
HAL Id: hal-00662257
https://hal.science/hal-00662257v1

Submitted on 23 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrent constraints models of music interaction
Mauricio Toro, Camilo Rueda, Frank Valencia, Gerardo Sarria, Carlos Olarte

To cite this version:
Mauricio Toro, Camilo Rueda, Frank Valencia, Gerardo Sarria, Carlos Olarte. Concurrent constraints
models of music interaction. Constraint Programming in Music, Wiley, pp.133, 2011. �hal-00662257�

https://hal.science/hal-00662257v1
https://hal.archives-ouvertes.fr

Chapter 1

Concurrent Constraint Models of Multimedia
Interaction

1.1. Introduction

Process calculi (see e.g., [MIL 99, NIE 02, SAR 93]) are well-established for-
malisms to describe concurrent systems so as to reason rigorously about their prop-
erties. Their compositional nature allows a convenient hierarchical system modeling
methodology where details can be added incrementally in a controlled way. More-
over, their small number of constructs, expressiveness and precise semantics provide
ideal frameworks to build on top of them a variety of languages suitable to various ap-
plication domains. This is particularly important in music systems where tools must
provide relevant intuitions and operations to composers. Because semantic coherence
is at the heart of a process calculus, extra features are usually proposed only when the
need arises to address very specific new phenomena. For instance, Concurrent Con-
straint (CCP) calculi where defined to add to concurrent models the ability to compute
and synchronize with partial information (i.e. constraints).

In this chapter we follow this “economy of means” way to present several vari-
eties of CCP calculi, starting from a very basic one and building from it by adding
new features. A fundamental one for music applications is the ability to represent
temporal behavior. This can be introduced within the context of determinate (tcc,
utcc) or non-determinate (ntcc) computation. For the determinate case, we show
how the addition of a process abstraction feature (utcc) allows to model dynamic

Chapter written by Carlos OLARTE and Camilo RUEDA and Gerardo SARRIA and Mauricio
TORO and Frank D. VALENCIA.

1

2 Constraints and Music

musical structures in a very simple way. In particular, we model a dynamic version of
interactive scores ([ALL 07]). For the nondeterminate case, we use the possibility of
defining many alternative computational paths to model an agent following different
rhythmic patterns constructed from a given basic one. We then go on to consider a
more “metrical” notion of time (rtcc) based on uniform ticks used by processes to
define their time of execution in a more fine-grained way, or to cause preemption of
other processes at more precisely defined points in time. We use these new “real-time”
features to describe a simple model of a basic form of musical dissonances.

Two important characteristics of CCP calculi relevant to music modeling are its
parametric and declarative natures. The parameterization of CCP in a constraint sys-
tem provides a very flexible way to tailor data structures to specific domains. In
the music improvisation system presented here, for example, a particular constraint
system is used to implicitly represent a graph. The declarative nature allows CCP
processes to be related to logical formulae, so that desirable properties of a system
can be handily verified. This can be very important in musical applications, such as
controlled improvisation systems where the appearance of certain musical material is
expected, or as support for musical analysis. We show in this chapter how to verify
some properties of a ntcc model of a particular rhythmic pattern. Finally, we describe
the implementation of simulators for ntcc and for its stochastic variety.

1.2. Concurrent Constraint Programming

Concurrent constraint programming (CCP) [SAR 93] has emerged as a simple but
powerful paradigm for concurrent systems; i.e. systems of multiple agents that interact
with each other as for example in a collection of music processes (musicians) perform-
ing a particular piece. A fundamental issue in CCP is the specification of concurrent
systems by means of constraints. A constraint (e.g. note > 60) represents partial
information about certain system variables. During the computation, the current state
of the system is specified by a set of constraints called the store. Processes can change
the state of the system by telling (adding) information to the store and synchronize by
asking information to the store.

The type of constraints in CCP is not fixed but parametrized by a constraint system

[SAR 93] which specifies the basic constraints agents can tell or ask during execution.
A constraint represents a piece of information (or partial information) upon which
processes may act. For instance, in a system with variables pitch1 , pitch2 taking
MIDI values, the constraint pitch1 > pitch2 specifies possible values for pitch1 and
pitch2 (those where pitch1 is at least a tone higher than pitch2). The constraint
system defines also an entailment relation (⊢) specifying inter-dependencies between
constraints. Intuitively, c ⊢ d means that the information d can be deduced from the
information represented by the constraint c, e.g., pitch1 > 60 ⊢ pitch1 > 42.

Concurrent Constraint Models of Multimedia Interaction 3

We can set up the notion of constraint system by using First-Order Logic. Given
a signature Σ and a first-order theory ∆ over Σ, constraints can be thought of as first-
order formulae over Σ. Furthermore, c ⊢ d if the implication c ⇒ d is valid in ∆. As
an example, take the finite domain constraint system (FD) [HEN 98]. In FD, variables
are assumed to range over finite domains and, in addition to equality, we may have
predicates (e.g., “≤”) that restrict the possible values of a variable to some finite set.

The Language of CCP Processes. In the spirit of process calculi, the language of
processes in CCP is given by a small number of primitive operators. Following the
notation in [NIE 02], we present the syntax of CCP in the following definition.

Definition 1 (CCP Processes) Processes P,Q, . . . in CCP are built from constraints

in the underlying constraint system by the following syntax:

P,Q := skip | tell(c) | when c do P | P ‖ Q | (local ~x; c)P

The process skip does nothing. It represents inaction. The process tell(c) adds
the constraint c to the store. The process when c do P asks if c can be deduced
(entailed) from the store. If so, it behaves as P . In other case, it remains blocked until
the store contains at least as much information as c. This way, ask processes define a
synchronization mechanism based on entailment of constraints. The process P ‖ Q
denotes the parallel composition of P and Q, i.e., P and Q running in parallel and
possibly “communicating” via the common store.

