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Visual Mining and Statistics for a Turbofan Engine Fleet

Jérôme Lacaille Snecma Etablissement de Villaroche sud 77550 Moissy-Cramayel Cedex, France +33 1 60597024 jerome.lacaille@snecma.fr Etienne Côme SAMM Université Paris 1 Panthéon Sorbonne 90, rue de Tolbiac 75013 Paris, France etienne.come@univ-paris1.fr Abstract-Snecma, as a turbofan manufacturer, needs to deal with a wide fleet of more than thousands of engines. Every day, data from aircraft engines are broadcasted to the ground. Some airlines companies rely on their engine manufacturer to control the engines' behavior and help prepare for maintenance scheduling. The goal of the manufacturer is to detect abnormalities to help schedule maintenance operations. The advantage of the manufacturer as MRO operator is the registered memory of all past events that appears on its fleet of engines. If one opens the possibility to look in this huge amount of data for corresponding similar behaviors, which may have append in the past (for all engines of all customer companies), it becomes possible to make some targeted statistics of the future.

This paper describes an algorithm to help engineers looking at some wear indicators and proposes a new full automatic method able to fetch information stored from many years of operations. This methodology is based on mathematic foundations. It uses a formalization of engine trajectories; creates a metric space where it becomes possible to compare time intervals of the evolution of engines. A generic maintenance application uses this methodology and finds in the fleet database engines that were similar in behavior to build future statistics. 1 2 Today's state of the art is the simultaneous analysis of three of these measurements: the core shaft speed (N2), the fuel flow (FF) and the exhaust gas temperature (EGT). Looking at temporal curves built from successive flights, the engineers are able to recognize some classical patterns. Such tool involves manual exploration of the data and transmission of knowledge between engineers. Moreover, expert engineers are specialized for specific fleets of aircrafts that always did the same kind of missions. For example, the patterns corresponding to aircraft flying over sea are different from those coming from planes that are staying over the land.

Our new solution is based on a non-supervised classification of engine states. This classification use the self-organizing maps (SOM) algorithm to project the current engine state on a 2D map that may be colored according to known defective behaviors. The observation of an engine state trajectory that converges to such known defective paths on a 2D map is a very useful and straightforward application. But the implementation of a distance between trajectory intervals on the map let us detect other engines that may have followed a similar path in the past. This is an obvious way to build future statistics.

INPUT DESCRIPTION

The transmission protocol of data from aircraft to the ground uses a satellite link but the message should be limited to 4Kb. However it is possible to sent a snapshot of measurements taken from the aircraft computer and both engine controllers. Two messages are always present during a flight, one at take-off and the other during cruise.

Maintenance engineers use to look at the temporal behavior of three measurements for each engine (N2, EGT and FF). We used two more of them for the prototype of our new system: the static pressure (PS3) and temperature (T3) after compression and before combustion chamber. Those last measurements gives information about the compressor behavior and help identify difference between compressor and turbine degradation.

More than just adding two variables, we also analyze all take-off and cruise measurements together and we use aircraft and other engine information to normalize the data.

The table below shows measurements selected for analyze and those kept for context normalization.

Table 1: Input measurements.

The measurements should be acquired regularly over the time. We automate the process with a data link between the satellite reception station and our database. However this information belongs to client companies, which should not inform their MRO about all small maintenance operations (mainly under the wing). As the components information is forwarded to another database we may discover some unexpected events before the synchronization is done. This source of confusion should be avoided.

METHODOLOGY

The algorithm uses a pretreatment of the data: the measurements are first normalized according to flight information. This will get rid of airplane attitude, dependency to pilot commands and any flight specific context. The residual noise is removed after taking care of some brutal changes observed on the data curves. These changes may represent real maintenance events. Once cleaned, the observations are classified with a selforganizing map. The algorithm builds a classification that takes continuity of observations into account.

Suppression of acquisition context

The acquisition context is defined by some measurement describing the flight, the airplane attitude and other environmental information. Even if the snapshot acquisition time is selected during a stable flight phase, some differences may appear. For example the first flight of the day will differ a little from the others at takeoff because the engine was cold. Weather conditions may be different; the pilot is not the same, etc. All these little things, cumulated, finally impact the engine measurements.

This following image, already presented in [14] shows the impact of normalization process on the EGT. The normalization in our application is realized with a general linear model (GLM) that regress each monitored measurement on a space spanned by products and other analytic functions of the context data (inv, sqrt, log, exp…).

As the number of such combinations of variables may be really huge, the smallest and best set of variables that will improve a generalized mean square error (MSE) is selected.

For each output variable r, each engine i, and each snapshot j, one models the output value r ij Y by the linear expression
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where each X is one analytic combination of context data, μ is the intercept for output variable r, α is the engine dependency on output variable r (one way to take the engine age into account) and ε is the residual vector. We add also a constraint

 = i r i i n 0 α
where n i is the number of flights of engine i to avoid colinearity.

