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Support Vector Machines (SVM) are a machine learning technique that has been used for segmentation and
classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current
approaches using SVM for WMH segmentation extract features from the brain and classify these followed by
complex post-processing steps to remove false positives. The method presented in this paper combines the
use of domain knowledge, advanced pre-processing (based on tissue segmentation and atlas propagation) and
SVM classification to obtain efficient and accurate WMH segmentation. Features generated from up to four
MR modalities (T1-w, T2-w, PD and FLAIR), differing neighbourhood sizes and the use of multi-scale features
were compared. We found that although using all 4 modalities gave the best overall classification (average Dice
scores of 0.54± 0.12, 0.72± 0.06 and 0.82± 0.06 respectively for small, moderate and severe lesion loads,
using 3x3x3 neighbourhood intensity features); this was not significantly different (p = 0.50) from using just
T1-w and FLAIR sequences (Dice scores of 0.52± 0.13, 0.71± 0.08 and 0.81± 0.07 for the same lesion loads
and feature type). Furthermore, there was a negligible difference between using 5x5x5 and 3x3x3 features (p
= 0.93). Finally, we show that careful consideration of features and preprocessing techniques leads to more
efficient classification which outperforms the one based on all features with post-processing, and also saves
storage space and computation time.
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1 INTRODUCTION

WMH appear brightly on T2-weighted (T2-w) and
fluid attenuated inversion recovery (FLAIR) MRI
modalities. They are a possible risk factor for
Alzheimer’s Disease (AD), with progression associ-
ated with vascular factors and cognitive decline (Lao
et al. 2008). To quantify these changes in large scale
population studies, it is desirable to have fully au-
tomatic and accurate segmentation methods to avoid
time-consuming, costly and non-reproducible manual
segmentations. However, WMH segmentation using
a single modality is challenging because their signal
intensity range overlaps with that of normal tissue:
in T1-weighted (T1-w) images, WMH have intensi-
ties similar to grey matter (GM), and in T2-w and
PD images, WMH look similar to cerebro-spinal fluid
(CSF). The FLAIR images have been shown to be
most sensitive to WMH (Anbeek et al. 2004), but can
also present hyper-intensity artifacts that can lead to
false positives. To improve the WMH segmentation

performance, additional discriminative information is
extracted from multiple MR modalities.

The most successful lesion segmentation methods
in the literature have been developed for the detec-
tion of multiple sclerosis lesions, with a recent grand
challenge comparing the performance of various tech-
niques (Styner et al. 2008). Lesion segmentation al-
gorithms can be categorised into unsupervised clus-
tering or (semi-)supervised voxel-wise classification.
Unsupervised methods suffer from the issue of model
selection. Supervised methods such as neural net-
works (Dyrby et al. 2008) and k-NN (Anbeek et al.
2004) have been proposed. Neural networks are effi-
cient but setting their parameters is difficult. The k-
NN method performs relatively well, but is computa-
tionally expensive.

We present an SVM based segmentation scheme in-
spired by the work in (Lao et al. 2008; Zacharaki et al.
2008). Lao et al. applied four steps: pre-processing
(co-registration, skull-stripping, intensity normalisa-
tion and inhomogeneity correction), SVM training
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with Adaboost, segmentation and elimination of false
positives. Our implementation utilises a similar but
more advanced pre-processing pipeline and a simpler
training procedure. As one of the primary causes of
errors in other approaches is false positive cortical
regions, we incorporate advanced pre-processing in-
cluding patient specific tissue segmentation and atlas
based population tissue priors to minimize the false
positive regions that are usually found with naive clas-
sifier. As a result of this the advanced post process-
ing required by other techniques (Lao et al. 2008) are
not necessary. We also evaluated the relative value of
each MRI acquisition protocol for segmentation. This
scheme is quantitatively validated on a significantly
larger dataset with healthy aging, mild cognitive im-
pairment and AD subjects.

2 CLASSIFICATION AND SUPPORT VECTOR
MACHINE THEORY

Lesion segmentation can be formulated as a binary
classification problem. SVM (Schölkopf and Smola
2001) solves it in a supervised way: given l labelled
features (xi, yi) ∈ X × {−1,1}, it builds a function
f : X → R such that y(.) = sign(f(.)) is an optimal
labeling function. The function f is computed via the
optimization problem:

f ∗ = argmin
f∈HK

1

l

l
∑

i=1

V (f(xi), yi) + γ‖f‖2K (1)

where K : X ×X → R is a Mercer Kernel, HK its
associated Reproducing Kernel Hilbert Space of func-
tions X → R and its corresponding norm ‖ ‖K , and V
is the hinge loss defined as V (f(x), y) = max{0,1−
y × f(x)}. The loss function V controls the label-
ing performance, and the second term controls the
smoothness of the solution.