Local variables are declared via the process (local ~x; c) P . This process behaves
like P , except that all the information on the variables ~x produced by P can only be
seen by P . This local information corresponds to the constraint c representing a local

store. We write (local ~x) P as a shorthand for (local ~x; true) P.

1.2.1. Timed CCP

In CCP once a constraint is added it cannot be removed, i.e., information grows
monotonically. This condition is relaxed by considering temporal extensions of CCP
such as Timed CCP (tcc) [SAR 94]. In tcc, processes evolve along a series of dis-

crete time intervals (or time-units). Each interval contains its own store and infor-
mation is not automatically transferred from one interval to another. In music, the
duration of each time-unit is related to the minimal metric value used in the piece.

Definition 2 (Temporal Constructs) The tcc processes result from adding in Defi-

nition 1 the following constructs:

P,Q := nextP | unless c nextP | !P

4 Constraints and Music

The constructs above allow the CCP processes to have effect along the time-units. The
unit-delay nextP executes P in the next time interval. The process unless c nextP
(negative ask) is also a unit-delay but P is executed in the next time-unit iff c is not

entailed by the final store at the current time interval. This can be viewed as a (weak)
time-out (or weak preemption): It waits one time-unit for a piece of information c to
be present and if it is not, it triggers activity in the next time interval.

Finally, the replication !P means P ‖ nextP ‖ next 2P..., i.e. unboundedly
many copies of P but one at a time.

As we said before, processes in tcc evolve along a series of discrete time inter-
vals. In each time interval, a CCP processes receives a stimulus (i.e. a constraint)
from the environment as an input. It executes with this stimulus as the initial store.
When it reaches its resting point, i.e., no further evolution is possible, it responds
to the environment with the final store (the output of the system). Furthermore, the
resting point determines a residual process, which is then executed in the next time in-
terval. Roughly, the residual process is obtained by “unfolding” the sub-terms within
“next” and “unless” expressions (see [SAR 94, NIE 02] for a formal account of the
operational semantics of tcc).

This view of reactive computation is particularly appropriate for programming re-
active systems in the sense of Synchronous Languages [BER 92], i.e., systems that
react continuously with the environment at a rate controlled by the environment.

In spite of its simplicity, the tcc extension to CCP is far-reaching. Many interest-
ing temporal constructs can be expressed. For example, tcc allows processes to be
“clocked” by other processes. This provides meaningful pre-emption constructs and
the ability of defining multiple forms of time instead of having a unique global clock.

In what follows we present different applications of CCP-based calculi in the spec-
ification and verification of multimedia interaction systems. Some of these applica-
tions require the CCP model to be extended with constructs to express, for instance,
probabilistic and nondeterministic behavior. In each case, we briefly explain the ex-
tension of the calculus and its application.

1.3. Dynamic Interactive Scores

An interactive score [ALL 07] is a pair composed of temporal objects and Allen
temporal relations [ALL 83]. In general, each object is comprised of a start-time, a
duration, and a procedure. The first two can be partially specified by constraints, with
different constraints giving rise to different types of temporal objects, so-called events

(duration equals zero), textures (duration within some range), intervals (textures with-
out procedures) or control-points (a temporal point occurring somewhere within an

Concurrent Constraint Models of Multimedia Interaction 5

T1 D1

s1 T4

T2 D2

s2

overlaps

meets

T0 D0

T3 D3

[Ds, Df]

T5
D5

Figure 1.1. Interactive score

interval object). The procedure gives operational meaning to the action of the tempo-
ral object. It could just be playing a note or a chord, or any other action meaningful
for the composer. Figure 1.1, based on one from [ALL 07], shows an interactive score
where temporal objects are represented as boxes. Objects are Ti, durations Di. Object
T4 is a control point, whereas T0 and T3 are intervals. Duration D3 should be such
that Ds ≤ D3 ≤ Df . The whole temporal structure is determined by the hierarchy
of temporal objects.

Suppose that, as a result of the information obtained by the occurrence of an event,
object T2 should no longer synchronize with a control-point inside T1 but, say, with a
similar point inside T5. This very simple interaction cannot be expressed in the stan-
dard model of interactive scores [ALL 07]. Another example is an object waiting for
some interaction from the performer within some temporal interval. If the interaction
does not occur, the composer might then determine to probe the environment again
later when a similar musical context has been defined. This amounts to moving the
waiting interval from one box to another. For this, it is necessary to provide mecha-
nisms to reconfigure dynamically the communication structure of the processes during
execution. This is, it is required to express mobile behavior, e.g, to move/communicate
the links of the boxes. In the next section we present a model for dynamic interactive
scores originally proposed in [OLA 09] where the expressiveness of Universal Timed

CCP (utcc) to model mobile behavior is central.

1.3.1. Mobile behavior in tcc and a Model of Dynamic Interactive Scores

The utcc calculus [OLA 08] aims at modeling mobile reactive systems, i.e., sys-
tems that can change their communication structure while interacting with their envi-
ronment. The basic move from tcc to utcc is to replace the process when c do P
by a temporary parametric ask constructor of the form (abs ~x; c) P . This process can
be viewed as an abstraction of the process P on the variables ~x under the constraint
(or with the guard) c. Intuitively, (abs ~x; c) P performs P [~t/~x] in the current time
interval for all the terms ~t s.t c[~t/~x] is entailed by the store. The abstraction construct
in utcc has a pleasant duality with the local operator. From a programming language

6 Constraints and Music

BoxOperations
def
= (abs id, d; mkbox(id, d))

(local s) tell(box(id, d, s))
‖ (abs x, y; before(x, y))when ∃z(in(x, z) ∧ in(y, z)) do

unless play (y) next tell(bf(x, y))
‖ (abs x, y; into(x, y))unless play (x) next tell(in(x, y))
‖ (abs x, y; out(x, y))when in(x, y) do

unless play (x) next (abs z; in(y, z)) tell(in(x, z))

