Chapter 1

Interactive Scores: Past, Present and Future

Concurrent Constraints Time Model

Process calculi such as the Non-deterministic Timed Concurrent Constraint (ntcc) [NIE 02] calculus has been used in a variety of musical applications (see Chapter ??). An advantage of ntcc is that process synchronization is achieved by adding or deducing constraints from a constraint store, thus is declarative.

In this section we present a model of interactive scores based upon ntcc. The model is inspired on a previous model based upon ntcc that do not consider hierarchy nor the fact that execution can continue even if interactive events are not launched [ALL 06]. The model is also close is spirit to the petri nets model. Regrettably, in petri nets is difficult to model global constraints such as the maximum number of simultaneous temporal objects and temporal reductions during execution.

Another related model is Tempo, a formalism to define declaratively partial orders of musical and audio processes [RAM 06]. Unfortunately, Tempo does not allow us to express choice when multiple conditions hold, simultaneity nor to perform an action if a condition cannot be deduced.

Ntcc model

We use ntcc to the express operational semantics of interactive scores. In order to define operational semantics, we need to transform an interactive score into a graph Chapter written by Myriam DESAINTE-CATHERINE and Antoine ALLOMBERT and Mauricio TORO.

where the vertices are the start and end points of temporal objects and arcs represent the delays among them. We define the graph as g = (V, A, lV, lA) where V is the set of vertices, A the set of arcs, lV a function that assigns labels to vertices, lA a function that assigns labels to arcs. A vertex is labeled with the type of point (a start point, end point or interactive point) and the temporal object associated to it. An arc is labeled with its duration. The graph is reduced by removing zero-delay arcs and representing several points in the same vertex.

Absence of zero delays simplifies the definition of operational semantics because we do not have to synchronize two processes to occur at the same time. To remove a zero-delay arc between a vertex a and b, we delete a and we connect all its successors and predecessors to b. We also combine the label of a with the label of b, this means that a vertex may represent the start or end of several points.

Points

We have two type of points: interactive (iP oint) and static points (sP oint). Process Launch i updates the variable launched i with true and persistently assigns to p i the current value of clock. Event e i is the user event associated to point i: it represent a user interaction. Set P r represents the predecessors of i. Process U ser persistently chooses between launching or not an interactive event. CLOCK is a process that ticks forever. Process Score is parametrized by the graph in Fig. 1.2. We post a constraint 0 ≤ p i < n ∞ to allow that clock + 1 < p i be eventually deduced even in absence of user interactions.
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CLOCK(k) def = tell (clock = k) next CLOCK(k + 1) Score g def = P oints lV,A Intervals lA U ser lV CLOCK(0) ! i∈V 0 ≤ p i < n ∞ 1.1.2. Discussion
We presented a model for interactive scores based upon ntcc to represent temporal reductions and interactive events. The model is close in spirit to the petri nets model. An advantage of petri nets is that transformation from interactive scores to petri nets is simpler, and synchronization is easier when it depends, for instance, on the transitions that precede a place. An advantage of ntcc is that it can easily represent global constraints such number of simultaneous temporal constraints and also temporal reductions.

The ntcc model could be implemented. We plan to implement our system using Ntccrt [TOR 09], a real-time capable interpreter for ntcc. There is an issue with the correctness of the implementation: it heavily relies on propagation. Each time an interactive point is launched, we add a constraint, and we propagate. Does propagation preserves the coherence of the model? Do we need to perform search or propagation is enough? This is an open issue. There is another open issue: We believe that the denotation of a score will help us to understand the behavior of the score without analyzing its operational semantics, to specify properties, and to prove its correctness.

Timed Conditional Branching Model

There is neither a formal model nor a special-purpose application to support conditional branching in interactive multimedia. Using conditional branching, a designer can create scenarios with choices. The user and the system can take decisions during performance with the degree of freedom described by the designer, and define when a loop ends; for instance, when the user changes the value of a variable.

In the domain of composition of interactive music, there are applications such as Ableton Live1 . Using Live, a composer can write loops and a musician can control different parameters of the piece during performance. Unfortunately, the means of interaction and the synchronization patterns are limited.

To express complex synchronization patterns and conditions, it was shown in [TOR 10] that interactive scores can describe temporal relations together with conditional branching. In this section, we recall the conditional-branching timed model of interactive scores based upon the Non-deterministic Timed Concurrent Constraint (ntcc) calculus. We explain how to model temporal relations, conditional branching and discrete interactive events in a single model. We also present performance results of a prototype and we discuss the advantages and limitations of the model.

Specification of the model

A score is defined by a tuple composed by a set of points and a set of intervals. A temporal object is a type of interval.

Points

We say that a point p is a predecessor of q if there is a relation p before q. Analogically, a point p is a successor of r if there is a relation r before p. A Point is defined by p = b p , b s , where b p and b s represent the behavior of the point. Behavior b p defines whether the point Waits until All its predecessors transfer the control to it or it only Wait for the First of them. Behavior b s defines whether the point CHooses one successor which condition holds to transfer the control to it, or it does Not CHoose, transferring the control to all its successors.

Intervals

An interval p before q means that the system waits a certain time to transfer the control (jumps) from p to q if the condition in the interval holds, and it executes a process throughout its duration. An interval is composed by a start point, an end point, a condition, a duration, an interpretation for the condition, a local constraint, a process, parameters for the process, children, and local variables.

There are two types of intervals. Timed conditional relations have a condition and an interpretation, but they do not have children, their local constraint is true, and their process is silence2 . Temporal objects may have children, local variables and a local constraint, but their condition is true, and their interpretation is "when the condition is true, transfer the control from the start point to the end point".