The regression parameters are estimated on a calibration database. But when the number q of input combinations X increases, the quality in term of robustness decreases. The robustness of such algorithm is nothing more than the generalization error. It is computed with a cross-validation method.

Selection of inputs

The lasso criterion captures a good set on inputs. It uses an energy constraint:
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According to equation ( 2), the coefficients are optimized to minimize the quadratic reconstruction error. The constraint C defined for each output variable r increases progressively, for each value of C a cross validation test is computed to check the mean square error on observations that were not used for model calibration. At first the MSE decreases, but it finally increases when the system begin to overparameterize. The parameter vector λ that corresponds to this minimal value is chosen. Figure 2 

Changes detection and smoothing

Figure 3 is a plot of the initial core speed value and the corresponding computed residual. The jump on the right was completely hidden in the noise; it is discovered only after normalization. Our goal is to classify the input data and a good thing is to get rid of any residual noise (the small residual noise around the jump on the right graph). This noise can be removed by incremental smoothing procedure but some abrupt changes that correspond to maintenance operations may perturb this smoothing. The curve of successive observations is modeled by linear trends. Then at each time a change test detects a jump and if the test is positive the smoothing process is reinitialized. ( )
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If the test detects a change at flight l m+1 the computation is reinitialized. This test can be implemented as a multivariate computation, thus when a change is detected all computation, on each variable, are reinitialized simultaneously. Figure 4 presents a sudden change well observed in temperatures and fuel flow. It is important that this whole process remains iterative, so the new smoothed observations are automatically computed and may be immediately treated by the classification algorithm. Self-organizing map SOM (also called Kohonen maps) is a tool often used in data-mining applications to represent high dimensional observations in a lower dimensional space. In our case, the 10=5*2 dimensional input space (5 variables and two snapshots per flight) is projected on a flat 2D space, hence allowing the possibility to plot each engine state on a map. As a dimension reduction solution, SOM can be seen as a kind of non linear principal component analysis (PCA). In the 2D space of the map, an hexagonal grid of K nodes

K i  , 1 = defines a lattice. A set of prototype vectors { } K m m , , 1 
is associated to each node in the initial space. The autoadaptive process updates the prototypes in the initial space to better represent the data in the 2D space. This learning operation is implemented trought an iterative algorithm and has the interesting property that it "preserves" distances (i.e. observations that are close in the initial space remain close on the 2D map). The algorithm "moves" the prototypes (the lattice nodes) in the initial space. It behaves as if the lattice is deformed in the original domain to cover most of the observations.

Let { } N x x , , 1 
be the set of observations used to calibrate the map. The algorithm proceeds in two phases and repeat until some stability criterion is reached:

For each step, an observation x j is selected.

• The competitive phase searches the best matching unit c for observation j:

i j i m x c - = min arg .
• Then the cooperative phase moves the BMU but also other close prototypes on the map to the observation x j according to a neighborhood function h ci defined on the grid (eq. 4 and 5).

Equation ( 4) details the iterative distortion of the grid over time t. The coefficient α is a step factor that decreases with time to slowly stabilize the process and ensure convergence.

( )

) ( ) ( ) ( ) ( ) 1 ( t m x t h t t m t m i j ci i i - + = + α (4) 
Our selection of distance h affects only close units on the grid:
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where σ is a radius that defines the neighborhood on the map and decrease with time and d is a chosen distance between nodes on the map.

Figure 5 present the backgrounds (coordinate values of each prototype) for all input variables. This representation gives an understandable interpretation of each map node. For example the top-left corner concentrates the states with high EGT and high FF, the left of bottom-right corner is high N2 but low FF and medium EGT. The map evolves when new data appears so the background representation changes also. The next two figures present a little smoother EGT background over witch the evolution of two engines is superposed.

On each figure the trajectories of an engine is represented by successive dots which size decrease and color goes from red to orange, green, yellow and blue. Trajectories may have jumps. 

APPLICATION

The preceding section describes the kind of mathematical algorithms we develop to analyze the state evolution of an engine in our fleet. Lets now sketch the application we propose to analyze the engine fleet.

Fleet cartography

Select a set of engines, say the ones that belong to some similar planes of a given airline company and realize equivalent missions. Then map the current engine state on Figure 9 map with a different number (say SN) per engine. This representation helps to immediately identify a set of engines with high EGT, for example.

Zoom

Another representation uses a classification of the cells. This is commonly used by SOM applications and generally done by hierarchical clustering (Figure 10). This classification may replace the classical background in a representation like the one on Figure 6 and Figure 7.