Constraints
def
= (abs x, y; in(x, y)) (abs dx, sx; box(x, dx, sx))

(abs dy, sy; box(y, dy, sy))
tell(sy ≤ sx) ‖ tell(dx + sx ≤ dy + sy)

‖ (abs x, y; bf(x, y)) (abs dx, sx; box(x, dx, sx))
(abs dy, sy; box(y, dy, sy)) tell(sx + dx ≤ sy)

Play(x, t)
def
= when t ≥ 1 do tell(play(x)) ‖ unless t ≤ 1 next Play(x, t − 1)

Figure 1.2. A utcc model for Dynamic Interactive Scores

perspective, the variables ~x in (local ~x; c) P can be seen as the local variables of P
while ~x in (abs ~x; c) P as the formal parameters of P .

Definition 3 (utcc Processes) The utcc processes result from replacing in the syn-

tax in Definition 2 the expression when c do P with (abs ~x; c) P .

The extra expressiveness of utcc allows us to model dynamic music systems
where the composer can dynamically change the hierarchical structure of the score
according to the information derived from the environment. In Figure 1.2 we present
an excerpt of the model proposed in [OLA 09] and we explain it in the following.

The process BoxOperations may perform the following actions:

– mkbox(id, d): defines a new box id with duration d. The start time is defined as
a new (local) variable s whose value will be constrained by the other processes.

– before(x, y): checks if x and y are contained in the same box. If so, the con-
straint bf(x, y) is added.

– into(x, y): dictates that the box x is into the box y if x is not currently playing.

– out(x, y): takes the box x out of the box y if x is not currently playing.

Process Constraints adds the necessary constraints relating the start times of
each temporal object to respect the hierarchical structure of the score. For each con-
straint of the form in(x, y), this process dictates that the start time of x must be less
than the one of y. Furthermore, the end time of y (i.e. dy + sy) must be greater than
the end time of x. The case for bf(x, y) can be explained similarly.

The process Play(x, t) adds the constraint play(x) during t time-units. This is
an acknowledgment to the environment that the box x is currently playing.

Concurrent Constraint Models of Multimedia Interaction 7

(a) (b)

Figure 1.3. Example of an Interactive Score Execution

The whole system consists in the parallel composition of the above mentioned pro-
cesses, some auxiliary processes not depicted in Figure 1.2 for the sake of readability,
and a process defining the specific boxes model of the user:

UsrBoxes
def
= tell(mkbox(a, 22) ∧ mkbox(b, 12) ∧ mkbox(c, 4)) ‖

tell(mkbox(d, 5) ∧ mkbox(e, 2)) ‖
tell(into(b, a) ∧ into(c, b) ∧ into(d, b) ∧ into(e, d)) ‖
tell(before(c, d)) ‖
whenever play(b) do unless signal next

tell(out(d, b) ∧ mkbox(f, 2) ∧ into(f, a)) ‖
tell(before(b, f) ∧ before(f, d))

This process defines the hierarchy in Figure 1.3(a). When b starts playing, the system
asks if signal is set (i.e., if it was provided by the environment). If it was not, the
box d is taken out from the context b. Furthermore, a new box f is created such that b
must be played before f and f before d as in Figure 1.3(b). Notice that when the box
d is taken out from b, the internal box e is still into d preserving its structure.

1.4. Nondeterminism and Verification of Musical Properties

One of the salient features of process calculi is that they provide a runnable spec-
ification of the modeled systems. This is, the model can be used to both simulate
the behavior of the system and to formally verify properties of it. In this section we
describe the ntcc calculus [NIE 02], an extension of the tcc model to express nonde-
terminism and asynchrony. Furthermore, we show how the declarative interpretation
of ntcc processes as formulae in Linear Temporal Logic (LTL) [MAN 91] can be ex-
ploited to verify musical properties. For this aim, we shall model some patterns used
in the repertoires of Central African Republic studied in [CHE 07]. We shall prove
that some patterns satisfy the Rhythmic Imparity Property that we explain later on.
We start with a simple model of the system and then, we refine it to be able to capture
more interesting behaviors and properties.

8 Constraints and Music

1.4.1. The ntcc calculus

The ntcc calculus [NIE 02] is a CCP formalism for modeling temporal reactive
systems. In ntcc, processes can be constrained by temporal requirements such as
delays, time-outs and pre-emptions. Thus, the calculus integrates two dimensions of
computation: a horizontal dimension dealing with partial information (e.g., note >
60) and a vertical one in which temporal requirements come into play (e.g., a process
must be executed at any time within the next ten time-units).

The above integration is remarkably useful for modeling complex musical pro-
cesses, in particular for music improvisation. For example, for the vertical dimension
one can specify that a given process can nondeterministically choose any note satisfy-
ing a given constraint. For the horizontal dimension one can specify that the process
can nondeterministically choose the time to play the note subject to a given time upper
bound. This nondeterministic view is particularly suitable for processes representing a
musician’s choices when improvising. Similarly, the horizontal dimension may supply
partial information on a rhythmic pattern that leaves room for variation while keeping
a basic control.

The ntcc calculus is obtained by adding guarded-choices for modeling nondeter-
ministic behavior and an unbounded finite-delay operator for asynchronous behavior.

Definition 4 (ntcc Processes) The ntcc processes result from adding to the syntax

in Definition 2 the following constructs:

P,Q :=
∑

i∈I

when ci do Pi | ⋆ P

The guarded-choice
∑

i∈I

when c1 do Pi where I is a finite set of indices, represents

a process that, in the current time interval, must nondeterministically choose one of
the Pj (j ∈ I) whose corresponding guard (constraint) cj is entailed by the store.
The chosen alternative, if any, precludes the others. If no choice is possible then the
summation remains blocked until more information is added to the store.

