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Estimation of the Covariance Matrix of Large Dimensional Data

This paper deals with the problem of estimating the covariance matrix of a series of independent multivariate observations, in the case where the dimension of each observation is of the same order as the number of observations. Although such a regime is of interest for many current statistical signal processing and wireless communication issues, traditional methods fail to produce consistent estimators and only recently results relying on large random matrix theory have been unveiled.

In this paper, we develop the parametric framework proposed by Mestre, and consider a model where the covariance matrix to be estimated has a (known) finite number of eigenvalues, each of it with an unknown multiplicity. The main contributions of this work are essentially threefold with respect to existing results, and in particular to Mestre's work: To relax the (restrictive) separability assumption, to provide joint consistent estimates for the eigenvalues and their multiplicities, and to study the variance error by means of a Central Limit theorem.

I. INTRODUCTION

, direction of arrival estimation for antenna arrays [2], blind subspace estimation [3], capacity estimation [4], estimation/detection procedures [2], [5], etc.

In the case where the dimension N of the observations is small compared to the number M of observations, then the empirical covariance matrix based on the observations often provides a good

estimate for the unknown covariance matrix. This estimate becomes however much less accurate, and even not consistent with the dimension N getting higher (see for instance [START_REF] Mestre | On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[END_REF]Theorem 2]).

An interesting theoretical framework for modern estimation of multi-dimensional variables occurs whenever the number of available samples M grows at the same pace as the dimension N of the considered variables. Shifting to this new assumption induces fundamental differences in the behavior of the empirical covariance matrix as analyzed in Mestre's work [START_REF] Mestre | On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[END_REF], [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF]. Recently, several attempts have been done to address this problem (cf. [START_REF] Mestre | On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[END_REF], [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], [START_REF] Karoui | Spectrum estimation for large dimensional covariance matrices using random matrix theory[END_REF], [START_REF] Bai | On estimation of the population spectral distribution from a high-dimensional sample covariance matrix[END_REF]) using large random matrix theory which proposed powerful tools, mainly spurred by the G-estimators of Girko [START_REF] Girko | Ten years of general statistical analysis[END_REF], to cope with this new context. This was for instance the main ingredient used in [START_REF] Karoui | Spectrum estimation for large dimensional covariance matrices using random matrix theory[END_REF] and [START_REF] Ledoit | Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices[END_REF], where grid-based techniques for inverting the Marčenko-Pastur equation were proposed.

In this article, we shall consider the case where the dimension of each observation N together with the sample dimension M go to infinity at the same pace, i.e. that their ratio converges to some nonnegative constant c > 0. In order to present the contribution provided in this paper, let us describe the model under study. Consider a N ×M matrix X N = (X ij ) whose entries are independent and identically distributed (i.i.d.) random variables. Let R N be a N × N Hermitian matrix with L (L being fixed and known) distinct eigenvalues 0 < ρ 1 < • • • < ρ L with respective multiplicities N 1 , • • • , N L (notice that L i=1 N i = N ). Consider now

Y N = R 1/2 N X N .
The matrix Y N = [y 1 , • • • , y M ] is the concatenation of M independent observations, where each observation writes

y i = R 1/2 N x i with X N = [x 1 , • • • , x M ].
In particular, the covariance matrix of each observation y i is R N = Ey i y H i (matrix R N is sometimes called the population covariance matrix). We consider the problem of estimating individually the eigenvalues ρ i as well as their multiplicities N i . Among the proposed parametric techniques, we cite the one developed by Mestre [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF] and taken up by Vallet et al [START_REF] Vallet | Improved subspace estimation for multivariate observations of high dimension: the deterministic signals case[END_REF] and Couillet et al [START_REF] Couillet | Eigen-Inference for Energy Estimation of Multiple Sources[END_REF] for more elaborated models. Although being computationally efficient, this technique requires a separability condition, namely the assumption that the number of samples is large compared to the dimension of each sample (small limiting ratio c = lim N M > 0). In such a case, the limiting spectrum of the empirical covariance matrix possesses as many clusters 1 as there are eigenvalues to be estimated, and each eigenvalue can be estimated by a contour integral surrounding the related cluster. Mestre's technique cannot be applied anymore in the case where c is larger (which 1 By cluster, we mean a connex component of the support of the limiting probability distribution of the spectrum.