The optimization problem is convex because of
the convexity of the hinge loss function. However as
the objective function is not differentiable, the prob-
lem is reformulated with additional slack variables
ξ1, . . . , ξl ∈ R:

f ∗ = argmin
f∈HK

ξ1,...,ξn∈R

1

l

l
∑

i=1

ξi + γ‖f‖2K (2)

subject to: ξi ≥ V (f(xi), yi) ∀i ∈ {1, . . . , l}

The Riesz representation theorem states that the so-
lution of (1) exists in HK , and can be written:

f ∗(.) =
l

∑

i=1

αiK(., xi) with αi ∈ R (3)

By plugging the expansion of f from (3) in (2), the
optimisation problem becomes a finite dimension op-
timisation problem. Let the matrix K be defined as
Ki,j = K(xi, xj). The optimisation problem is now:

min
α1,...,αl∈R
ξ1,...,ξl∈R

1

l

l
∑

i=1

ξi + γαTKα subject to: (4)

{

ξi − 1 + yi
∑l

j=1αjK(xi, xj) ≥ 0 ∀i ∈ {1, . . . , l}

ξi ≥ 0 ∀i ∈ {1, . . . , l}

Let µ, ν ∈ R
l be the Lagrangian multipliers. The

Lagrangian of this problem is:

L(α, ξ, ν,µ) =
1

l

l
∑

i=1

ξi + γαTKα

−
l

∑

i=1

µi

(

ξi − 1 + yi

l
∑

j=1

αjK(xi, xj)

)

−
l

∑

i=1

νiξi

(5)

Solving ∇αL = 0 leads to α∗
i (µ, ν) = yiµi

2γ
∀i ∈

{1, . . . , l}. Solving ∇ξL = 0 leads to µi + νi =
1
l
. The

Lagrance dual function is:

q(µ, ν) = inf
α,ξ∈Rl

L(α, ξ, ν,µ) = (6)

{

∑l

i=1 µi −
1
4γ

∑l

i,j=1 yiyjµiµjK(xi, xj) if µi + νi =
1
l

−∞ otherwise

The dual problem consists in maximising q(µ, ν)
subject to µ ≥ 0, ν ≥ 0, and is equivalent to:

max
0≤µ≤ 1

l

l
∑

i=1

µi −
1

4γ

l
∑

i,j=1

yiyjµiµjK(xi, xj) (7)

Therefore the problem that α must solve is:

max
α1,...,αl∈R

2
l

∑

i=1

αiyi −
l

∑

i,j=1

αiαjK(xi, xj) (8)

= max
α1,...,αl∈R

2αTy− αTKα

The training vectors with αi 6= 0 are called the sup-
port vectors. The optimization maximizes the margin,
which is the distance between the decision boundary
and the support vectors.
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(a) FLAIR (b) T1-w (c) T2-w (d) PD
(e) Manual

segmentation

Figure 1: Axial slices from one subject illustrating the different MR modalities and manual segmentation. Le-
sions can be seen in the FLAIR and T2-w as a bright signal.
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Figure 2: Summary of the WMH segmentation
pipeline

3 MATERIALS AND METHODS

3.1 Data

The dataset comes from the AIBL study (Ellis et al.
2009), where T1-w (160x240x256 image, spacing
1.2x1x1mm in the sagittal, coronal and axial di-
rection, TR = 2300ms, TE = 2.98ms, flip angle
= 9◦), FLAIR (176x240x256, 0.90x0.98x0.98 mm,
TR = 6000ms, TE = 421ms, flip angle = 120◦, TI
= 2100ms), T2-w (228x256x48, 0.94x0.94x3, TR
= 3000ms, TE = 101ms, flip angle = 150◦) and
PD (228x256x48 0.94x0.94x3, TR = 3000ms, TE =
11ms, flip angle = 150◦) were acquired for 125 sub-
jects. Lesions were manually segmented by PR, re-
viewed by a neuro-radiologist and used as ground
truth in the classification.