The operator “⋆” allows to express asynchronous behavior through the time inter-
vals. Intuitively, a process ⋆P represents P +nextP +next 2P +..., i.e., an arbitrary
long but finite delay for the activation of P.

1.4.2. Logic Characterization of ntcc processes

CCP calculi enjoys a declarative nature that distinguishes it from other models of
concurrency: CCP processes can be seen, at the same time, as both computing agents

Concurrent Constraint Models of Multimedia Interaction 9

and logic formulae (see e.g., [SAR 93, NIE 02, BOE 97, OLA 08]), i.e., programs can
be read and understood as logical specifications. A natural benefit of this alternative
view is to provide a language suitable for both the specification and the implementa-
tion of programs. Let us elaborate on this ideas in the context of the ntcc calculus
(see [NIE 02] for details).

Linear temporal logics (LTL) have been extensively used to specify properties of
timed systems [MAN 91]. Formulae in this logic are built from the following syntax:

Definition 5 (Logic Syntax) The formulae A, B in LTL are defined by the grammar

A, B, . . . := c | A ⇒̇A | ¬̇A | ∃̇x A | ◦A | �A | ✸A

Here c denotes an arbitrary constraint which we shall refer to as atomic proposition.
The intended meaning of the other symbols is the following: ⇒̇, ¬̇ and ∃̇ represent
linear-temporal logic implication, negation and existential quantification. These sym-

bols are not to be confused with the symbols ⇒,¬ and ∃ of the underlying constraint

system. The symbols ◦, �, and ✸ denote the temporal operators next, always and
sometime. Intuitively ◦ A, ✸ A and � A means that the property A must hold next,
eventually and always, respectively.

Let P be a process and A a LTL formulae specifying a given temporal property.
One may wonder whether the process P satisfies the specification A, written as P |=
A. The intended meaning of this assertion is that, regardless the input, every output of
P satisfies the temporal formula A.

Let us give some examples. Since in every infinite sequence output by ⋆ tell(c)
on arbitrary inputs there must be an element entailing c, we have ⋆ tell(c) |= ✸c.
Analogously, ! tell(c) |= �c since all output of P must entail c. Let P = tell(c) +
tell(d). We have P |= (c ∨̇ d) as every constraint output by P entails either c or d.
Similarly, if P = tell(c) ‖ tell(d), then P |= c ∧̇ d since every output by P entails
both c and d. If P = when c do next tell(d) then P |= c ⇒̇ ◦d since the entailment
of c in the first time-unit implies the entailment of d in the next one.

1.4.3. Modeling rhythm patterns

The following examples were taken from the studies of the repertoires of Central
African Republic reported in [CHE 07]. Assume a rhythmic pattern where groups
of “2”-unit elements separate groups of “3”-unit elements. For instance, we shall
consider sequences such as the one in the following equation:

3 2 2 2 2
︸ ︷︷ ︸

3 2 2 2 2 2
︸ ︷︷ ︸

(1.1)

10 Constraints and Music

startstop 1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

start

stop

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

(a) (b)

Figure 1.4. Patter of “2” and “3”-unit elements (taken from [CHE 07]).

where there is a beat in the time-units 1, 4, 6, 8, This pattern can be represented
in a circle with 24 divisions, where “2” and “3”-unit elements are placed (see Figure
1.4). In what follows, without loss of generality, we consider only cyclic patterns of
24 time-units.

Given a pattern we start playing the rhythm in an arbitrary position of the sequence.
For example, in Figure 1.4 (a), time starts in the first element of the sequence and
then, in the first time-unit. In Figure 1.4 (b), time starts in the second element of the
sequence and then, in time-unit 4.

The first model we propose for this system considers a fixed sequence of “3”
and “2”-units pattern (as in Equation 1.1) and it chooses nondeterministically where
the rhythm starts. For this, let I1 = {3, 5, 7, 9, 11, 14, 16, 18, 20, 22} and I2 =
{3, 5, 7, 9, 11} and let us define the following processes:

Beat
def
= tell(beat) ‖

Q

i∈Ii

next
i
tell(beat)

Start
def
= tell(start) +

P

i∈I2

next
i(tell(start))

Check
def
= !when start do next

12(tell(stop))

System
def
= Beat ‖ Start ‖ Check

(1.2)

In the above, notation
∏

i∈Ii

next iP stands for the parallel composition of processes

next iP for each i ∈ I1. The process Beat adds the constraint beat in the time-units
1, 4, 6, 8, ..., this is, in the time-units where a new interval of “2” or “3”-units starts.
The process Start signals the time-unit when the rhythm starts (e.g, time-unit 1 and
time-unit 4 in Figure 1.4 (a) and Figure 1.4 (b) respectively). The process Check adds
the constraint stop twelve units after the signal start is detected, i.e., it marks the
half of the circle. The process System is just the parallel composition of the above
mentioned processes.

Concurrent Constraint Models of Multimedia Interaction 11

We use now the logical interpretation of ntcc processes as formulae in LTL to
prove the asymmetry property of the sequence in Equation 1.1. This property asserts
that if one attempts to break the circle into two parts, it is not possible to have two

equals parts. To verify this property in our model, let us start with the LTL formulae
that corresponds to the processes above, denoted as [[P]]:

[[Beat]] = beat ∧̇
·

V

i∈I1

◦ibeat

[[Start]] = start ∨̇
·

W

i∈I2

◦istart

[[Check]] = �(start ⇒̇ ◦12stop)
[[System]] = [[Beat]] ∧̇[[Start]] ∧̇[[Check]]

(1.3)

One can then verify that [[System]] |= ✸(start ∧̇ ◦11(beat ∧̇ ◦stop)). In words, at
some point the signal start is given. Then, eleven units later there is a beat and one
unit later the constraint stop can be deduced. This means that it is not possible that
the constraints beat and stop are present in the same time-unit (i.e, [[System]] 6|=
✸(stop ∧̇ beat)). This then shows that the sequence in the Equation 1.1 satisfies the
asymmetric property.