Statistic queries

As soon as the engine states may be plotted and classified on a 2D lattice, it is possible to compare trajectory parts. For this purpose we use an editing distance (string distance) on the map. Each cell on the map corresponds to a label and the distance between two labels depends on their position on the grid. To compare two strings of labels (two trajectories) we use a cost function. This function gives individual cost for suppression or addition of a label and a replacement cost which depends on the distance on the map between the two labels. This type of distance allows comparing two strings of different sizes.

Suppose that we need to compare two trajectories described by strings s 1 and s 2 . Each string is a succession of labels Then, using the last flights of an engine (the end of the engine trajectory), seek in the fleet database for similar paths on the map. The nearest paths are part of past trajectories of other engines. An analysis of the future (just after matching with the initial path) leads to clues for the evolution of the current engine. It is possible to count each event that appears during the nearest future of the other engines to build a prognostic. It is even possible to use delays between the current equivalent position and the first event to anticipate a delay of availability before failure. Moreover with the existence of a big fleet database it is possible to compute precision or confidence intervals for our statistics.

Use cases

This methodology was tested in Snecma on a small fleet of 140 engines during one year. It is also used for bearing analysis where the inputs are replaced by multi-scale indicators extracted form order-spectrograms. In fact this same methodology may be adapted for a lot of different purposes and is currently evaluated on civil and military programs to help maintenance organization.

CONCLUSIONS

This last application is a serious evolution of datamining tools dedicated to fleet maintenance. The next step is an online prototype implementation that will include a way to correlate the unsupervised classification with a flow of maintenance events. Our goal is to label the hierarchical clustering and add this information to the statistic queries.

With such labels connected to parts of the map, the future statistics will be detailed as probability to encounter a known event. 
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Figure 1 :

 1 Figure 1: EGT increase at startup, before (top graph) and after normalization (bottom graph) using mainly oil temperature. The top and bottom graphs share the same scales.

  is a representation of the algorithm results for fuel flow normalization. The biggest absolutes values of coefficients corresponds to combinations that where selected.

Figure 2 :

 2 Figure 2: Selection of input combinations X of context measurements that impacts the evolution of fuel flow. The abscisse is the value of the constraint C. The top graph gives the coefficients λ. The bottom graph shows the evolution of the MSE. The vertical dashed line points the energie that was selected.

Figure 3 :

 3 Figure 3: Result of normalization. On the left is the initial core speed (N2) measurement and on the right the residuals of the regression. The trend estimation use a recursive least squares algorithm (RLS). After initialization flight l m the trend is estimated until current flight l (see equation 3). The model error is computed and tested according to chosen parameters.

Figure 4 :

 4 Figure 4: Change detection.

Figure 5 :

 5 Figure 5: Background representation of a map example.

Figure 6 :

 6 Figure 6: This trajectory (big-red to small blue dots) presents a classical increase of EGT under normal operating conditions.

Figure 7 :

 7 Figure 7: This trajectory is unusual, the EGT begins to increase (which is normal) but then in stabilize and even decrease a little without evident maintenance operation (sudden jump in the trajectory).

Figure 8

 8 corresponds to the evolution of an engine state. The numbers 1 to 607 are successive flights. One can observe different parts on this trajectory. Each jump may be a maintenance operation or an engine event. There are different kinds of events: scheduled maintenance or unexpected damages. Most time when such event appears, the configuration of the engine changes and the effect is generally a discontinuity on the trajectory. The jumps on the map correspond to the instants found by the previous change detection algorithm.

Figure 8 :

 8 Figure 8: General trajectories, like this one, present jumps that correspond to maintenance operations.

Figure 9 :

 9 Figure 9: Snapshot of a part of an engine fleet on one map. Each green number is the SN of the engine.

Figure 10 :

 10 Figure 10: Classification of cells, then definition of labels to identify each part of the map.

Figure 11 :

 11 Figure 11: Statistic application of the visual mining methodology.

TABLE

  

Table 2

 2 below gives some clues about selected variables. In fact up to hundred combinations may be selected for a variable normalization, but most of the coefficients are really small.

Table 2 : List of inputs selected for each engine variables. Up to 100 combinations may be selected; this table gives just some elements.

 2 

	N2 FF	TAT, 1/N1, VSV*XM N1 3 , ALT*TLA, 1/N1
	T3	TAT, N1, HPTACC, BLD
	PS3 EGT	TAT*N1, HPTACC, TLA, 1/sqrt(N1) TAT, N1 3 , 1/VBV, XM, TLA 3 , 1/TLA

  s 1 into s 2 . Then the cost of this global transformation is equal to the sum of all individual costs cost(o i ), and the distance from s 1 to s 2 is defined by the minimum value of such operation (equation 6).

	s	j	=	[	1 j s	,	s	2 j	,		,	s	j n	j	]	where each j i s is a position on the
	map. Suppose now that one can find p operations	o 1  ,	,	o	p
	among suppression, insertion and replacement that
	transform the chain		
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