® := Ng<,R?. For a Radon measure v, we define
the quantity

1
Co(v) = /BXBWV(dx)V(dy).

It is plain to see that
Co(v) < oo = v € RZ.

Conversely, a measure obeying ([24)) satisfies Cs(v) < +oo for all § < a4 4.
We show the following intermediate result:

Lemma 15. Consider a Radon measure k € R,,. Let N be the Radon measure defined on B by

i eXE—v () In(2) o
N(dx) : ;1\1;136 k(dx) .;%Na(dx).

If F < a, then the martingale (N¢(B))c is reqular and N € Ro_yr(1)19(1) -

Proof. We first show that the martingale (N¢(B)). is regular. For this, we use the fact that F()
verifies Assumption (2)) to get (for some positive constant S = supg, g [h|):

E[N.(B)?] :/ E [eX;nLX;} e~ WG g (dar)k(dy)
BxB
:/ ell/sF(g(u)(m—y))dT:L (dl')li(dy)
BxB
e
BxB

< / 1 TS () s (dy)
BxB

1
ges/ max | ———, 1 )xk(dz)k(d
-y (e ) sd)stan)

12



and the last integral is finite as soon as F' < a. Hence, the martingale (N.(B)). is regular.

We consider a compact set K C B. Even if it means multiplying x by a positive constant, we
assume that x(K) = 1. We consider on 2 x K the probability measure Q defined by

/Q  fw.a)dQ=E { /K f(w)N(dw)}

where f is some non negative measurable function.
For 0 < ¢’ < £ < 1, we define the process (X¢ *€),cra by

vz eRY, X2 := XZ — X5 — (1) In(e/e).

Because of expression (IJ), it is straightforward to check that, given &1 < €3 < ... < g, the
processes X2 X¢e2es X en-1En gre Q-independent. Moreover, for A > 0 and because (N.),
is uniformly integrable, we have

/ekX;l’Ed@

1
/ E [eA ffr Jpa cos(zg(y)-u) W (du,dy)+sin(zg(y)-u) W' (du,dy)+AbIn S=p(1) In(e/e’)
K

a1
o ME s 1T (60) [N ()= (V1 (Tigp (1)) 19<ds>?lex;'¢<1)me_l,] w(da)

1
/ E [e<>\+l) ffr Jpa cos(zg(y)-u) W (du,dy)+sin(zg(y)-u) W' (du,dy)+(A+1)bIn ff()\Jrl)w(l)ln(s/s’)
K

1
D) [ [ £ (Tigry) () [N (ds,dy) = (1VIF (Trg(y) (5))) 7 0(ds) 9]
X e c k(dz)

— ew()\—i-l) In(e/e")—(A+1)9(1) ln(a/a/).

In particular, under Q, the process u € RT — X¢ “! is an integrable Lévy process. Thus from

the strong law of large numbers, we get that Q-almost surely:
Xefu,l
U

= 1'(1) = (1)

when u — co. Consequently, P almost surely,

N as., Xii —'(1). (25)

In particular, by Egoroff’s theorem, there exists a compact set K! C K such that N(K \ K!) < e
and the convergence (28) is uniform with respect to z € K. Let now ¢ > 0, and define N,(dy) :=

lime o eX!j’e*qn(dy) and P,(z) := N,(BZ N K) where B denotes the ball centered on x and with
radius e~9. We finally define the function

eq(l',y) = 1{\1—1}\ <e 9}

13



in such a way that P;(z) = [, 0 Ny(dy). Thus we have:
/ P,dQ = E [ / b)) N )|
KxK

e—0

=limE UKXKe (z,y)eXe +X" (d;v)m(dy)}

:/ O (, y)elten.oe PO L (G (dy).
KxK

Let 8 > F be fixed. By using Assumption Bl and the above relation, we obtain (for some
positive constant S = supg, ,pa |h])

[ X emran= 3 [ oumaerelens FOO0DE gy ay)

n>1 n>1 KxK

_ / 3 ePrelien oo FOW=0D 3 g0y ()
K

XK1 < < —In(la—y])

S 65/ o e TR a(da) k(dy)
K

XK1 <n < —In(lz—yl)

Py 1
geS/K Z eB=F) ﬁm(dx)m(dy)