3.2 Proposed Algorithm

The proposed algorithm, summarised in Fig. 2, con-
sists of the following steps:

Pre-processing: images were rigidly co-registered
(Ourselin et al. 2001), bias-field corrected (Salvado
et al. 2006), smoothed using anisotropic diffusion
and histogram equalised to a reference subject. T1-

w images were segmented into WM, GM, CSF us-
ing an Expectation-Maximisation approach with pri-
ors (Acosta et al. 2009). For each modality, features
were extracted within the mask defined below, and
scaled to [0, 1]. Multi-modality features were cre-
ated by concatenation of single modality features.
Neighbourhood intensities features (3x3x3 and 5x5x5
sizes) and pyramidal features (with 4 levels, taking
one voxel per level, Gaussian kernel convolutions of
σ = {0.5,1,1.5}) were tried.

Mask creation: a global threshold on FLAIR im-
ages provides a high sensitivity, but poor specificity,
which means it can be used to define areas of inter-
est. To further reduce the areas of interest, we define
the region W as the intersection of the dilated Colin
WM mask (registered rigidly (Ourselin et al. 2001)
then non-rigidly (Rueckert et al. 1999)) and the WM
mask (defined from the segmentation of the previous
step). Using the mean µW and standard deviation σW

of the FLAIR intensities on W , an intensity threshold
of µW + 2 σW on W is used to define the mask M :

{

∀x ∈ W,M(x) = 1 if FLAIR(x) > µW + 2 σW

M = 0 everywhere else

Training: a subset of 10 000 features, with half
belonging to the lesion class, the other half belong-
ing to the non-lesion class, randomly selected and
equally distributed among the training samples was
used to generate the classifiers. A Matlab implemen-
tation solving SVM in its primal formulation was
used (Melacci 2009). The chosen kernel was the
(gaussian) radial basis function. The width of the ker-
nel and the regularisation weight were selected via a
10-fold cross validation.

Testing (Segmentation): the images in the test set
were fully segmented within the mask created. Pixels
outside this region were set to the non-lesion class.
As post-processing, all the connected components of
lesions with less than 10 voxels were removed.
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3.3 Validation

The dataset was randomly split equally into training
and test sets. A classifier was built using the train-
ing set, and then used to segment the test set. Then
training set and test set were swapped, another clas-
sifier was built, and the rest of the segmentations
were computed. Results were then merged. Model
performances were compared using the Dice score

(Dice 1945) DSC = 2 λ(S∩GT )
λ(S)+λ(GT )

(with S the computed

segmentation, GT the ground truth and λ counting
the number of voxels in a volume), the number of
true/false positive/negative (TP, FP, TN, FN) voxels,
the specificity ( TN

TN+FP
) and the sensitivity ( TP

TP+FN
)

computed on the full image. Higher is better for DSC,
TP, TN, sensitivity and specificity. Lower is better
for FP and FN. Statistical significance was analysed
via the p-values of paired t-tests (Ott and Longnecker
2008). We performed experiments to test the influence
of the combination of modalities, the influence of the
feature type and the influence of using the mask in
pre-processing instead of in the post-processing.

4 RESULTS

Figure 3 shows DSC, FP and TP for various combi-
nations of modalities (using 3x3x3 neighourhood fea-
tures). TN, FN, sensitivity and specificity are simi-
lar, so corresponding graphs are not displayed. As the
overall lesion load impacts the segmentation perfor-
mance, as previously report in (Anbeek et al. 2004),
results are displayed for low (<3mL), moderate (3-
10mL) and severe (>10mL) lesion loads. When us-
ing one modality, FLAIR gives the best performance.
Combining several modalities generates less FP and
more TP. Table 1 indicates that the T1-w + FLAIR
combination is statistically better than FLAIR on low
and moderate lesion load, but T2-w + FLAIR is not.
T1-w + T2-w + FLAIR combination is statistically
better than FLAIR on the overall dataset. The model
with the 4 modalities performs the best (Fig. 3), but
not significantly better than T1-w + FLAIR (p=0.50,
see Table 1).

Figure 4 shows the performances of different fea-
ture types (using the 4 modalities). With neighbour-
hood intensity features, a 5x5x5 size slightly in-
creases the DSC compared to 3x3x3, but the differ-
ence is not statistically significant (p=0.93). Pyrami-
dal features with 4 dimensions do not perform as well
as neighbourhood intensity features, but the DSC dif-
ference is not statistically significant (p=0.21 when
compared with 3x3x3 features, p=0.18 with 5x5x5).

As illustrated in Fig. 5, using the mask in the pre-
processing instead of post-processing decreases FP
dramatically and leads to a much better DSC. (Com-
parison using FLAIR and 3x3x3 neighbourhood). The
computation time in the prediction step being linear
in the number of features to label, computing pre-

dictions for a significantly lower number of features
(only within the mask) saves computation time. On
average on the 125 patients, this represents a 41 times
computation speed-up.