First Refinement. The model in the Equation 1.2 can be refined to prove more inter-
esting properties. For example, one may wonder if there is another distribution of the
“3” and “2”-units in the circle such that the asymmetry property holds.

The next model we propose, consists in placing the first “3”-unit pattern in the
beginning of the circle, and then, nondeterministically choose where to put the second
one. Notice that it suffices to choose the position of the second “3”-unit in the first
half of the circle since placing it in the second half leads to a cyclic permutation.

Let Start and Check be as in Equation 1.2, I3 = {2, 3, 4, 5, 6} and Beat′ and
System′ as follows:

Beat′
def
= tell(beat) ‖ next

3 P

i∈I3

(tell(pos = i) ‖ Beat_Aux(i − 1))

Beat_Aux(N)
def
= tell(beat) ‖

when N = 1 do next
3Beat_Aux(0)

+when N 6= 1 do next
2Beat_Aux(N − 1)

System′ def
= Beat′ ‖ Start ‖ Check

(1.4)

Intuitively, the process Beat′ starts with the first “3”-unit and three units later
chooses nondeterministically the position of the next “3”-unit interval in the sequence.
Assume that the value chosen for i ∈ I3 is 3 and then, the sequence starts with
3 2 3 2 2 Notice that if this is the case, the variable pos takes the value 3 and

12 Constraints and Music

the procedure Beat_Aux is called with N = 2. Hence the next beat will take place
two units later, i.e., in the time-unit 6. In the next call, N = 1 and then, the “3”-unit
pattern is chosen and the next beat takes place three units later. From this point, N is
less than 1 and therefore, “2”-units intervals are chosen from that point to the end.

From the model in Equation 1.4, one can verify the following. If x = 6 then,
[[System′]] |= ✸((pos = x) ⇒̇✸(stop ∧̇ ◦beat)). On the contrary, if x ∈ {2, .., 5}
then [[System′]] |= ✸((pos = x) ⇒̇✸(stop ∧̇ beat)). This means, that the unique
sequence (up to cyclic permutation) with two “3”-unit pattern satisfying the asymme-
try property is the sequence in Equation 1.1.

Second Refinement. A further refinement consists in finding sequences with a given
number N of “3”-unit patterns. Notice that N must be an even number, in other case,
the number of time-units cannot be 24.

We propose a new process Beat that nondeterministically places a number N of
“3”-unit patterns. As in the previous case, we assume that the sequence starts with a
“3”-unit interval.

Beat′′(i, j, N)
def
= when i ≤ 24 do

when j = 1 do tell(beat) ‖
when 24 − 3 × N ≤ i do Choose3(i, N)

+when 24 − 3 × N > i do

when N > 0 do Choose3(i, N)
+when true do Choose2(i, N)

+when j 6= 1 do nextBeat′′(i + 1, j − 1, N)

Choose3(i, N)
def
= posi = i ‖ nextBeat′′(i + 1, 3, N − 1)

Choose2(i, N)
def
= nextBeat′′(i + 1, 2, N)

In the process Beat′′, i represents the number of the current time-unit, j the remaining
duration of the current interval and N the number of “3”-units that must be placed in
the sequence. This process checks if there are still time-units to verify (i.e., i ≤ 24).
If j = 1 the constraint beat is added and there is a decision to take: to place a
“2” or a “3”-unit pattern. If there are no more time-units to place a number N of
the “3”-unit missing, then unavoidable a “3”-unit is chosen. This is verified by the
guard 24 − 3 × N ≤ i. If there is enough space to place a “2”-unit pattern, then the
process nondeterministically chooses the next unit to be placed. Notice that in each
iteration the parameter i is incremented and j decremented if it is not necessary to take
a decision in the current time-unit.

Similarly to the previous models, we can verify properties such as with six “3”-
unit intervals, it is possible to find patterns that satisfies the asynchrony property like
the sequences “3 3 3 2 3 3 3 2 2” and “3 3 3 2 3 3 2 3 2”.

Concurrent Constraint Models of Multimedia Interaction 13

1.5. Real Time and Preemption

In many musical systems, constraints, time and concurrency arise. As we showed
in Section 1.4, the ntcc calculus may to some extent be convenient for this. However
time in ntcc is logical, that is, each time-unit is defined by the time taken by all
processes to make all their internal transitions until no further transition can be done.
This is not enough to satisfy quantitative temporal constraints which is a requirement
of real-time systems and in music improvisation scenarios.

On the other hand, an essential issue in reactive and real-time systems is process
preemption. In [BER 93], this concept is defined as the control mechanism consisting
in denying a process the right to be executed, either permanently (abortion) or tem-
porarily (suspension). In music improvisation situations, for instance, there are cases
in which the musician must skip some note or play something different to synchronize
with other partners, or wait for a signal before continuing.

The rtcc calculus [SAR 10] is obtained from ntcc by adding constructs for speci-
fying strong preemption and delay declarations, and by extending the transition system
with support for resources, limited time and true concurrency.

Definition 6 (rtcc Processes) The rtcc processes result from adding in the syntax

in Definition 4 the following constructs

P,Q, . . . := catch c in P finally Q | delay P for δ

The strong time-out process, catch c in P finally Q, represents the interruption
of P in the current time interval when the store can entail c; otherwise, the execution
of P continues. When process P is interrupted, process Q is executed. If P finishes,
Q is discarded. The execution of a process P can be delayed within a given unit. In
construct delay P for δ process P is activated in the current time-unit only at least
δ ticks after the beginning of the time-unit (the concept of time-unit is extended as a
discrete sequence of minimal units that we call ticks).