*K 1 < < —In(lz—yl) =~y

Note that, for some positive constant D,

yol 1
Z e(B=F)n < Dﬁ7
1<n< —In(jz—y|) |I_y|

in such a way that

/ Z PP, dQ < Des/ ;Bli(dfb)li(dy) = DD'Cs(k).
Kxk [T =yl

n>1

The last term is finite as soon as f < «. Thus for 8 €]F,a, Q a.s., ’"P, — 0 as n — oco. In
particular, one can find a compact set K2 C K such that N(K \ K2) < ¢ and such that, N almost

£
surely,
log(P(@) _
n

lim sup
n—oo

uniformly for x € K2. Setting K = K2?N K! and N := 1;(x)N(dz), we get that, uniformly
with respect to z € K:

o) Yos (Jrapg e T Na(dw)
lim sup = lim sup
n—00 n n—00 n

= B+¢'(1) (1)

This entails in particular that M € Ry _yr(1)4¢(1)- O

Making use of Lemma [T5] we now prove Theorem [4]

14



Proof of Theorem 3. The basic idea is to show that a Lévy multiplicative chaos satisfying ¢'(1) —
(1) < d can be decomposed as an iterated Lévy multiplicative chaos.
First, fix an integer n such that

F <n(d—¢'(1) +¢(1)).
There exist n independent identically distributed approximating families (X We X (")76)561011[
respectively associated to (S, W), w' @ N@ R/n,0/n, f,(T,).) where the (W) w'@, N cicn
are all independent. We assume that the triples (VV(l),VVl(l),N(l))7 ey (W("),W/("),N("))
are respectively constructed on the probability space (Q1,P!),...,(£,,P"), and we define Q :=

O X ... x ), equipped with the probability measure P:=P' @ ... ® P".
We define recursively for 1 < &k < n:

MO (dg) == dz, M®(dz) = lim Xa =5 n(1/e) pr(k=1) () (26)
€
where the limit has to be understood in the sense of weak convergence of Radon measures. For
k € [1,n — 1], one has the relation

Fcatwa -,

n

so that we can apply recursively Lemma [I3] to prove that for each k < n,
EM®(B)] = E[M*~Y(B)] and M™ € Ry« (1) _y1y-

In particular, the martingales considered in (26)) are uniformly integrable. Then we prove that the
measures M and M (") have the same law. For this, we note that the following equality in law
holds:
M™ (dz) = lim X+ X =0 () In(1/e) gy (27)
eN0

Indeed, consider the o-algebra G. generated by {Xr(l)’s,, . 7XT(")’E,, ¢’ > e,r € R?}. Using the fact
that the martingales considered in (26) are uniformly integrable, we compute:
o]

E |:M(n) (A) g€:| =E E |:M(n) (A)‘ (Xﬁl)ya/u o 7Xﬁn_l))a/)TGRd,e/G]O,l[u (Xﬁn)7€/)T€Rd,s’>E:|

o]
o]

= E |E™ [M(") (A)'(Xﬁn)’sl)ren@d,a'x}

B[ [ o b
LJ A

/ XD X (1) log(1/2) g
A

Since this last quantity has the same law as M“(A), [27) follows by passing to the limit as € — 0.
Since E[M (™ (A)] = |A|, we deduce E[M (A)] = |A|. Hence M is not trivial. Furthermore we have
proved that M € Rq_y/(1)44(1)- In particular, M cannot possess any atom. |

C. Proofs of Section Bl

C.1 Proof of Proposition [7|
We have

15



where e, = . For alz| > 1, this quantity is less than ([I3]). For a|z| < 1, we have the bound:

2] ¥ |z ¥ w
1 | F(uey
gF(O)ln——l—/ Mdu
alz| 1 u

because |F(x)] < F(0). Actually, because of the continuity of the function F at 0, it turns out

1

that we have flrl % du ~ F(0)In ‘71‘ as |z| = 0. We deduce

/OonuzF(O)lni
\

0. 28
LT o skl (28)

C.2 Proof of Proposition

We just have to compute the second order moment (we use the notation e, = ﬁ)

E[M¢(A)?] = / E {eX;JFX;} e 20 M) gray
AxA
_ / efll/s F(u(xfy))dT“ d:Z?dy
AxA

lo—yl/e u
- / T P e ) 2 gy,
AxA
In case M admits a second order moment, we deduce that the quantity

E[M(A)?] = / e P luee) & gy
AxA

is finite. Because of (Z8), we necessarily have F(0) < d. Conversely, if F(0) < d then sup, E[M¢(A)?]
is less than the above right-hand side, which is finite. The proof is complete. O