5 DISCUSSION

We have presented a machine learning scheme ap-
plied to the WMH segmentation problem. Our ap-
proach is inspired by the previous work on SVM but
has a number of differences. It combines the use of
tissue segmentation, atlas propagation techniques and
SVM classification to get efficient and accurate seg-
mentation results.

This work also quantifies the relative performance
variations with regard to different modalities or fea-
ture types. Regarding the modalities, our results con-
firm that using all of the four modalities adds discrim-
inative information and improves the segmentation re-
sults, as reported in (Lao et al. 2008). However, our
quantitative results show that using only FLAIR and
T1-w can give similar performance at a lower cost.
One reason could be the lower axial resolution of our
T2-w and PD images. Regarding the features types,
there is a trade off between the complexity, storage
place and computation time versus the performance.

As other important contribution of this work, the
mask we define and use in the pre-processing has sev-
eral positive impacts. First, it improves the classifier
performance as the training features are selected in re-
gions of interest, which leads to better classifiers. Sec-
ond, computation time and storage space required are
significantly lower (41 times lower on our dataset) as
features and predictions are computed in a restricted
area. Finally, using our mask in the pre-processing
makes most of the complex post-processing steps re-
quired in current state-of-art methods redundant.
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Straaten, F. Barkhof, H. Vrenken, S. Ropele,
R. Schmidt, T. Erkinjuntti, L.-O. Wahlund,
L. Pantoni, D. Inzitari, O. B. Paulson, L. K.
Hansen, and G. Waldemar (2008). Segmenta-
tion of age-related white matter changes in a
clinical multi-center study. NeuroImage 41(2),
335 – 345.

Ellis, K. A., A. I. Bush, D. Darby, D. De Fazio,
J. Foster, P. Hudson, N. T. Lautenschlager,
N. Lenzo, R. N. Martins, P. Maruff, C. Mas-
ters, A. Milner, K. Pike, C. Rowe, G. Sav-
age, C. Szoeke, K. Taddei, V. Villemagne,
M. Woodward, and D. Ames (2009). The
Australian imaging, biomarkers and lifestyle
(AIBL) study of aging: methodology and base-
line characteristics of 1112 individuals re-
cruited for a longitudinal study of Alzheimer’s
disease. Int Psychogeriatrics 21(4), 672–87.

Lao, Z., D. Shen, D. Liu, A. F. Jawad, E. R. Mel-
hem, L. J. Launer, R. N. Bryan, and C. Da-
vatzikos (2008). Computer-assisted segmenta-
tion of white matter lesions in 3D MR images
using support vector machine. Academic Radi-
ology 15(3), 300 – 313.

Melacci, S. (2009, September). Mani-
fold regularization: Laplacian SVM.
http://www.dii.unisi.it/~melacci/
lapsvmp/index.html.

Ott, R. L. and M. T. Longnecker (2008, Decem-
ber). An Introduction to Statistical Methods
and Data Analysis (6 ed.). Duxbury Press.

Ourselin, S., A. Roche, G. Subsol, X. Pennec, and
N. Ayache (2001). Reconstructing a 3D struc-
ture from serial histological sections. Image
and Vision Computing 19(1-2), 25 – 31.

Rueckert, D., L. I. Sonoda, C. Hayes, D. L. Hill,
M. O. Leach, and D. J. Hawkes (1999, August).
Nonrigid registration using free-form deforma-
tions: application to breast MR images. IEEE
transactions on medical imaging 18(8), 712–
721.

Salvado, O., C. Hillenbrand, S. Zhang, and D. Wil-
son (2006). Method to correct intensity in-
homogeneity in MR images for atherosclero-
sis characterization. Medical Imaging, IEEE
Transactions on 25, 539–552.

Schölkopf, B. and A. J. Smola (2001). Learning
with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond (Adap-
tive Computation and Machine Learning). MIT
Press.

Styner, M., J. Lee, B. Chin, M. Chin, O. Commow-
ick, H. Tran, S. Markovic-Plese, V. Jewells, and
S. Warfield (2008, sep). 3D segmentation in the
clinic: A grand challenge II: MS lesion seg-
mentation. In MIDAS Journal, Special Issue on
2008 MICCAI Workshop - MS Lesion Segmen-
tation, pp. 1–5.

Zacharaki, E. I., S. Kanterakis, R. N. Bryan, and
C. Davatzikos (2008). Measuring brain lesion
progression with a supervised tissue classifica-
tion system. In Proceedings of MICCAI 2008,
pp. 620–627.

6