We showed the expressiveness of rtcc in [PER 09] by modeling musical disso-
nances. Since the dissonance phenomena in music can be seen as an ordered sequence
of processes, we can express it using concurrent agents that synchronize each other
through signals (constraints) that are global to the whole system. Each agent may
represent each phase in the dissonance process and also delay its execution until the
previous (dependent) phase has been carried out and signals the system to continue
the sequence onto the next phase. The sequence consists of the following phases:

Preparation: Prepares the listener to the confusion of tension that the dissonance
may generate in the melody. Generally, this preparation carries a harmonic line
corresponding to its tonality.

14 Constraints and Music

Dissonance: In this stage, the dissonance or dissonances are produced, often in weak
rhythmic beats or in strong ones depending on its relevance and sonority.

Resolution: Here, the dissonance needs to move to a state of resolution or relaxation.
It is here that the dissonance is carried to a more pleasing form, often taken to
the main tonality on long beats.

The model we propose is the following:

Conductor[n,m]
def
= Musician ‖ Cycle[n,m] ‖ tell(go) ‖ next (⋆(! tell(stop)))

‖!(unless stop next

catch stop in when end do

(Musician ‖ Cycle[n,m] ‖ tell(go))

Cycle[n,m]
def
= ⋆(tell(prep) ‖ ⋆[1,n](tell(diss) ‖ ⋆[1,m](tell(res))

The main entry point of the model is the agent Conductor (parameters n and m
bound the time to change from one stage of the dissonance cycle to the next). This
agent will activate the Musician and a process Cycle to motivate a dissonance. It also
gives a signal to the musician for starting the melody (tell(go)) and eventually it will
give another signal to end music generation (⋆(tell(stop)). Additionally, if the stop
signal has not already been given and the musician ends a dissonance, Conductor will
activate the Musician and the process Cycle again. This could be seen as a loop for
the musician to continue playing the melody and eventually to perform a dissonance
until the stop signal is detected.

The Cycle process posts the signals for each stage of the dissonance.

The agent Musician is defined as follows:

Musician
def
= when go do catch prep in Melody finally Stage1

Stage1
def
= catch diss in Preparation finally Stage2

Stage2
def
= catch res in Dissonance finally Stage3

Stage3
def
= Resolution ‖ tell(end)

The Musician will start executing the process Melody (supposed to play the
main melody of the whole song) waiting to catch the signal prep during it. When it
catches the signal, it interrupts (stop) the Melody and launches the Stage1 of the
dissonance.

The same philosophy applies to the agents Stage1 and Stage2 each of them wait-
ing for the signal telling to carry on the next stage in the dissonance sequence, also
assuming that process Preparation plays the preparation and process Dissonance
executes the dissonance.

Concurrent Constraint Models of Multimedia Interaction 15

To conclude the sequence, the agent Stage3 launches the process Resolution
(also assumed to play a resolution congruent with the dissonance) and posts a signal
end telling the conductor that the current dissonance is over.

The process Melody is the main harmonic structure the musician has planned for
the song. It is in charge of evolving the melody, so to speak. Processes Preparation,
Dissonance and Resolution will select nondeterministically a chord to play from a
set of chords specifically built to fulfill each one of the process tasks. For example,
the set of chords from the process Preparation is able to transcend to a dissonance
but when the process Dissonance takes the lead, the set of chords from where it will
choose to play will be dissonant ones.

This proposed concurrent model may be adapted easily to fit the management of
the dissonance according to the needs of the musician. The reader may see that any of
the steps to construct the sequence can be easily left out or changed without affecting
the integrity of the whole system.

1.6. Probabilistic extensions and Music Improvisation

Musical improvisation is another natural context for interacting and concurrent
agents. Improvisation is effective when agents behavior adapts to what has been
learned in previous interactions. A music style-learning/improvisation scheme such
as Factor Oracle (FO) [ALL 99, ASS 04] can be seen as a reactive system where sev-
eral learning and improvising agents react to information provided by the environment
or by other agents. In the following we recall the structure of the FO and a model of it
using the utcc calculus. Then, we show how suitable probabilistic extensions of CCP
allows for richer traversals of the structure to improve the quality of the improvisation.

1.6.1. The Factor Oracle (FO)

A FO is a finite state automaton constructed in an incremental fashion. A se-
quence of symbols s = σ1σ2 . . . σn is learned in such an automaton, which states
are 0, 1, 2 . . . n. There is always a transition arrow (called factor link) labeled by the
symbol σi going from state i − 1 to state i, 1 ≤ i < n. Depending on the structure
of s, other arrows will be added. Some are directed from a state i to a state j, where
0 ≤ i < j ≤ n. These also belong to the set of factor links and are labeled by
symbol σj . Some are directed “backwards”, going from a state i to a state j, where
0 ≤ j < i ≤ n. They are called suffix links, and bear no label (represented as ’⋆’
in Figure 1.5). The factor links model a factor automaton, that is every factor p in s
corresponds to a unique factor link path labeled by p, starting in 0 and ending in some
other state. Suffix links have an important property: a suffix link goes from i to j
iff the longest repeated suffix of s[1..i] is recognized in j. Thus suffix links connect
repeated patterns of s.

16 Constraints and Music

Figure 1.5. A FO automaton for s = ab

The oracle is learned on-line. For each new input symbol σi, a new state i is added
and an arrow from i − 1 to i is created with label σi. Starting from i − 1, the suffix
links are iteratively followed backward, until a state is reached where a factor link
with label σi originates (going to some state j), or until there is no more suffix links
to follow. For each state met during this iteration, a new factor link labeled by σi is
added from this state to i. Finally, a suffix link is added from i to the state j or to state
0 depending on which condition terminated the iteration.

