
HAL Id: hal-00662260
https://hal.science/hal-00662260

Submitted on 23 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling temporal constraints for a system of
interactive scores

Mauricio Toro, Antoine Allombert, Myriam Desainte-Catherine

To cite this version:
Mauricio Toro, Antoine Allombert, Myriam Desainte-Catherine. Modeling temporal constraints for a
system of interactive scores. Constraint Programming in Music, Wiley, pp.1-23, 2011. �hal-00662260�

https://hal.science/hal-00662260
https://hal.archives-ouvertes.fr

Chapter 1

Interactive Scores: Past, Present and Future

1.1. Concurrent Constraints Time Model

Process calculi such as the Non-deterministic Timed Concurrent Constraint (ntcc)
[NIE 02] calculus has been used in a variety of musical applications (see Chapter
??). An advantage of ntcc is that process synchronization is achieved by adding or
deducing constraints from a constraint store, thus is declarative.

In this section we present a model of interactive scores based upon ntcc. The
model is inspired on a previous model based upon ntcc that do not consider hierarchy
nor the fact that execution can continue even if interactive events are not launched
[ALL 06]. The model is also close is spirit to the petri nets model. Regrettably, in
petri nets is difficult to model global constraints such as the maximum number of
simultaneous temporal objects and temporal reductions during execution.

Another related model is Tempo, a formalism to define declaratively partial orders
of musical and audio processes [RAM 06]. Unfortunately, Tempo does not allow us to
express choice when multiple conditions hold, simultaneity nor to perform an action
if a condition cannot be deduced.

1.1.1. Ntcc model

We use ntcc to the express operational semantics of interactive scores. In order
to define operational semantics, we need to transform an interactive score into a graph

Chapter written by Myriam DESAINTE-CATHERINE and Antoine ALLOMBERT and Mauricio
TORO.

1

2 Constraints and Music

where the vertices are the start and end points of temporal objects and arcs represent
the delays among them. We define the graph as g = (V,A, lV, lA) where V is the set
of vertices, A the set of arcs, lV a function that assigns labels to vertices, lA a function
that assigns labels to arcs. A vertex is labeled with the type of point (a start point, end
point or interactive point) and the temporal object associated to it. An arc is labeled
with its duration. The graph is reduced by removing zero-delay arcs and representing
several points in the same vertex.

Absence of zero delays simplifies the definition of operational semantics because
we do not have to synchronize two processes to occur at the same time. To remove a
zero-delay arc between a vertex a and b, we delete a and we connect all its successors
and predecessors to b. We also combine the label of a with the label of b, this means
that a vertex may represent the start or end of several points.

1.1.1.1. Points

We have two type of points: interactive (iPoint) and static points (sPoint). Pro-
cess Launchi updates the variable launchedi with true and persistently assigns to pi

the current value of clock. Event ei is the user event associated to point i: it represent
a user interaction. Set Pr represents the predecessors of i. Process User persistently
chooses between launching or not an interactive event.

iPointi,Pr
def
= when

∧
j∈Pr launchedj do (

when clock + 1 > pi do next Launchi

‖unless clock + 1 < pi next when ei do Launchi)
‖unless launchedi next iPointi,Pr

sPointi,Pr
def
= when

∧
j∈Pr launchedj do (

unless clock + 1 < pi next Launchi

‖when clock + 1 < pi do next sPointi,Pr)
‖unless launchedi next sPointi,Pr

PointslV,A
def
=

∏
iPointi∈{e|lV (e)=(interactivePoint,t)},Pr={a|(a,b)∈A∧b=i}

‖
∏

sPointi∈{e|lV (e) 6=(interactivePoint,t)},Pr={a|(a,b)∈A∧b=i}

Userl
def
=

∏
i∈{e|lV (e)=(InteractivePoint,t)} !(tell (ei) + skip)

1.1.1.2. Intervals

Intervals are represented by constraints. An interval between points i and j with
a duration of ∆ is represented by the constraint pi + ∆ = pj . The value of ∞ is
approximated by the a parameter of the model, namely n∞.