A timed conditional relation includes the start and end points involved in the relation and the condition that determines whether the control jumps from start to the end point. There are two possible values for the interpretation of the condition: (i) when means that if condition holds, the control jumps to the end point; and (ii) unless means that if the condition does not hold or its value cannot be deduced from the environment, the control jumps to end point. A temporal object is an interval where the start point launches a new instance of a temporal object and the end point finishes such instance. Its local variables and local constraint can be used by its children and process to synchronize each other. The points have the following behavior. The end point of C is enabled for choice, and the other points transfer the control to all their successors. The start point of C waits for all its predecessors and all the other points only wait for the first predecessor that transfers the control to them. Object A 's process is silence, its children are B, C and D and its local variable is f inish. Note that the silence between D and C lasts longer during execution because of the behavior of the points.

Ntcc model

We model points and intervals as processes in ntcc. The definition of an interval can be used for both timed conditional relations and temporal objects. We represent the score as a graph; however, there is not yet a procedure to remove zero-delay arcs. Predecessors and successors of point i are P redec i and Succ i , respectively. For simplicity, we do not include hierarchy, we only model the interpretation when, we can only declare a single interval between two points, and we can only execute a single instance of an interval at the same time.

Points

We only model points that choose among their successors (ChoiceP oint), points that transfer the control to all their successors (JumpT oAllP oint), and points that wait for all their predecessors to transfer the control to them (W aitF orAllP oint).

To know if at least one point has transferred the control to the point i, we ask to the store if j∈P oints Arrived(i, j) can be deduced from the store. When all the expected predecessors transfer the control to the point i, we add a constraint ActiveP oints i . Analogaly, when a point i transfers the control to a point j, we add the constraint ControlT ranf erred(j, i). In order to represent choice in the example of The following definition uses the parallel composition agent to transfer the control to all the successors of the point i.

T oAll i def = j∈P when Succs(i, j) do tell (ControlT ransf erred(j, i)))

tell (ActiveP oints i )

Using the definition T oAll i , we define the two types of point that transfer the control to all its successors. To wait for all the predecessors, we ask the store if the constraint Arrived = P redec holds.

JumpT oAllP oint i def = ! when j∈P oints Arrived(i, j) do T oAll i 1.2.2.2. Intervals Process I waits until at least one point transfers the control to its start point i, and at least one point has chosen to transfer the control to its destination j. Afterwards, it waits until the duration of the interval is over3 . Finally, it transfers the control from i to j. I i,j,d def = !(tell (P redec(j, i)) tell (Succ(i, j)))

! when k∈P ControlT ransf erred(j, k) ∧ k∈P Arrived(i, k) do( next d (tell(Arrived(j, i)) P redecessorsW ait(i, j)))

P redecessorsW ait adds the constraint Arrived(j, i) until the point j is active.

Example

We can represent the score in Fig. 1.3 in ntcc. The start point of textscc waits for all the point, the end of textscc chooses a point and the other points jump to all points.

The intervals have the duration described in Fig. 1.3. We also need to model a user making choices. U ser tells to the store that f inish is not true during the first n time units, then it tells that f inish is true. It is initialized with i = 0. An advantage of ntcc is that the constraint i ≥ n can be easily replaced by more complex ones; for instance, "there are only three active points at this moment in the score".

U ser n (i) def = when i ≥ n do tell (f inish) unless i ≥ n next tell (¬f inish) next U ser n (i + 1)

Results and Discussion

Performance results are described in [TOR 10]. They ran a prototype of the model over Ntccrt. The tests were performed on an iMac 2.6 GHz with 2 GB of RAM under Mac OS 10.5.7. They compiled it with GCC 4.2 and Gecode 3.2.2. The authors of the Continuator [PAC 02] argue that a multimedia interaction system with a response time less than 30 ms is able to interact in real-time with even a very fast guitar player. Response time was less than 30ms for the conditional branching model for up to 500 temporal objects.

An advantage of ntcc with respect to previous models of interactive scores, Pure Data (PD), Max and Petri Nets is representing declaratively conditions by the means of constraints. Complex conditions, in particular those with an unknown number of parameters, are difficult to model in Max or PD [PUC 98] . To model generic conditions in Max or PD, we would have to define each condition either in a new patch or in a predefined library. In Petri nets, we would have to define a net for each condition. A disadvantage of this model is that we cannot always synchronize two objects to happen at the same time: one reason is choice and the other is that using jumps is not always possible to respect the constraints on their durations.
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 11 Figure 1.2 represents the graph associated to the score in Figure 1.1. It does not contain zero-delays.
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 12 Figure 1.2. Graph representing the score in Fig. 1.1. Label St denotes the start point of t and Et the end point of t. Double arrows represent the duration of temporal objects. Simple arrows with no label represent the constraints imposed by the hierarchy, its duration is [0, ∞).

  Figure 1.3 describes a score with a loop. During the execution, the system plays a silence of one second. After the silence, it plays the sound B during three seconds and simultaneously it turns on the lights D for one second. After the sound B, it plays a silence of one second, then it plays video B. If the variable f inish becomes true, it ends the scenario after playing the video C; otherwise, it jumps back to the beginning of the first silence after playing the video C.

Figure 1

 1 Figure 1.3. A score with a user-controlled loop.

  Fig. 1.1, we use the constraint f inish. ChoiceP oint i,a,b def = ! when j∈P Arrived(i, j) do (tell (ActiveP oints i ) when f inish do tell (ControlT ransf erred(a, i)) +when ¬f inish do tell (ControlT ransf erred(b, i)))
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silence is a process that does nothing.

next d is a process next nested d times (next(next(next...).