Navigating the oracle in order to generate variants is straightforward : starting in
any place, following factor links generates a sequence of labelling symbols that are
repetitions of portions of the learned sequence; traversing one suffix link followed by
a factor link creates a recombined pattern sharing a common suffix with an existing
pattern in the original sequence. This common suffix is, in effect, the musical context
at any given time.

In [OLA 09] a utcc model of the FO is proposed. The model assumes a simple
constraint system with the predicate symbols edge(x, y, N) representing a link (suf-
fix or factor) between node x and y labeled with N . When a new symbol is provided,
the processes defined add the necessary constraints to obtain a representation of the
graph in the store. The advantage of using CCP-based calculi for this task is that the
inclusion of a new agent in the FO model (e.g. a learner agent for a second performer)
entails only a new process and new interactions, both with the new process and among
the existing ones. In traditional languages this usually means major changes in the
synchronization scheme, which are difficult to localize and control. In utcc, all syn-
chronization is done semantically, through the available information in the store.

1.6.2. Probabilistic Transversal of the FO

Once we have a model to construct the FO, the next step is to navigate it. It has
been shown, e.g., in [ASS 04], that assigning a probability to choose between playing
a learned factor or a new sequence leads to a better improvisation scheme.

The authors in [PÉR 08] study the integration of probabilistic information into
CCP. The language pntcc features both nondeterministic and probabilistic behav-
ior. The operational semantics of pntcc ensures the consistent interactions between

Concurrent Constraint Models of Multimedia Interaction 17

both the probabilistic and the nondeterministic choices. The semantics is based on a
probabilistic automaton [SEG 95] that separates the internal choices made probabilis-
tically by the processes from those external choices made nondeterministically under
the influence of a scheduler. As a result, the observable behavior of a system – what
the environment perceives from its execution - formalized by the semantics is purely
probabilistic; the influence of nondeterminism is regarded as unobservable.

Definition 7 (pntcc Processes) The pntcc processes result from adding to the syn-

tax in Definition 2 the process

⊗

i∈I

when ci do (Pi, ai)

where I is a finite set of indices, and for every ai ∈ R
(0,1] we have

∑

i inI

ai = 1

The intuition of this operator is as follows. Each ai associated with the process
Pi represents its probability of being selected for execution. Hence, the collection of
all ai represents a probability distribution (see e.g., [GUP 97] for other probabilistic
extension of CCP).

Using pntcc we can easily define a process to navigate probabilistically the FO.
When the signal play is detected, the process below chooses to follow a suffix link
with a probability ρ and to follow a factor link with a probability ρ − 1 (processes
Suffic and Factor are not important here and omitted for the sake of presentation).

Improv
def
= when play do (Suffix , ρ) ⊗ when play do (Factor , 1 − ρ)

Implementation of pntcc. The previous model has been implemented in Ntccrt

[TOR 09], a framework to execute ntcc and pntcc models. This system computes
each time-unit using the Gecode library (http://www.gecode.org/). It is worth
noticing that it is not necessary to “solve” a constraint satisfaction problem but to use
only constraint propagation (not enumeration) to compute the output of each time-
unit.

Ntccrt is written in C++ and specifications can be made in Common Lisp or in
OpenMusic [AGO 98], and then translated to C++. This framework can be also inte-
grated as a plugin for either Pure Data (PD) or Max/MSP [PUC 98] to take advantage
of the facilities offered by those languages to implement, for example, sound proces-
sors. We believe that using the graphical paradigm provided by Max or PD is difficult
and time-demanding to synchronize processes depending on complex conditions. On
the contrary, using Ntccrt we can model such systems where complex conditions can
be naturally represented by constraints.

18 Constraints and Music

1.7. Perspectives and Future Work

CCP has recently attracted a renewed attention as witnessed by the works [PAL 06,
BUS 07, BEN 09, BAR 10] on formalisms for concurrency exhibiting data-types, logic
assertions as well as tell and ask operations. These CCP-based formalisms are at an
early stage of development and they should be equipped with proof and verification
techniques that take advantage of the constraint nature of CCP. In particular, we en-
visage two strategic research directions for this purpose: The adaptation of the bisim-

ilarity-based proof techniques and automaton-based verification for CCP.

Bisimilarity is probably the main representative of equivalences in concurrency.
It captures our intuitive notion of process equivalence; two processes are equivalent
if they can match each other’s moves. A promising research direction is to explore
sound and complete notions of bisimilarity for CCP that benefit of the feasible proof
techniques typically associated with this equivalence in other frameworks.

The issue of automatic or machine-assisted verification has hitherto been far too
little considered for concurrent constraint-based formalisms. Several interesting ap-
plications of CCP are inherently complex and large, therefore, machine-assisted ver-
ification is essential. To the best of our knowledge only Villanueva et al (see e.g,
[FAL 06]) have addressed automatic verification but only in the context of a particu-
lar timed CCP calculus. Like for other process calculi, automatic verification of CCP
systems presents us with serious computational challenge. A potential research direc-
tion to take up the this challenge is to identify CCP fragments amenable to automatic
verification. We believe that one can use a symbolic approach by taking advantage
of the unique constraint nature of constraint-based calculi. Recall that constraints can
be used as symbolic compact representation of large, possibly infinite, set of states.
We believe that this idea can be adapted to produce a novel symbolic state space rep-
resentations based on temporal constraints: Namely constraints representing large,
possibly infinite, set of evolutions of systems. To the best of our knowledge temporal
constraints have not been used for symbolic techniques in verification.

All in all, we believe that concurrent constraint-based techniques can offer im-
portant benefits, such as runnable specifications and system properties assurance, to
system modeling in real applications, in particular in Music Interaction. Future re-
search should therefore focus on devising techniques that will allow an integrated
modeling, execution and verification environment for CCP similar to those available
for other formalisms in concurrency theory (e.g., [VIC 94]). Real-time simulators of
the kind we described above, coupled with the verifier and extended with means to
interface with existing standard music applications, such as sound synthesis/analysis
tools, would give musicians a very powerful and novel modeling environment.

