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Characterizing the variations in anatomy and tissue properties in large populations is a challenging problem in medical imaging. Various statistical analysis, dimension reduction and clustering techniques have been developed to reach this goal. These techniques can provide insight into the effects of demographic and genetic factors on disease progression. They can also be used to improve the accuracy and remove biases in various image segmentation and registration algorithms. In this paper we explore the potential of some non linear dimensionality reduction (NLDR) techniques to establish simple imaging indicators of ageing and Alzheimers Disease (AD) on a large population of multimodality brain images (Magnetic Resonance Imaging (MRI) and PiB Positron Emission Tomography (PET)) composed of 218 patients including healthy control, mild cognitive impairment and AD. Using T1-weighted MR images, we found using laplacian eigenmaps that the main variation across this population was the size of the ventricles. For the grey matter signal in PiB PET images, we built manifolds that showed transition from low to high PiB retention. The combination of the two modalities generated a manifold with different areas that corresponded to different ventricle sizes and beta-amyloid loads.

INTRODUCTION

Analysing trends and modes in a population, as well as computing meaningful regressions, are challenges in the field of medical imaging. A considerable amount of work has been done to simplify the use of medical images for clinicians, and summarising the information in just few imaging biomarkers, that would for example quantify and easily allow the interpretation of disease evolution. This is of great interest not only for clinical diagnosis, but also to study clinical studies and stratify cohorts during clinical trials.

Large medical databases challenge manual analysis of a population. Unbiased atlases can be used to describe a population [START_REF] Lorenzen | Unbiased atlas formation via large deformations metric mapping[END_REF]. [START_REF] Blezek | Atlas stratification[END_REF] introduced the atlas stratification technique, discovering modes of variation in a population using a mean shift algorithm. [START_REF] Sabuncu | Image-driven population analysis through mixture modeling[END_REF]) introduced iCluster, a clustering algorithm computing multiple templates that represent different modes in the population. [START_REF] Davis | Population shape regression from random design data[END_REF]) demonstrated the use of manifold kernel regression to regress the images with regard to a known parameter, such as age. [START_REF] Wolz | LEAP: learning embeddings for atlas propagation[END_REF]) introduced the Learning Embeddings for Atlas Propagation technique, and showed that the use of manifold learning can improve the segmentation results compared to the simple use of image similarity in multi-atlas segmentation techniques. [START_REF] Gerber | Manifold modeling for brain population analysis[END_REF]) developed a generative model to describe the population of brain images, under the assumption that the whole population derive from a small number of brains. These techniques usually rely on computations of diffeomorphisms or transformations to compute distances between images. Alternatively it is also possible to use dimensionality reduction techniques directly on the image pixels intensities [START_REF] Wolz | LEAP: learning embeddings for atlas propagation[END_REF]), as we propose in this paper. Most dimensionality reduction techniques rely either on information theory or geometry. Information-based assumptions can be related to the maximum of variance (Principal Component Analysis (PCA), kernel Principal Component Analysis (kPCA)), entropy measure, etc. Geometric assumptions are either global (Multi Dimension Scaling (MDS), ISOmetric MAPping (ISOMAP)), or local (Local Linear Embeddings (LLE), Laplacian Eigenmaps (LEM), Hessian Eigenmaps (HEM), Diffusion Maps (DM), Local Tangent Space Alignment (LTSA)). References to these algorithms can be found in (van der [START_REF] Van Der Maaten | Dimensionality reduction: A comparative review[END_REF].

In this publication, we examine the use of NLDR techniques to analyse multi-modality brain images. AD is associated with the deposition in the brain of amyloid plaques, which can be imaged with PET using the Pittsburgh compound B markers (PiB), and with brain atrophy, which can be imaged with MRI T1 weighted (T1-w) images. We are investigating the use of manifold learning techniques for studying PET-PiB and T1-w.

MATERIAL AND METHODS 2.1 Data

The dataset is composed of 218 patients from the AIBL study [START_REF] Ellis | The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease[END_REF]). T1-w (image matrix 60x240x256, image spacing of 1.2x1x1 mm in the sagittal, coronal and axial directions, TR=2300ms, TR=2.98ms, TI=900ms, flip angle=9 • ) and PiB (reconstructed image matrix 28x128x90, 2x2x2mm spacing) scans were acquired.