DRAFT [START_REF] Vaart | Asymptotic statistics[END_REF] reflects a higher dimension of the observation dimension with respect to the sample dimension). In fact, the dimension of the clusters may grow and neighbouring clusters may merge, violating the one-to-one correspondence between clusters and eigenvalues to be estimated (see for instance Fig. 1 and2). A way to circumvent the separability condition has recently been proposed by Bai, Chen and Yao [START_REF] Bai | On Estimation of the Population Spectral Distribution from a High-Dimensional Sample Covariance Matrix[END_REF],

based on the use of the empirical asymptotic moments:

αk = 1 M Tr (Y N Y N ) k , k ∈ {1, • • • , 2L} ,
which can be shown to be a sufficient statistics to estimate

N1 N , • • • , NL N , ρ 1 , • • • , ρ L .
Although being robust to separability condition, this technique suffers from numerical difficulties, since the proposed estimator has no closed-form expression and thus should be determined numerically. An interesting contribution, although not directly focused on estimating the covariance of the observations is the work by Rubio and Mestre [START_REF] Rubio | Generalized Consistent Estimation on Low-rank Krylov Subspaces of Arbitrarily High Dimension[END_REF], where an alternative way to estimates the moments

γ k = 1 N Tr(R k N ),
for all k ∈ N is proposed, yielding an explicit (yet lengthy) formula.

In this paper, we improve existing work in several directions: With respect to Mestre's seminal papers [START_REF] Mestre | On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[END_REF], [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], we propose a joint estimation of the eigenvalues and their multiplicities, and drop the separability assumption. The proposed estimator is close in spirit to the one in [START_REF] Bai | On Estimation of the Population Spectral Distribution from a High-Dimensional Sample Covariance Matrix[END_REF], although we carefully establish the existence and uniqueness of the estimator, a fact that is not explicit in [START_REF] Bai | On Estimation of the Population Spectral Distribution from a High-Dimensional Sample Covariance Matrix[END_REF] (we shall also mention a close ongoing work by Li and Yao, not yet disclosed to our knowledge) . Finally, we study the fluctuations of the estimator and establish a Central Limit theorem.
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The remainder of the paper is organized as follows. In Section II, the main assumptions are provided and Mestre's estimator [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF] is briefly reviewed. In Section III, the proposed estimator is described. Its fluctuations are studied in Section IV, where a central limit theorem is stated. Simulations are presented in Section V, and a discussion ends the paper in Section VI. Finally, the remaining technical details are provided in the Appendix.

II. MAIN ASSUMPTIONS AND GENERAL BACKGROUND

A. Notations

In this paper, the notations s, x, M stand for scalars, vectors and matrices, respectively. Superscripts and ℑ(z) respectively stand for z's real and imaginary parts, while i stands for √ -1; z stands for z's conjugate.

If Z ∈ C N ×N is a nonnegative Hermitian matrix with eigenvalues (ξ i ; 1 ≤ i ≤ N ), we denote in the sequel by F Z the empirical distribution of its eigenvalues (also called spectral distribution of Z), i.e.:

F Z (d λ) = 1 N N i=1 δ ξi (d λ) ,
where δ x stands for the Dirac probability measure at x.

Convergence in distribution will be denoted by --→.

B. Main assumptions

Consider the model

Y N = R 1/2 N X N , and 
RN = 1 M Y N Y H N .
At first, an assumption about the matrix R N is needed:

Assumption 1: R N is a N ×N Hermitian non-negative definite matrix with L (L being fixed) distinct

eigenvalues 0 < ρ 1 < • • • < ρ L with respective multiplicities N 1 , • • • , N L (notice that L i=1 N i = N ).
As mentioned earlier, we consider the asymptotic regime where the number of samples M and the number of variables N grow to infinity at the same pace, together with the multiplicities of each of R N 's eigenvalues.

Assumption 2: Let M, N be integers such that:

N, M → ∞ , with N M → c ∈ (0, ∞) , and 
N i N → c i ∈ (0, ∞) , 1 ≤ i ≤ L. (1) 
This assumption will be shortly referred to as N, M → ∞.

The following assumption is standard and is sufficient for estimation purposes.

Assumption 3: Let X N = (X ij ) be a N × M matrix whose entries are i.i.d. random variables in C

such that E(X 1,1 ) = 0, E(|X 1,1 | 2 ) = 1 with finite fourth moment: E(|X 1,1 | 4 ) < ∞.
Remark 1: In order to establish the fluctuations of this estimator, the Gaussianity of the entries of X N is needed (although this technical condition may be removed with substantial extra work).

