Hörmander Type Functional Calculus and Square Function Estimates - Archive ouverte HAL
Journal Articles Journal of Operator Theory Year : 2014

Hörmander Type Functional Calculus and Square Function Estimates

Abstract

We investigate Hörmander spectral multiplier theorems as they hold on $X = L^p(\Omega),\: 1 < p < \infty,$ for many self-adjoint elliptic differential operators $A$ including the standard Laplacian on $\R^d.$ A strengthened matricial extension is considered, which coincides with a completely bounded map between operator spaces in the case that $X$ is a Hilbert space. We show that the validity of the matricial Hörmander theorem can be characterized in terms of square function estimates for imaginary powers $A^{it}$, for resolvents $R(\lambda,A),$ and for the analytic semigroup $\exp(-zA).$ We deduce Hörmander spectral multiplier theorems for semigroups satisfying generalized Gaussian estimates.
Fichier principal
Vignette du fichier
Matricial.pdf (325.84 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00662259 , version 1 (23-01-2012)

Identifiers

Cite

Christoph Kriegler. Hörmander Type Functional Calculus and Square Function Estimates. Journal of Operator Theory, 2014, 71 (1), pp.223-257. ⟨hal-00662259v1⟩
211 View
246 Download

Altmetric

Share

More