Proposed Algorithm

The proposed algorithm, summarised in Fig. 1, consists of the following steps:

Pre-processing: PiB and MR images were affinely co-registered. All PiB Images were Standardised Uptake Value Ratio normalised to the mean uptake in the cerebellum crus region [START_REF] Raniga | Automated 11C-PiB standardized uptake value ratio[END_REF]). T1-w images were bias-field corrected in the mask creation process. T1-w images were then spatially normalised using an elderly brain atlas using affine and then nonrigid transformations. These transformations were then propagated to the PiB images. Noise was reduced in T1-w images using anisotropic diffusion, and in PiB images using a 2mm Gaussian convolution.

Mask creation: using a subset of 98 MR images, an average elderly brain atlas and its associated probabilistic tissue priors (grey matter (GM), white matter (WM) and cerebro-spinal fluid (CSF)) were created from the segmentations obtained using [START_REF] Acosta | Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps[END_REF]) and a voting method. The segmentation of the NLDR: in this initial investigation, the NLDR was performed on the middle 2D slice using the mani Matlab implementation available at [START_REF] Wittman | MANIfold learning matlab demo[END_REF]. Formally, NLDR performs the following operation : given n vectors {x 1 , . . . , x n } ∈ R D and a target dimension d < D, n corresponding vectors {y 1 , . . . , y n } ∈ R d are computed, according to some optimisation rules detailed below. In our study, the x i are the brain images (the vector coordinates are the voxel intensities), the y i are their low-dimension representations, n is the number of images, D is the input dimension (the number of non-zero voxels in the mask, common for all images), and d is the reduced dimension. Low dimension representation of population of T1-w, PiB and combined T1-w/PiB were then studied.

Initially LLE, LEM, HEM, and LTSA were investigated for multi modality brain imaging population analysis. LEM first builds a weighted adjacency graph and then solves an eigenvalue optimisation problem based on the Laplacian operator. The weighted adjacency graph is usually a graph of k Nearest Neighbours (kNN). In this graph, each image defines one vertex, and every image is connected with an edge to its kNN. Edges are bidirectional, and weighted based on distances between images, usually using the heat kernel. ISOMAP builds a weighted neighbourhood graph (usually kNN), then computes the weights between all pairs of points using shortest paths on graphs, and finally constructs the low-dimensional embedding via an eigenvalue problem. LLE builds a kNN graph, then computes the optimal weights min-imising the sum of the errors of linear reconstructions in the high dimensional space, and finally solve an eigenvalue problem to map to embedded coordinates. HEM identifies the kNN, obtains tangent coordinates by singular value decomposition, and then computes the embedding coordinates using the Hessian operator and eigenanalysis. LTSA uses the tangent space in the neighbourhood of a data point (typically the kNN) to represent the local geometry, and then align those tangent spaces to construct the global coordinate system for the nonlinear manifold by minimizing the alignment error for the global coordinate learning.

Although we initially investigated several algorithms, we only report the LEM results as it was the only method we found to give stable manifold structures and that did not lead to numerical issues. In particular, HEM was found to have a prohibitive processing time. On our data, LLE had numerical stability problems that resulted from nearly-singular matrices (some eigenvalues being close to zero). LTSA did not reveal any meaningful manifold structures on our data. Moreover, several target dimensions were initially investigated, however we only report the results of 2D dimensional manifolds within, as they provided more stable and meaningful structures.

As the following results were computed using LEM [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF], here are additional details about this algorithm. LEM aims is a distance-based dimensionality reduction algorithm. It aims at minimizing a weighted sum of the distances in the final space (equation 1). The closer are the points in the original space, the higher are the weights.

φ(Y ) = ij w ij ||y i -y j || 2 (1)
First a graph is built with edges connecting nearby points to each other. There are 2 variants: ǫ-graph (nodes i and j are connected if ||x ix j || 2 ≤ ǫ) and K-NN graph (nodes i and j are connected if i is among the K nearest neighbors of j or j is the among K nearest neighbors of i). In this paper, the K-NN version is used. The default K parameter from [START_REF] Wittman | MANIfold learning matlab demo[END_REF]) (K = 8) was used. The robustness of the manifold with regard to K was also analysed. Second the edge weights are computed. Two variants are available: heat kernel (w ij = e -||x i -x j || 2 σ if nodes i and j are connected, 0 otherwise) and simple-minded (w ij = 1 if nodes i and j are connected, 0 otherwise). In this paper, we are using the simple-minded version (equivalent to a heat kernel version with σ = ∞). Third, the eigenmaps are computed. Let the the degree matrix D of W be the diagonal matrix with d ii = j w ij . The graph Laplacian L is computed by L = D -W . The optimization problem can be rewritten: The low dimensional representation can therefore be found by solving the generalized eigenvalue problem:

φ(Y ) = 2Y T LY (2)
Lv = λDv (3) 
for the d smallest nonzero eigenvalues. The d eigenvectors v i corresponding to the smallest nonzero eigenvalues form the low-dimensional data representation Y .