Intervali,j,∆
def
= !tell (pi+∆ = pj) IntervalslA

def
=

∏

(i,j,∆)∈lA

Intervali,j,∆

Interactive Scores 3

1.1.1.3. Example

Figure 1.2 represents the graph associated to the score in Figure 1.1. It does not
contain zero-delays.

Green (G)

Red (R)

Sound (S)

Lights (L)

A

B

Scenario (C)

D

Figure 1.1. Example of a score.

B,SL

A,ER

SC
EC

(0
,∞

) (0
,∞

) (0
,∞

)

∆R

∆G

∆S

∆C

∆L

SG,SS

D,EL,ES

SR

EG

Figure 1.2. Graph representing the score in Fig. 1.1. Label St denotes the start point of t and

Et the end point of t. Double arrows represent the duration of temporal objects. Simple

arrows with no label represent the constraints imposed by the hierarchy, its duration is [0,∞).

CLOCK is a process that ticks forever. Process Score is parametrized by the graph
in Fig. 1.2. We post a constraint 0 ≤ pi < n∞ to allow that clock + 1 < pi be
eventually deduced even in absence of user interactions.

CLOCK(k)
def
= tell (clock = k) ‖ next CLOCK(k + 1)

4 Constraints and Music

Scoreg
def
= PointslV,A‖IntervalslA‖UserlV ‖CLOCK(0)‖!

∏

i∈V

0 ≤ pi < n∞

1.1.2. Discussion

We presented a model for interactive scores based upon ntcc to represent tem-
poral reductions and interactive events. The model is close in spirit to the petri nets
model. An advantage of petri nets is that transformation from interactive scores to
petri nets is simpler, and synchronization is easier when it depends, for instance, on
the transitions that precede a place. An advantage of ntcc is that it can easily rep-
resent global constraints such number of simultaneous temporal constraints and also
temporal reductions.

The ntcc model could be implemented. We plan to implement our system using
Ntccrt [TOR 09], a real-time capable interpreter for ntcc. There is an issue with
the correctness of the implementation: it heavily relies on propagation. Each time an
interactive point is launched, we add a constraint, and we propagate. Does propagation
preserves the coherence of the model? Do we need to perform search or propagation
is enough? This is an open issue. There is another open issue: We believe that the
denotation of a score will help us to understand the behavior of the score without
analyzing its operational semantics, to specify properties, and to prove its correctness.

1.2. Timed Conditional Branching Model

There is neither a formal model nor a special-purpose application to support con-
ditional branching in interactive multimedia. Using conditional branching, a designer
can create scenarios with choices. The user and the system can take decisions during
performance with the degree of freedom described by the designer, and define when a
loop ends; for instance, when the user changes the value of a variable.

In the domain of composition of interactive music, there are applications such as
Ableton Live 1. Using Live, a composer can write loops and a musician can control
different parameters of the piece during performance. Unfortunately, the means of
interaction and the synchronization patterns are limited.

To express complex synchronization patterns and conditions, it was shown in
[TOR 10] that interactive scores can describe temporal relations together with con-
ditional branching. In this section, we recall the conditional-branching timed model
of interactive scores based upon the Non-deterministic Timed Concurrent Constraint

(ntcc) calculus. We explain how to model temporal relations, conditional branching

1. http://www.ableton.com/live/

Interactive Scores 5

and discrete interactive events in a single model. We also present performance results
of a prototype and we discuss the advantages and limitations of the model.

1.2.1. Specification of the model

A score is defined by a tuple composed by a set of points and a set of intervals. A
temporal object is a type of interval.

1.2.1.1. Points

We say that a point p is a predecessor of q if there is a relation p before q. Analog-
ically, a point p is a successor of r if there is a relation r before p. A Point is defined
by p = 〈bp, bs〉, where bp and bs represent the behavior of the point. Behavior bp

defines whether the point Waits until All its predecessors transfer the control to it or it
only Wait for the First of them. Behavior bs defines whether the point CHooses one
successor which condition holds to transfer the control to it, or it does Not CHoose,
transferring the control to all its successors.