Assumption 3b:

The entries of the N × M matrix X N = (X ij ) are i.i.d. standard complex Gaussian variables, i.e. X ij = U + iV , where U, V are both independent real Gaussian random variables N(0, 1 2 ).

It is well-known in large random matrix theory that under Assumptions 1, 2 and 3, F RN converges to a limiting probability distribution. In Mestre's paper [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], a separability condition2 is needed in order to derive the estimator of R N 's eigenvalues:

Assumption 4:
The support S of the limiting probability distribution of F RN is composed of L compact connex disjoint subsets, and not reduced to a singleton.

Remark 2: Note that when M < N , matrix RN is singular and thus admits (N -M ) eigenvalues equal to zero. Hence, the limiting spectrum of RN has an additional mass in zero with weight 1 -1 c , which will not be considered among the L clusters.

The separability condition is illustrated in Fig. 1 and2. In both figures, the limiting distribution of F RN is drawn (red line). In Fig. 1, R N 's eigenvalues are ρ 1 = 1, ρ 2 = 3, ρ 3 = 10, they have the same multiplicity and the ratio c is equal to 0.1. In this case, the separability condition is satisfied as the limiting distribution exhibits 3 clusters. The separability condition is no longer satisfied in Fig. 2, where ρ 1 = 1, ρ 2 = 3, ρ 3 = 5 and c = 0.375, but where the limiting distribution only exhibits a single cluster.

C. Background on Large Random Matrices, Mestre's estimators and their fluctuations

The Stieltjes transform has proved since Marčenko and Pastur's seminal paper [START_REF] Marcenko | Distributions of eigenvalues for some sets of random matrices[END_REF] to be extremely efficient to describe the limiting spectrum of large dimensional random matrices. Given a probability distribution P defined over R + , its Stieltjes transform is a C-valued function defined by:

m P (z) = R + P(dλ) λ -z , z ∈ C\R + .
In the case where F Z is the spectral distribution associated to a nonnegative Hermitian matrix Z ∈ C N ×N with eigenvalues (ξ i ; 1 ≤ i ≤ N ), the Stieltjes transform m Z of F Z takes the particular form:

m Z (z) = F Z (d λ) λ -z = 1 N N i=1 1 ξ i -z = 1 N Tr (Z -zI N ) -1 ,
which is exactly the normalized trace of the resolvent (Z -zI N ) -1 .

An important result associated to the model under investigation here is Bai and Silverstein's description of the limiting spectral distribution of RN [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] (see also [START_REF] Marcenko | Distributions of eigenvalues for some sets of random matrices[END_REF]):

Theorem 1: [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] Assume that Assumptions 1, 2, 3 hold true and denote by F R the limiting spectral

distribution of R N , i.e. F R (d λ) = L k=1 c k δ ρk (d λ).
The spectral distribution F RN of the sample covariance matrix RN converges (weakly and almost surely) to a probability distribution F as M, N → ∞, whose Stieltjes transform m(z) satisfies:

m(z) = 1 c m(z) -1 - 1 c 1 z , for z ∈ C + = {z ∈ C, ℑ(z) > 0}
, where m(z) is defined as the unique solution in C + of:

m(z) = -z -c t 1 + tm(z) dF R (t) -1
.

Remark 3: Note that m(z) is also a Stieltjes transform whose associated distribution function will be denoted F , which turns out to be the limiting spectral distribution of F RN where RN is defined as: 

RN 1 M X H N R N X N .
m RN (z) = M N m RN (z) -1 - M N 1 z . (2) 
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Remark 5: Denote by m N (z) and m N (z) the finite-dimensional counterparts of m(z) and m(z), respectively, defined by the relations:

     m N (z) = -z -N M t 1+tm N (z) dF RN (t) -1 , m N (z) = M N m N (z) -1 -M N 1 z . (3) 
It can be shown that m N and m N are Stieltjes transforms of given probability measures F N and F N , respectively (cf. [START_REF] Couillet | Random matrix methods for wireless communications[END_REF]Theorem 3.2]).