RESULTS

The enlargement of the ventricles is one of the most obvious changes seen in MRIs of the brain as one ages. Figure 2 shows the LEM embeddings (i.e. the low dimension representation of the data) in dimension 2 with the MR images using a global tissue mask corresponding to the whole brain. A structure with two branches appears. The top branch corresponds to images with large ventricles, whereas the lower branch corresponds to smaller ventricles. Figure 3 shows that if only the central part of the brain image is used as input data (by eroding the mask), the structure of the manifold is conserved, with the same separation of ventricle sizes. Amyloid load as observed using PET PiB is known to be related to AD. Figure 4 shows LEM embeddings in dimension 2 with PiB images. When using a global brain mask (input dimension: 23346) and im-Figure 3: LEM Embeddings using MR images (registered using affine transformations) and global brain masks more and more eroded (218 images, target dimension: 2). The structure with two branches is conserved.

ages registered with affine transformations (Fig. 4a), the point cloud obtained has a similar structure as the one with MR images (Fig. 2) with two branches. The images in the bottom branch have increased PiB retention compared to the ones in the top branch. With a GM mask (input dimension: 12212) and images registered with affine transformations (Fig. 4b), the structure with two branches disappears. However, from top to bottom, the PiB retention increases. If the images are registered non-rigidly and a GM mask is used (Fig. 4c), there is a structure with 2 branches, the top branch with a low PiB retention, the other one with high PiB retention.

Figure 5a shows the LEM embeddings in dimension 2 of the data when combining the MR and PiB modalities, registered using affine transformations. Top left images have large ventricles, and bottom right images have a higher PiB retention. When images are registered non-rigidly, the structure with 2 branches appears again, and the PiB retention increases from top to bottom (Fig. 5b).

Table 1 illustrates the robustness with regard to the number of nearest neighbours K used in the neighbourhood graph. If K is too low or too high, the structure with two branches is destroyed. A value of K too high leads to jumps between different parts on the manifold.

DISCUSSION

In this paper, we investigated the use of LEM to model PET-PiB and MRI-T1-w to characterize the shape and appearance of images in a large clinical Alzheimer study. This can be particularly useful in atlas selection techniques, but can be applied in other areas. As far as shape analysis is concerned, NLDR techniques revealed that the ventricle size was the main variation in this population of brain images. The structure of the resulting 2D manifold with two branches was conserved when the cortical details were masked, leaving only the ventricles. This was expected as we used a L2 distance and many voxels were strongly affected with ventricle enlargement associated with the disease and ageing. To avoid biases from the ventricles (Fig. 4a), we examined only the GM voxels when studying PiB intensity (Fig. 4b and Fig. 4c).

Many studies advice to use an image metric based on deformations to analyse population of images [START_REF] Gerber | Manifold modeling for brain population analysis[END_REF]. Nonetheless, we have shown that a simple Euclidean distance in LEM allowed identifying a low dimensional manifold structure corresponding to some anatomical and/or intensity variations. It is expected that using L2 distance would be less computationally expensive than deformation based approaches, such as diffeomorphic or elastic registrations. This could offer faster processing especially for large databases. 
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 1 Figure 1: Overview of the algorithmic pipeline
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 2 Figure 2: LEM embeddings using MR images registered with affine transformations and a global brain mask (218 images, input dimension: 23346, target dimension: 2). Several examples of corresponding images are also plotted showing increased ventricle size from bottom to top.

  Figure 4: LEM embeddings in dimension 2 using PiB images.
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 5 Figure 5: LEM embeddings in 2D using the combination MR + PiB (registered using affine transformations).
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 1 Test of robustness of LEM embeddings in dimension 2 with regard to K (number of Nearest Neighbours in the graph creation), using MR images and a global brain mask. If K is too low or too high, the structure with two branches gets destroyed.
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