C.3 Proof of Proposition [8

For 0 <e <1, t1,...,t € (Rd)p and ¢i,...,q, € R such that the following expectations make
sense, we define the Laplace exponents ¢ of X¢:

€ € €
E[eqlxtl “r""‘l’q;Dti] — ewtl,...,,

16



For ¢’ < €, we have

Uty (@1 @) =

1 <& 1 [ u 2 dy 1 El a . 2 dy
:blng Zqi + 5/ /Rd (;ql cos(ytu)) R(du)? + 5/1 /Rd (;qZ sin(yt;u)) R(du)?

1 qif(Te;y(s . f(Ttw( ) dy
// S i f (T () _ 1 Z —1v|f(Tt1y())|)9(ds)

€ 1 (v dy
:blng ;qi + 5/1 /Rd (;ql cos(ytiu) / /Rd ZqZ sin(yt;u) R(du)?

=1
1 P
7 : Ti,y(s)) dy
n oS @ (T () _ Z.f(m—y 0(as) 2 +
/ A ;qlvu(ny(sm)( Vy el )
€ & 1 [7 P t; dy
=bln — ql-—|——/ / q; COS y—zu / / qzsmy “u) > R(du)
g2ty | [, (oaeosly ) Rl Z (a)
5 b [T, (s))
. Slaif(Ty (5) dy
+/ / e qz—9d8—+w€ B I P
N Z TV TR )4y o a)
_wi7...)t_p(QIu-"7qp)+¢; ..... tp(qlv'-'qu)
Hence we can write .
(X = (X +X 1), (29)

where 7% is independent from X€ and has the same law as X % It is then plain to deduce that
M is *-scale invariant. Indeed, define M€ by

mp

VA€ B[RY, MY(A)=lim [ % YOM7

e’—0 A

dx.

A straightforward change of variables shows that
Me(dz) "2 €M (dw/e).
From (29), we deduce
M(dz) = eXe =W e pre(da).

D. Proof of Theorem

We carry out the proof in the case when the dimension is equal to 1. This simplifies the notations.
In higher dimensions, the proof works the same.

The guiding line is the same as in [I]. But the lack of convexity inequalities, which are specific
to the Gaussian case, gives rise to further technical difficulties. So we detail what differs and refer
to [I] for the proofs of the results that do not change with respect to the Gaussian case.

D.1 Setting

We consider a non trivial measure satisfying (2)) with a moment of order 1+ for some § > 0 and a
fixed € €]0, 1[. The first step is to prove that the measure M is a Lévy multiplicative chaos. Since

17



M is not trivial and possesses a moment of order at least 1, we necessarily have
Ve eR, E[e“-@]=1. (30)

Because it is stochastically continuous and ID, the process w,. admits a version with a representation
as in (@) with associated parameters (S, W, W/ N, 6., R, f-, (TS):). The Laplace transform of
we is denoted by

ve(q) = mE[e®©)].

It satisfies ¥-(1) = 0. We let (X™),, denote a sequence of independent stationary stochastically
continuous ID processes with common law that of w.. Of course, the law of this sequence depends
on € but we remove this dependence from the notations for the sake of clarity. We also define the
measure MY for N > 0 by

MN(A) =Nt <5N1+1A) . (31)

We assume that the sequences (X,,), and (M*Y)y are independent. Iterating the relation (), we
get that, for every integer N, the measure MY defined by:

MV (A) = /A exp (Z Xf/5n> MY (dr) (32)

has the same law as the measure M.

Lemma 16. (see [1]) Let M be a stationary random measure on R admitting a moment of order
14 0. There is a nonnegative integrable random variable Y € L' such that, for every bounded
interval I C R,

1
lim TM (TI)=Y|I| almost surely and in L'*°,

where | - | stands for the Lebesque measure on R. As a consequence, almost surely the random
measure

AeB[R) %M(TA)

weakly converges towards Y| - | and Ey [M(A)] = Y|A| (Ey[] denotes the conditional expectation
with respect to Y ).

Thus, in what follows, the random variable Y will be defined as the unique (up to a set of
probability 0) random variable such that Ey[M(A)] = Y|A| for all Borelian sets A.
For x # 0, define:

S¢(x) = Z F.(x/e") (33)
n=0
where F.(-) is the generalized covariance function associated to w. (see Assumption (III)). The

uniform convergence of the series on the sets of the type {z € R;|x| > p} is ensured by (1) (see
[1]). Then we can reproduce the proofs if [I, Section 5.2] by replacing K¢ by S¢ in the proofs.