1.2.1.2. Intervals

An interval p before q means that the system waits a certain time to transfer the
control (jumps) from p to q if the condition in the interval holds, and it executes a
process throughout its duration. An interval is composed by a start point, an end
point, a condition, a duration, an interpretation for the condition, a local constraint, a
process, parameters for the process, children, and local variables.

There are two types of intervals. Timed conditional relations have a condition and
an interpretation, but they do not have children, their local constraint is true, and their
process is silence 2. Temporal objects may have children, local variables and a local
constraint, but their condition is true, and their interpretation is “when the condition
is true, transfer the control from the start point to the end point”.

A timed conditional relation includes the start and end points involved in the re-
lation and the condition that determines whether the control jumps from start to the
end point. There are two possible values for the interpretation of the condition: (i)
when means that if condition holds, the control jumps to the end point; and (ii) un-

less means that if the condition does not hold or its value cannot be deduced from the
environment, the control jumps to end point. A temporal object is an interval where
the start point launches a new instance of a temporal object and the end point finishes
such instance. Its local variables and local constraint can be used by its children and
process to synchronize each other.

2. silence is a process that does nothing.

6 Constraints and Music

1.2.1.3. Example

Figure 1.3 describes a score with a loop. During the execution, the system plays
a silence of one second. After the silence, it plays the sound B during three seconds
and simultaneously it turns on the lights D for one second. After the sound B, it plays
a silence of one second, then it plays video B. If the variable finish becomes true, it
ends the scenario after playing the video C; otherwise, it jumps back to the beginning
of the first silence after playing the video C.

B

A

C

when

 finish

unless finish

∆B = 3
∆C = 2

d=1

d=0

d=0

d=1 D

d=1

d=1

∆D = 1

Figure 1.3. A score with a user-controlled loop.

The points have the following behavior. The end point of C is enabled for choice,
and the other points transfer the control to all their successors. The start point of C

waits for all its predecessors and all the other points only wait for the first predecessor
that transfers the control to them. Object A ’s process is silence, its children are B,
C and D and its local variable is finish. Note that the silence between D and C lasts
longer during execution because of the behavior of the points.

1.2.2. Ntcc model

We model points and intervals as processes in ntcc. The definition of an interval
can be used for both timed conditional relations and temporal objects. We represent
the score as a graph; however, there is not yet a procedure to remove zero-delay arcs.
Predecessors and successors of point i are Predeci and Succi, respectively. For sim-
plicity, we do not include hierarchy, we only model the interpretation when, we can
only declare a single interval between two points, and we can only execute a single
instance of an interval at the same time.

1.2.2.1. Points

We only model points that choose among their successors (ChoicePoint), points
that transfer the control to all their successors (JumpToAllPoint), and points that
wait for all their predecessors to transfer the control to them (WaitForAllPoint).

Interactive Scores 7

To know if at least one point has transferred the control to the point i, we ask to the
store if

∨
j∈Points Arrived(i, j) can be deduced from the store. When all the expected

predecessors transfer the control to the point i, we add a constraint ActivePointsi.
Analogaly, when a point i transfers the control to a point j, we add the constraint
ControlTranferred(j, i). In order to represent choice in the example of Fig. 1.1,
we use the constraint finish.

ChoicePointi,a,b
def
=

! when
∨

j∈P

Arrived(i, j) do (tell (ActivePointsi)

‖ when finish do tell (ControlTransferred(a, i))
+when ¬finish do tell (ControlTransferred(b, i)))

The following definition uses the parallel composition agent
∏

to transfer the con-
trol to all the successors of the point i.

ToAlli
def
=

∏
j∈P when Succs(i, j) do tell (ControlTransferred(j, i)))

‖tell (ActivePointsi)

Using the definition ToAlli, we define the two types of point that transfer the
control to all its successors. To wait for all the predecessors, we ask the store if the
constraint Arrived = Predec holds.

