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Abstract

Turbofan engines generate a lot of data for maintenance purpose. During each flight the 
aircraft send information to the ground using small messages. On those messages one 
can find a description of the engine behavior (shaft speed, oil temperature, pressures, 
etc.) and the observation context (air temperature, aircraft attitude, altitude, etc.). 
Mainly those signals are used for trend analysis which goal is wear detection and 
scheduling for shop visits. But the temporal curves obtained this way also hide some 
very interesting fleeting events that may be connected to sudden changes in the turbofan 
configuration. The changes of our interest are buried in the signal noise and are often 
hidden by the flight context variation. To reveal those events one uses two successive 
original algorithms. The first one resolves the context dependency and the second filters 
the signal using change detection. The filtered signal with change information is 
compared to the flight log-book for validation purpose. One detects almost all known 
problems that were cause of maintenance operation but the algorithm also finds some 
unsuspected changes now under investigation…

1.  Introduction

A civil aircraft send information to the ground: those small messages, at least two per 
flight at takeoff and cruise, are called ACARS for “Aircraft Communication Addressing 
and Reporting System”. They each weight at most 4Kb and contain measurements of
the aircraft behaviour and its engines. The table below (Figure 1) shows some data that 
we collect on a fleet of 70 planes.
In this table one can identify three sections: data related to the plane, flight and engine 
numbers; context information that describes the behaviour of the plane during the data 
acquisition ; and some really engine-specific measurements.
Our interest is in the analysis of the multi-curve made of those 5 last measurements. The 
main question is: does that curve present some abnormality which may correspond to a 
real event that append in the engine life.
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Figure 1: The measurements collected for one engine during a flight.

2.  Methodology

The goal is to build clear and understandable multivariate trajectories for the engine 
states. The first step will remove all context dependent information from the observed 
five measurements. The first idea is to use a linear regression model. For each engine 
variable r=1...5 one would write 
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Where i is the engine number and j is an observation. Each variable X is one analytic 
combination of context data, µ is the intercept for output variable r, α is the engine 
dependency on output variable r (one way to take the engine age into account) and ε  is 
the residual vector.
Figure 2 presents the rough measurements of the corespeed feature as a function of time 
(for engine #6) and the residuals computed by model (eq. 1). The rough measurements 
(on the left) seem almost time-independent on this figure, whereas the residuals exhibit 
an abrupt change which is linked to a specific event in the life of this engine. This 
simple model is therefore sufficient to bring to light interesting aspects of the evolution 
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of this engine. However, the signals may contain ruptures, making the use of a single 
regression model hazardous. This first algorithms, which is called ECN (for 
Environemental Condition Normalisation), uses a selection algorithms detailed in the 
next section to choose among a wide variety of different context-dependent input 
variables X.

Figure 2: The left side of this figure shows the initial corespeed (N2) of a given 
engine as measured by our sensors. The right side shows the residual of the same 

measurement after regression on context data.

Once normalisation applied an on-line detection algorithm to find abrupt changes is 
used. This is a piecewise regression model. The detection of the change points is done 
with a multi-dimensional statistic test taking all the normalized engine variables 
supplied by ECN as input. The outputs of this second step called CD (for Change 
Detection) are the sudden change dates and the smoothed observations. These last data
are finally used in a classification algorithm (a self organizing map) which was 
discussed in IEEE Aerospace Conference(20). This classification presents all engine state 
trajectories onto a 2D map and helps the engineers to identify trends in the engine 
behaviour. Given a well chosen distance between trajectory parts, it is possible to find 
similar (past) trajectories followed by older engines, and then being able to make 
statistical assumptions for the evolution of any current engine.