Chapter 2

Bibliography

[AGO 98] AGON C., ASSAYAG G., DELERUE O., RUEDA C., “Objects, Time, and Constraints
in OpenMusic”, ICMC 98, 1998.

[ALL 83] ALLEN J. F., “Maintaining knowledge about temporal intervals”, Commun. ACM,
vol. 26, num. 11, ACM, 1983.

[ALL 99] ALLAUZEN C. CROCHEMORE M. R. M., “Factor oracle: a new structure for pattern
matching”’, Proc. of SOFSEM’99, LNCS, 1999.

[ALL 07] ALLOMBERT A., ASSAYAG G., DESAINTE-CATHERINE M., “A system of interac-
tive scores based on Petri nets”, proceedings of SMC ’ 07, 2007.

[ASS 04] ASSAYAG G., DUBNOV S., “Using Factor Oracles for Machine Improvisation”, Soft

Comput., vol. 8, num. 9, p. 604-610, 2004.

[BAR 10] BARTOLETTI M., ZUNINO R., “A Calculus of Contracting Processes”, LICS, IEEE
Computer Society, p. 332-341, 2010.

[BEN 09] BENGTSON J., JOHANSSON M., PARROW J., VICTOR B., “Psi-calculi: Mobile
processes, nominal data, and logic”, Proc. of LICS, IEEE CS, 2009.

[BER 92] BERRY G., GONTHIER G., “The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation”, Science of Computer Programming, vol. 19, num. 2,
p. 87–152, 1992.

[BER 93] BERRY G., “Preemption in Concurrent Systems”, Proceedings of the 13th Confer-

ence on Foundations of Software Technology and Theoretical Computer Science, London,
UK, Springer-Verlag, p. 72–93, 1993.

[BOE 97] DE BOER F. S., GABBRIELLI M., MARCHIORI E., PALAMIDESSI C., “Proving
Concurrent constraint Programs Correct”, ACM Transactions on Programming Languages

and Systems, vol. 19, num. 5, 1997.

[BUS 07] BUSCEMI M. G., MONTANARI U., “CC-Pi: A Constraint-Based Language for
Specifying Service Level Agreements”, In Proc. of ESOP, 2007.

19

20 Constraints and Music

[CHE 07] CHEMILLIER M., Les Mathématiques Naturelles, Odile Jacob, 2007.

[FAL 06] FALASCHI M., VILLANUEVA A., “Automatic Verification of tccp programs”, The-

ory and Practice of Logic Programming, vol. 6, p. 265-300, 2006.

[GUP 97] GUPTA V., JAGADEESAN R., SARASWAT V. A., “Probabilistic Concurrent Con-
straint Programming”, Proc. of CONCUR 97, London, UK, Springer-Verlag, 1997.

[HEN 98] HENTENRYCK P. V., SARASWAT V. A., DEVILLE Y., “Design, Implementation,
and Evaluation of the Constraint Language cc(FD)”, J. Log. Program., vol. 37, num. 1-3,
1998.

[MAN 91] MANNA Z., PNUELI A., The Temporal Logic of Reactive and Concurrent Systems:

Specification, Springer-Verlag, 1991.

[MIL 99] MILNER R., Communicating and Mobile Systems: the Pi-Calculus, Cambridge
University Press, 1999.

[NIE 02] NIELSEN M., PALAMIDESSI C., VALENCIA F., “Temporal Concurrent Constraint
Programming: Denotation, Logic and Applications”, Nordic Journal of Computing, vol. 9,
num. 1, 2002.

[OLA 08] OLARTE C., VALENCIA F. D., “Universal Concurrent Constraint Programing:
Symbolic Semantics and Applications to Security”, Proc. of SAC 2008, ACM, 2008.

[OLA 09] OLARTE C., RUEDA C., “A declarative language for dynamic multimedia interac-
tion systems”, Proc. of MCM, Springer-Verlag, 2009.

[PAL 06] PALAMIDESSI C., SARASWAT V., VALENCIA F., VICTOR B., “On the Expressive-
ness of Linearity vs Persistence in the Asychronous Pi-Calculus”, Proc. of LICS’06, IEEE
CS, 2006.

[PÉR 08] PÉREZ J. A., RUEDA C., “Non-determinism and Probabilities in Timed Concur-
rent Constraint Programming”, Proc. of ICLP 2008, vol. 5366 of LNCS, Springer, 2008,
Extended version available at http://www.japerez.phipages.com.

[PER 09] PERCHY S., SARRIA G., “Dissonances: Brief Description and its Computational
Representation in the RTCC Calculus”, Proc. of SMC2009, Porto, Portugal, July 2009.

[PUC 98] PUCKETTE M., APEL T., ZICARELLI D., “Real-time audio analysis tools for Pd
and MSP”, Proc. of ICMC 1998, 1998.

[SAR 93] SARASWAT V. A., Concurrent Constraint Programming, MIT Press, 1993.

[SAR 94] SARASWAT V., JAGADEESAN R., GUPTA V., “Foundations of Timed Concurrent
Constraint Programming”, Proc. of LICS’94, IEEE CS, 1994.

[SAR 10] SARRIA G., “Improving the Real-Time Concurrent Constraint Calculus with a De-
lay Declaration”, IProc. of ICCSA 2010, San Francisco, California, USA, October 2010.

[SEG 95] SEGALA R., “Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, MIT”, 1995.

[TOR 09] TORO M., AGÓN C., ASSAYAG G., RUEDA C., “Ntccrt: A concurrent constraint
framework for real-time interaction”, Proc. of ICMC 2009, 2009.

[VIC 94] VICTOR B., MOLLER F., “The Mobility Workbench - A Tool for the pi-Calculus”,
CAV, Springer, p. 428-440, 1994.