In [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], Mestre proposes a novel approach to estimate the eigenvalues (ρ k ; 1 ≤ k ≤ L) of the population covariance matrix based on the observations RN under the additional Assumption 4. His approach relies on large random matrix theory and the separability condition presented above plays a major role in the mere definition of the estimators. As it will be a useful background in the sequel, we provide hereafter a brief description of Mestre's results:

Theorem 2: [7] Denote by λ1 ≤ • • • ≤ λN the ordered eigenvalues of RN . Under Assumptions 1, 2,
3, 4 and assuming moreover that the multiplicities N 1 , • • • , N L are known, the following convergence holds true:

ρk -ρ k a.s. ------→ M,N →∞ 0 , (4) 
where

ρk = M N k m∈Nk λm -μm , (5) 
with N k = { k-1 j=1 N j + 1, . . . , k j=1 N j } and μ1 ≤ • • • ≤ μN the (real and) ordered solutions of:

1 N N m=1 λm λm -µ = M N (6) 
repeated with their multiplicites. When N > M , we use the convention μ1 = • • • = μN-M+1 = 0, whereas μN-M+2 , • • • , μN contain the positive solutions to the above equation.

Remark 6: Notice that (6) associated to (2) readily implies that for non null μi , m RN (μ i ) = 0.

Otherwise stated, the μi 's are the zeros of m RN . This fact will be of importance in the sequel.

Sketch of proof :

We can now describe the main steps of Theorem 2. By Cauchy's formula, write:

ρ k = N N k 1 2iπ Γk 1 N L r=1 N r w ρ r -w dw ,
where 1), we can write:

eigenvalue distribution of R N is formed of L distinct clusters (S k , 1 ≤ k ≤ L) (cf. Figure
ρ k = M 2iπN k Ck z m ′ N (z) m N (z) dz , 1 ≤ k ≤ L, (7) 
where C k denotes positively oriented contours which enclose the corresponding clusters S k . Defining

ρk M 2πiN k Ck z m ′ RN (z) m RN (z) dz , 1 ≤ k ≤ L , (8) 
dominated convergence arguments ensure that ρk -ρ k → 0, almost surely. The integral form of ρk can then be explicitly computed thanks to residue calculus, and this finally yields [START_REF] Wax | Detection of signals by information theoretic criteria[END_REF].

Recently a central limit theorem has been derived [START_REF] Yao | Fluctuations of an improved population eigenvalue estimator in sample covariance matrix model[END_REF] for this estimator under the extra assumption that the entries of X N are Gaussian .

Theorem 3: [START_REF] Yao | Fluctuations of an improved population eigenvalue estimator in sample covariance matrix model[END_REF] With the same notations as before, under Assumptions 1, 2, 3b, 4 and with known

multiplicities N 1 , • • • , N L , then: (M (ρ k -ρ k ), 1 ≤ k ≤ L) D ------→ M,N →∞ x ∼ N L (0, Θ) ,
where N L refers to a real L-dimensional Gaussian distribution, and Θ is a L × L matrix whose entries Θ kℓ are given by,

Θ kℓ = - 1 4π 2 c 2 c k c ℓ Ck Cℓ m ′ (z 1 )m ′ (z 2 ) (m(z 1 ) -m(z 2 )) 2 - 1 (z 1 -z 2 ) 2 1 m(z 1 )m(z 2 ) dz 1 dz 2 ,
where C k (resp. C ℓ ) is a closed counterclockwise oriented contour which only contains the k-th cluster (resp. ℓ-th) .

The proof of this theorem is based on [START_REF] Bai | CLT of linear spectral statistics of large dimensional sample covariance matrices[END_REF] and the continuous mapping theorem. Details are available in [START_REF] Yao | Fluctuations of an improved population eigenvalue estimator in sample covariance matrix model[END_REF].

The main objective of this article is to provide estimators for the ρ k 's without relying anymore on the separability condition (i.e. to remove Assumption 4). A Central Limit Theorem will be established as well for the proposed estimator. As a by-product, the knowledge of the multiplicities will no longer be needed, and they will be estimated as well.