2. Environmental Conditions Normalization

The external context measurements are combined to build a set of predictors Xp, 
p=1...q. Such combitations involves automatic computations of polynomes to the fourth 
degree (squares, cubes, etc. and all corresponding cross-products) but also non-linear 
transforms (logarithms, exponentials, inverse) used in conjunction with expert 
knowledge to select only relevant computations (in adequation with the engine physical 
model). The number q of such input variables is really huge, moreover, most of the 
inital measurements are statistically linked together. Hence it is really important to 
select only the minimal amount of input variables to ensure a correct robustness of the 
linerar regression.
A LASSO criterion(3) is therefore used to estimate the regression parameters and to 
select a subset of significant predictors. This criterion can be written using the notations 
from chapter 2 for one engine variable Yr, r=1...5 as :
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The regression coefficients λp are penalized by a condition (L1 norm) which forces 
some of them to be null for a well chosen value of C. The LARS algorithm(3) is used to 
estimate all the solutions of the LASSO criterion (eq. 2) for all possible values of C. The 
optimal value of C with respect to the prediction error estimated by cross-validation 
(with 20 folds) is finally selected. Engine variables are well explained by the proposed 
models as attested by the high value of the coefficients of determination.

Figure 3 : Number of predictors that where selected by the LARS/LASSO 
algorithm and the computed coefficients of determination R2.

Figure 4: The result of the LARS/LASSO algorithm when selecting inputs for fuel 
flow regression. The upper graph shows the coefficients λ when the energy 

constraint C increases. The lower graph gives the generalization error obtained by 
cross-validation. The selected solution is marked by a vertical dashed line. On the 

right: the sorted (selected) inputs with their relative weights.
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A qualitative inspection of the model results was also carried out with the help of engine 
experts. The regularization path plot (as shown in Figure 4) is very interesting from the 
point of view of the experts, because it can be compared with their previous knowledge. 
Such a curve clearly highlights which are the more relevant predictors and they appear 
to be in good adequateness with the physical knowledge on the system.

3. Change Detection

To take into account the two types of variation (linear trend and abrupt changes), we 
implement an algorithm based on the ideas from Gustafsson(2) and Ross & all(4). The 
solution is based on the joint use of an on-line change detection algorithm to detect 
abrupt changes and of a bank of recursive least squares (RLS) algorithms to estimate the 
slow variations of the signals. The algorithm works on-line in order to allows projecting 
new measurements on the map as soon as new data are available.

The trend estimation use a recursive least squares algorithm. After initialization flight lm
the trend is estimated until current flight l (eq. 3). The model error is computed and 
tested according to chosen parameters.
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The parameter θ is a forgetting factor and the results αl and βl are the intercept and the 
slope computed for flight l. One computes the residual error vector ],,[ 51

lll εεε K= as 
the difference, for each variable of the observed value and the estimated value using the 
current slope model. This vector is supposed to follow a Gaussian law.

   ),( Σ= ll mNε .............................................................. (4)

Where ml is the mean observed error and Σ the covariance matrix of residuals between 
each measurements. The generalized likelihood ratio test should validate ||ml||<r0 for 
l<lm+1 and ||ml||>r1 for l>=lm+1 to detect a change at flight lm+1 (r0 and r1 are chosen 
thresholds).
If the test detects a change at flight lm+1 the computation is reinitialized. This test is
implemented as a multivariate computation, thus when a change is detected all 
computations, on each variable, are reinitialized simultaneously. Figure 5 presents a 
sudden change well observed in temperatures and fuel flow. It is important that this 
whole process remains iterative, so the new smoothed observations are automatically 
computed and may be immediately treated by the classification algorithm.
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Figure 5: Sudden changes were detected for this engine on exhaust gaz 
temperature and fuel flow.

4.  Conclusions

This change detection algorithm was systematically applied on 140 engines that were 
followed during a little more than one year during which 120 maintenance operations 
occured. 92 changes were detected. 

• 40% of the detected changes appear at most one month before a maintenance 
operation. 

• 20% changes are less that one month after a maintenance operation.
The other changes are unexplained and should eventually be investigated.

After this change detection, the residual signals are classified using a self organizing 
map (SOM) and the result is a 2D trajectory for each engine. The map on which those 
trajectories ar plotted shows some well identified clusters that will provide a good help 
for engineers to analyse the unexplained detections. 
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