D.2 M is a multiplicative Lévy chaos.

Let us define the o algebra Fy := o(X?, ..., XV Y). For every Borelian subset A C R, we define

Gn(A) =E [MN(A)U'N] . (34)

As in [I], we prove

N
VN >0, Gn(A)=Y / exp <Z X;l/an) da. (35)
A n=0

18



Hence, for each bounded Borelian set A, the sequence (Gn(A)) 5 is a positive martingale bounded
in L'*9. Being bounded in L', the martingale G (A) converges towards a random variable
Q(A) which should be formally thought of as:

A) = y/ exp (Z X;;/sn> dz.
A n=0

The result below is proved in [I] and uses specific properties of Gaussian processes, namely
Gaussian concentration inequalities due to Kahane. It turns out that we can carry out the proof
while skipping these inequalities:

Lemma 17. For small enough vy €]0, 4], there exists p > 0 such that:

(o)) o

The central lemma for establishing Lemma [I7] is the following;:

supn'TPE
n

Lemma 18. The finiteness of a moment of order 1+ 8 (for some § > 0) implies
Ve <1, o.(1) <1n%, (37)
and Vv € [0, §]
Ve < 1, ¢e(1+7)<7111%- (38)
Proof. Let us fix € < 1 and define for ¢ < 1:
F.(q,r) = InE[e%" (r)+qwe (0)]_

Let us consider i > 1 such that (1+6)h = 2. By concavity of the function 2 ~ 2'/? we can make
use of Jensen’s inequality to get for N > 1:

B[ (0. 2)") =B |pr(l0.2)F

n
[ 1/n rl/n 1/h
(/ / eXp0 X7 GEHXT ) N () M 1(du)>

1/n pl/n
>E / / eh Zpso XPG)HXP () AN =1 (gr) MV (du) MY ([0,

|
=

n

1 ])2/h2‘|

N mf 1

> M s Mg o,

_])1+5

where we made use of the fact that the sequence (X"), < y—1 is independent of the random
measure MY ~1. Now we choose N such that eV = —L for some o > 0, that is N = 2500 We

obtain:

1, 146 1 (lnnJrlna) il <:‘_F€(h ) 1 146
E[M([O’ E]) } 2 n1+6 l 041+6E [M([Oaa]) ]
Now, we use the super-additivity of the function z — ' to obtain:

1

E[M([0,1])"*] ZE (2 ) 1e (o, 2)) ).

n n
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By gathering the above inequalities, we deduce:

1
flr] < o Felgm) 1

146 1 (Inn+1n o) o T 116
] >nn1+56 In W]E [M([0,0é]) ]

E[M([0,1])
Because the left-hand side is bounded independently of n, we necessarily have:

infm <a FE(%, 7“)
Ind

€

Ve >0, < 6. (39)

By letting o go to 0 and by continuity of F.(+,-) at 0 (we is stochastically continuous with a
moment of order 1+ 4), we deduce

veso, Y+, (40)

In %
By convexity arguments, it is then plain to deduce that

Qﬁ(i) <1 (41)

Indeed, the (not strict) inequality results from [{0). If equality holds, this means that ¢.(1+v) =1
for all v € [0,6[. By analycity arguments, this implies that the law of the process w, is that of a
constant and the measure M is thus trivial. This is in contradiction with our assumptions. The
same type of argument leads to (38]). O

Proof of Lemma[T7. We consider v €]0,4[. As the function z — z'*7 is convex, we make use of
Jensen’s inequality to get for N > 1:

E[M ([0, 1)) = E

MN[0, 1/m])

n

[/ i SN xr(5) Tty
(o B MNl“”) Mo )

i 1/n Nl yp/ o B B 1
E /O e Xp=o X7 () (N =1 (g N 1([0, E])V]

N

<E [ (1) 05 X’)(O)} E |MN1([o, l])1+7}
i n
n

— NY(+1 )R [MN—l([O 1})1+’Y]

where, once again, we made use of the fact that the sequence (X"™),, < y—1 is independent of the
random measure M~ We choose N = _hl]“e" in order to have ¢V = % We get that:

11 1 146
E[M([0.~])"] < oz P ([0, 1]) ]
n €

We are thus left with checking that % < 1. This the the content of Lemma [I8 O

Let us stress that, as an immediate consequence of Lemma [I7] the measure M does not possess
any atom (see [8, Corollary 9.3 VI]). With the above estimation on the function ., we can prove
that @ is a non trivial Lévy multiplicative chaos:

Lemma 19. The random measure Q is a Lévy multiplicative chaos and it is non trivial.
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Proof. Let us use the decomposition of X to write
X"(r) = bt / cos(t-u) W2 (du) + / sin(t-w) W' (du)+ / Fo(TE () N (ds)— (V| £ (TE())]) e ds)]
Rd R4 Se

where the triples (W™ W, N™),, are independent. Thus we have
N

Y=Y X ()

n=0

=Nb, —I—Z/ cos— u) W2 (du) —I—Z/ sm— u W"(du)
+Z/ Je(T5, (5)) [N (ds) = (1V [ fe(T5, (5))]) " Oc(ds)]

Let us compute the Lévy exponent of Y. For rq,... ,7p € Rand Aq,...,An € R such that
the following expectations make sense, we have:

N

Ele ip:l)‘iYT‘Jz’V] =exp (Nbé—i- Z/ (Z/\ cos( U)) )+ ; Z/}Rd i ; sin( )QRE(du)

Y S A f(TS, () P Nife(T5, (5)
+n¥0/se (e o —1—;m)96(d8)).

We point out that the last quantity can be rewritten as

g b d 2R (du) d

exp(/ y / /R Z)\ cos rlg )) hfl )gy
1 a \4 <

o~ . 2 R.(du) dy

+ 5/1 /Rd (;/\z sin(rig(y) - U)) W—

Y

& » P Nife(Ty (3)) 0.(ds) dy
Yo Mife(T7, gy (5)) _ bt
+/1 /Sé (e " -1 Zl\/|fe( Tg(y)( ))|) Ini y)

€

where g is defined by g(y) = = on the interval [X, enlﬂ[ Hence, @ is obviously a Lévy mul-
tiplicative chaos. Furthermore, from the relation ([34), it is plain to deduce that the martingale
(Gn(A))y is bounded in L'*9 as (]T/[/N)N is. Thus, the martingale (Gn(A))n converges a.s. and
in L'*9 towards its limit Q(A), which is necessarily non trivial. O

Once we have proved Lemma [I7 and [[9, we can proceed along the same lines as in [Il Section
5] to have the following description of the set of good x-scale invariant random measures:

Proposition 20. The random measures (Q(A)) aepr) and (M(A))aepwr) have the same law.

D.3 Structure of the Lévy chaos

Now, we still have to show that the chaos M can be recovered in the same way as the construction
set out in section For (t1,...,t,) € RP, we introduce the Lévy exponent n¢ of the random
variable (we(t1),...,we(tp)), namely

E[eiQ1we(t1)+”'+ique (tp)] — e"]e (t17~~~;tp;Q)
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where @ stands for the vector (¢i,...,qp) € RP. For T € R, Q € R? and t > 0, we define G (¢,T) =
ne (e7Tty,...,e"Tt,,Q). It is the Lévy exponent of the random variable (w,—+ (e Tty), ..., we—¢ (e
Now, we make use of the cascading equation. We claim that for ,¢’ > 0, the following equality
holds:

/ law

!
(Wi Jrer = (wy + wi/s)TGR

where the processes w® and w® are independent. This is an easy consequence of the cascading
equation and Lemma [I4l It follows that, for h > 0,

Got+h,T)=Gqt,T)+ Gg(h, T —t),

or

Go(t+h,T)—Go(t,T) _ Gg(h, T —1)

h B h '
Because of Assumption [II] 3), at ty = 1n— and for all T' € R, the left-hand side converges as
h — 0, and so does the right-hand side. It follows that G is differentiable w.r.t. ¢ at ¢ = 0, and

then at every ¢ > 0. Furthermore, 9;G(t,T') is continuous w.r.t. (¢,7") because of Assumption [I1]
3) again. We deduce that

t
Go(t,T) —Gq(s,T) = / H(e Ty, e T8, dr
eth

dy
:/ H(yt,...,ytp)—
es—T Yy

where

H(tl,...,tp,Q):hm ’I]e(tl,...,tp,Q).