JumpToAllPointi
def
= ! when

∨
j∈Points Arrived(i, j) do ToAlli

1.2.2.2. Intervals

Process I waits until at least one point transfers the control to its start point i, and
at least one point has chosen to transfer the control to its destination j. Afterwards, it
waits until the duration of the interval is over 3. Finally, it transfers the control from i

to j.

Ii,j,d
def
= !(tell (Predec(j, i)) ‖ tell (Succ(i, j)))
‖! when

∨
k∈P ControlTransferred(j, k) ∧

∨
k∈P Arrived(i, k) do(

nextd(tell(Arrived(j, i)) ‖PredecessorsWait(i, j)))

PredecessorsWait adds the constraint Arrived(j, i) until the point j is active.

1.2.2.3. Example

We can represent the score in Fig. 1.3 in ntcc. The start point of textscc waits for
all the point, the end of textscc chooses a point and the other points jump to all points.

3. nextd is a process next nested d times (next(next(next...).

8 Constraints and Music

The intervals have the duration described in Fig. 1.3. We also need to model a user
making choices. User tells to the store that finish is not true during the first n time
units, then it tells that finish is true. It is initialized with i = 0. An advantage of
ntcc is that the constraint i ≥ n can be easily replaced by more complex ones; for
instance, “there are only three active points at this moment in the score”.

Usern(i)
def
= when i ≥ n do tell (finish) ‖unless i ≥ n next tell (¬finish)
‖next Usern(i + 1)

1.2.3. Results and Discussion

Performance results are described in [TOR 10]. They ran a prototype of the model
over Ntccrt. The tests were performed on an iMac 2.6 GHz with 2 GB of RAM under
Mac OS 10.5.7. They compiled it with GCC 4.2 and Gecode 3.2.2. The authors of
the Continuator [PAC 02] argue that a multimedia interaction system with a response
time less than 30 ms is able to interact in real-time with even a very fast guitar player.
Response time was less than 30ms for the conditional branching model for up to 500
temporal objects.

An advantage of ntcc with respect to previous models of interactive scores, Pure
Data (PD), Max and Petri Nets is representing declaratively conditions by the means
of constraints. Complex conditions, in particular those with an unknown number of
parameters, are difficult to model in Max or PD [PUC 98] . To model generic condi-
tions in Max or PD, we would have to define each condition either in a new patch or
in a predefined library. In Petri nets, we would have to define a net for each condi-
tion. A disadvantage of this model is that we cannot always synchronize two objects
to happen at the same time: one reason is choice and the other is that using jumps is
not always possible to respect the constraints on their durations.

Chapter 2

Bibliography

[ALL 06] ALLOMBERT A., ASSAYAG G., DESAINTE-CATHERINE M., RUEDA C., “Concur-
rent Constraint Models for Interactive Scores”, Proc. of SMC ’06, May 2006.

[NIE 02] NIELSEN M., PALAMIDESSI C., VALENCIA F., “Temporal Concurrent Constraint
Programming: Denotation, Logic and Applications”, Nordic Journal of Comp., vol. 1,
2002.

[PAC 02] PACHET F., “Playing with Virtual Musicians: the Continuator in Practice”, IEEE

Multimedia, vol. 9, p. 77–82, 2002.

[PUC 98] PUCKETTE M., APEL T., ZICARELLI D., “Real-time audio analysis tools for Pd
and MSP”, Proc. of ICMC ’98, 1998.

[RAM 06] RAMIREZ R., “A Logic-based Language for Modeling and Verifying Musical Pro-
cesses”, Proc. of ICMC ’06, 2006.

[TOR 09] TORO M., AGÓN C., ASSAYAG G., RUEDA C., “Ntccrt: A concurrent constraint
framework for real-time interaction”, Proc. of ICMC ’09, 2009.

[TOR 10] TORO M., DESAINTE-CATHERINE M., “Concurrent Constraint Conditional
Branching Interactive Scores”, Proc. of SMC ’10, 2010.

9