III. ESTIMATION OF THE EIGENVALUES ρ i

In this section, we provide a method to estimate consistently the eigenvalues of the population covariance matrix without the need to the separability condition (cf. Fig. 2). Our method is based on the asymptotic evaluation of the moments of the eigenvalues of R N ,

γ i = L k=1 Nk N ρ i k , 1 ≤ i ≤ 2L -1. If DRAFT January 23, 2012
( m i ) 1≤i≤2L-1 are the empirical moments of the sample eigenvalues, then it is well known that except for i = 1, γ i cannot be approximated by m i . Consistent estimators for γ i are provided in [START_REF] Rubio | Generalized Consistent Estimation on Low-rank Krylov Subspaces of Arbitrarily High Dimension[END_REF], where it has been proved that:

γ i -γi -------→ N,M →+∞ 0,
where

γi = i l=1 µ S (l, i) m l ,
µ S (l, i) being some given coefficients that depend on the system dimensions and on the empirical moments m i [START_REF] Rubio | Generalized Consistent Estimation on Low-rank Krylov Subspaces of Arbitrarily High Dimension[END_REF]. An alternative is to use the Stieltjes transform:

Lemma 1: Assume that Assumptions 1, 2 and 3 hold true. Let γi be the real quantities given by:

           γ0 = 1, γ1 = -M 2N iπ C zm ′ RN (z) m RN (z) dz, γk = M (-1) k 2N kiπ C dz m k RN (z) , for 2 ≤ k ≤ 2L -1
where C is a counterclockwise oriented contour which encloses the support S of the limiting distribution of the eigenvalues of RN . Let γ i be the moments of the eigenvalues of R N , i.e.

γ i = L k=1 Nk N ρ i k . Then, for 1 ≤ i ≤ 2L -1, γi -γ i a.s. ------→ N,M →∞ 0 .
The proof of this lemma is postponed to Appendix A. While the estimates proposed by [START_REF] Rubio | Generalized Consistent Estimation on Low-rank Krylov Subspaces of Arbitrarily High Dimension[END_REF] are better in practice, estimates (γ i ) will be of interest in order to establish the central limit theorem, and to obtain a closed-form expression of the asymptotic variance.

An interesting remark is that the map that links the eigenvalues and their multiplicities to their first 2L -1 moments is invertible. Retrieving the eigenvalues from the estimates of the 2L -1 moments is thus possible. This is the basic idea on which our method is founded.

The main result is stated as below:

Theorem 4: Recall the notations of Lemma 1 and consider the system of equations:

             L i=1 x i = 1, L i=1 x i y i = γ1 , L i=1 x i y k i = γk for 2 ≤ k ≤ 2L -1, (9) 
where (x i ) 1≤i≤L and (y i ) 1≤i≤L are 2L unknown parameters. Then under Assumptions 1, 2, 3, the system of equations ( 9) has one and only one real solution

(ĉ 1 , • • • , ĉL , ρ1 , • • • , ρL ) with ρ1 ≤ • • • ≤ ρL . January 23, 2012 DRAFT Moreover, (ĉ 1 , • • • , ĉL , ρ1 , • • • , ρL ) is a consistent estimator of (c 1 , • • • , c L , ρ 1 , • • • , ρ L ), i.e.,
ĉℓ -c ℓ a.s.

------→ N,M →∞ 0 and ρℓ -ρ ℓ a.s.

------→ N,M →∞ 0,

with c ℓ = lim Nℓ N for 1 ≤ ℓ ≤ L.
Remark 7: The condition of separability is not required in the previous theorem. Moreover, the multiplicities are assumed to be unknown and thus have to be estimated. Fig 2 represents a case where the three clusters are merged into one cluster. In such a situation, the estimator in [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF] is biased whereas the proposed one is asymptotically consistent.

Remark 8: We use the estimator proposed in Lemma 1. However, the proof below does not depend on the estimator of the moments we choose. In fact, for any consistent estimator of the moments γ i , the above theorem always holds true.

Proof: The proof can be split into two main steps. By using the inverse function theorem, we can prove the almost sure existence of a real solution. Then, the uniqueness is ensured by a matrix inversion argument.

1) Existence of a real solution of the system.

The first task is to show that the system of equations ( 9) admits, for N sufficiently large, one real

solution (ĉ 1 , • • • , ĉL , ρ1 • • • , ρL ) satisfying ρ1 < ρ2 < • • • < ρL .
We shall also establish the consistency of the obtained solution. The proof of the existence of a real solution follows in the same way as in [START_REF] Bai | On estimation of the population spectral distribution from a high-dimensional sample covariance matrix[END_REF].

It is merely based on the use of the inverse function theorem which ensures the existence as soon as the Jacobian matrix of the considered transformation is invertible. We recall below the inverse function theorem [START_REF] Krantz | Function Theory of Several Complex Variables[END_REF]:

Theorem 5: [START_REF] Krantz | Function Theory of Several Complex Variables[END_REF] Let f : R n → R n be a continuously differentiable function. Let a and b be vectors of R n such that f (a) = b. If the Jacobian of f at a is invertible, then there exists a neighborhood U containing a such that f : U → f (U ) is a diffeomorphism, i.e, for every y ∈ f (U ) there exists a unique

x such that f (x) = y. In particular, f is invertible in U .