Furthermore, H is a continuous function of (¢1,...,%,). By taking T, s = 0 and by noticing that
Go(s,T) =0, we deduce:

d
n(t1,..., / Hytl,...,yt)yy (42)
Now we want to prove that H stands for the finite-dimensional distributions of an ID process. For
that purpose, observe that (1) and ([B0)), that is 1.(1) = 0, implies that, for each ¢t € R, the ID

random variable with Lévy exponent

qgeER—

— V@

is tight. Indeed, both relations imply that its characteristic triple (b, o, v.) satisfies

sup (052 + / min(1, Z2)I/€(d2)> <+4oco and b +02/2+ /(ez —1— 21, <1)ve(dz) = 0.
€ R R

Hence, for any (t1,...,t,) € RP, the family of ID random variables with Lévy exponents

1 €
QERPH m’f] (tl,...,tp,Q)

is tight since its one-dimensional marginals have #we(q) as Lévy exponents. Thus, for any
(t1,...,tp) € RP, Q — H(t1,...,tp) is necessarily the Lévy exponent of some non trivial RP-valued
ID random variable. Furthermore, H is necessarily associated to a consistent family of random
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variables since the family (Q — _llnenf(tl, o by, Q))p > 1(t1,0..0t) ERP is. Hence, there exists an
ID stationary random process X on R such that Vp > 1 and V(t1,...,t,) € R?

E[eimxtl'i‘”"i‘iq;)xtp] H(tlx"'7tp)Q)'

=e
The Laplace transform 1 of X, (or equivalently of X; for any ¢ € R) necessarily satisfies
»(1)=0 and P(1+9) <.

It remains to prove that X is stochastically continuous. Notice that the mapping t € R —
H(0,t,Q) is continuous. In particular, we can choose @ = (g,—q) for some ¢ € R. We deduce
lim;_,o E[e?d(X:=X0)] = 1 for all ¢ € R. In particular, X, — X converges in law towards 0 as t — 0.
Therefore X; — X converges in probability towards 0 as ¢ — 0. (|

E. Proof of Theorem

We explain the proof in dimension d = 1. The generalization to higher dimensions is straightfor-
ward. Let us consider § > 0 such that M admits a moment of order 1+ §. For any ¢ €]0,1[ and
n € N* with finite Lebesgue measure, we have from Jensen’s inequality:

1

E[M ([0, E])H—é} > IE[MG([O, E])Ha}
We deduce:
146 - k=1 Enits Lois ein it
E[M(10,1)"*°] > Y E[M([——, =) |E[M([0, -))"**] > nE[M*([0, -))"**]

k=1

Let us define for € €]0,1] and ¢ < 1
Fﬁ (qu T) =1In E[eqXé"‘qu—?qw(l) In %]

and observe that:

1/e d
Fuq.r) = / (.03 0) = 2(1)|

Let us consider h > 1 such that (1 + §)h = 2. By using the concavity of the function z — z'/" is
concave and Jensen’s inequality, we get:

1 1

146 ~ 1. 2xt
)™ =5 [ (. 1) ]
1/n pl/n 1/h
) </ / P(1)In L4 X¢— (l)lnidrdu>
1/n pl/n
n-1-0p [/ / 1X;+%x;(1+5)¢(1)1n§n2deu]

_1_s 1nim< 1F(hr

E[M<([0

>n
Gathering the above inequalities yields:

in (7
E[M([07 1])1+5} > n_[se f\T\ < Fe(3, ) (43)
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Now fix a@ > 0. Because the mapping u ¢07u(%, %) is continuous, there exists 7 > 0 such
that [¢o,u(%, £) — %o,0(%, )| < a for [u| < 1. We choose e = nln and we obtain for [r| < L

1 1 n 11 1 1. dy
FGer) = PO < [ W (G ) = 0 1
< aln(nn).
We deduce
1 1
| ‘irifl F(=,r) > Fe(E,O) —aln(nny) = In(nn) (Y1 +6) — (1 +0)p(1) — a).

By plugging this relation into [@3), we get:
E[M ([0, 1])*9] > n~delnmm) (6(+8)—(1+8)p(1)—a)
Since this relation must be valid for all n large enough, we necessarily have
Y(14+0)— (1+0)Y(l) —a < 0.
Since a > 0 is arbitrary, we deduce
Y1 +0)—(1+0)yY((l) <4.
In particular, by convexity arguments (as in establishing ([I])) we have:

P'(1) —¥(1) <1
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