Consider the functional f defined as:

f (x 1 , • • • , x L , y 1 , • • • , y L ) = L ℓ=1 x ℓ , L ℓ=1 x ℓ y ℓ , • • • , L ℓ=1 x ℓ y 2L-1 ℓ . DRAFT January 23, 2012 Consider z = (x 1 , • • • , x L , y 1 , • • • , y L ) and denote by c = (c 1 , • • • , c L , ρ 1 , • • • , ρ L )
; we then have:

M ∂f ∂z z=c =         1 • • • 1 0 • • • 0 ρ 1 • • • ρ L c 1 • • • c L . . . . . . . . . . . . . . . . . . ρ 2L-1 1 • • • ρ 2L-1 L (2L -1)c 1 ρ 2L-2 1 • • • (2L -1)c L ρ 2L-2 L         .
We will show that M is invertible by contradiction. Assume that M is singular. Then, there exists a non

null vector λ = [λ 1 , • • • , λ 2L ] T such that M T λ = 0. Consider the polynomial P(X) = 2L-1 i=0 λ i+1 X i .
We easily observe that M T λ = 0 implies that

P(ρ ℓ ) = P ′ (ρ ℓ ) = 0 , for 1 ≤ ℓ ≤ L .
In particular, the multiplicity of each ρ ℓ is at least 2. This is impossible since the degree of P is at most 2L -1 (recall that all the eigenvalues ρ ℓ are pairwise distinct). Matrix M is therefore invertible. The inverse function theorem then applies. Denote by

ψ i = L k=1 c k ρ i k for 0 ≤ i ≤ 2L -1. There exists a neighborhood U of (c 1 , • • • , c L , ρ 1 , • • • , ρ L ) and a neighborhood V of (ψ 0 , • • • , ψ 2L-1
) such that f is a diffeomorphism from U onto V . On the other hand, we have: γi -γ i a.s.

--→ 0.

As γ i -ψ i → 0, therefore, almost surely, (γ 0 , • • • , γ2L-1 ) ∈ V for N and M large enough. Hence, a real solution

(ĉ 1 , • • • , ĉL , ρ1 , • • • , ρL ) = f -1 (γ 0 , • • • , γ2L-1 ) ∈ U
exists. And by the continuity, one can get easily that:

ĉℓ -c ℓ a.s. ------→ N,M →∞ 0 and ρℓ -ρ ℓ a.s. ------→ N,M →∞ 0 for 1 ≤ ℓ ≤ L .

2) Uniqueness of the solution of the system.

Consider the polynomial Q with degree L defined as:

Q(X) = L ℓ=0 (X -ρℓ ) △ = L ℓ=0 s ℓ X ℓ where s L = 1. Denote by s = [s 0 , • • • , s L-1 ] T . It is clear that g : (ρ 1 , • • • , ρL ) → s is a homeomorphism.
It remains thus to show that vector s is uniquely determined by (γ 0 , • • • , γ2L-1 ).
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It is clear that each ρk is also the zero of the polynomial functions R ℓ (X) given by:

R ℓ (X) = L i=0 s i X i+ℓ ,
where 0 ≤ ℓ ≤ L -1. In other words, for 1 ≤ k ≤ L, we get:

L i=0 s i ρℓ+i k = 0,
or equivalently:

L i=0 s i ĉk ρℓ+i k = 0. (10) 
Summing [START_REF] Girko | Ten years of general statistical analysis[END_REF] over k, we obtain:

L i=0 γi+ℓ s i = 0 , (11) 
for 0 ≤ ℓ ≤ L -1. Since s L = 1, (11) becomes:

γL+ℓ + L-1 i=0 s i γi+ℓ = 0 , (12) 
for 0 ≤ ℓ ≤ L -1.

Writing ( 12) in a matrix form, we get: Γs = -b, where

Γ =         γ0 γ1 • • • γL-1 γ1 γ2 • • • γL . . . . . . . . . . . . γL-1 γL • • • γ2L-2         and b =      γL . . . γ2L-1      .
On the other hand, we have Γ = ADA T , where

D = diag(ĉ 1 , ĉ2 , • • • , ĉL ) and A =         1 1 • • • 1 ρ1 ρ2 • • • ρL . . . . . . . . . ρL-1 1 ρL-1 2 • • • ρL-1 L         . Then, det(Γ) = L k=1 ĉk 1≤i<j≤L (ρ i -ρj ) 2 > 0.
Therefore, the vector s is then uniquely determined by Γ and b and is given by:

s = -Γ -1 b.
Hence the unicity. The proof is complete.
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IV. FLUCTUATIONS OF THE ESTIMATOR

In this section, we shall study the fluctuations of the multiplicities and eigenvalues estimators

(ĉ 1 , • • • , ĉL , ρ1 , • • • , ρL )
introduced in Theorem 4. In particular, we establish a central limit theorem for the whole vector in the case where the entries of matrix X N are Gaussian. 

M ĉ1 - N 1 N , • • • , ĉL - N L N , ρ1 -ρ 1 , • • • , ρL -ρ L D ------→ N,M →∞ N 2L (0, Θ)
where Θ is a 2L × 2L matrix admitting the decomposition

Θ = M -1 WM -1 T with M =         1 • • • 1 0 • • • 0 ρ 1 • • • ρ L c 1 • • • c L . . . . . . . . . . . . . . . . . . ρ 2L-1 1 • • • ρ 2L-1 L (2L -1)c 1 ρ 2L-2 1 • • • (2L -1)c L ρ 2L-2 L         and W = 0 0 0 V .
where V is a (2L -1) × (2L -1) matrix whose entries are given by (for 1 ≤ k, ℓ ≤ 2L -1):

V k,ℓ = - (-1) k+ℓ 4π 2 c 2 C1 C2 m ′ (z 1 )m ′ (z 2 ) (m(z 1 ) -m(z 2 )) 2 - 1 (z 1 -z 2 ) 2 × 1 m k (z 1 )m ℓ (z 2 ) d z 1 d z 2
where C 1 and C 2 are two closed contours non-overlapping which contain the support S of F and are counterclockwise oriented.

Proof: The proof relies on the same techniques used in [START_REF] Yao | Fluctuations of an improved population eigenvalue estimator in sample covariance matrix model[END_REF]. We outline hereafter the main steps and provide then the details.

By Theorem 4, the estimate vector (ĉ 1 , • • • , ĉL , ρ1 , • • • , ρL ) verifies the following system of equations:

         L i=1 ĉi = 1, L i=1 ĉi ρi = γ1 , L i=1 ĉi ρk i = γk for 2 ≤ k ≤ 2L -1,
where the γi 's are the moment estimates provided by Lemma 1.

Using the integral representation of L i=1 c i ρ i and L i=1 c i ρ k i (cf. Formula ( 17)), we get:

           L i=1 M ĉi -Ni N = 0, L i=1 M ĉi ρi -Ni N ρ i = -M 2 2N iπ C z m ′ RN (z) m RN (z) - m ′ N (z) m N (z) dz, L i=1 M ĉi ρk i -Ni N ρ k i = M 2 (-1) k 2i(k-1)N π C 1 m RN (z) k-1 - 1 m N (z) k-1 dz, 2 ≤ k ≤ 2L -1.
January 23, 2012 DRAFT Denote by C(C, C) the set of continuous functions from C to C endowed with the supremum norm u ∞ = sup C |u|. In the same way as in [START_REF] Yao | Fluctuations of an improved population eigenvalue estimator in sample covariance matrix model[END_REF], consider the process:

(X N , X ′ N , u N , u ′ N ) : C → C, where X N (z) = M m RN (z) -m N (z) , X ′ N (z) = M m ′ RN (z) -m ′ N (z) , u N (z) = m RN (z), u ′ N (z) = m ′ RN (z).
Then, M L i=1 ĉi ρi -Ni N ρ i can be written as:

M L i=1 ĉi ρi - N i N ρ i = - M 2iN π C z m N (z)X ′ N (z) -u ′ N (z)X N (z) m N (z)u N (z) dz, Υ N (X N , X ′ N , u N , u ′ N ),
where

Υ N (x, x ′ , u, u ′ ) = - M 2iN π C z m N (z)x ′ (z) -u ′ (z)x(z) m N (z)u(z) dz.
On the other hand, using the decomposition

a k -b k = (a -b) k-1 ℓ=0 a ℓ b k-1-ℓ , we can prove that: L i=1 M ĉi ρk i - N i N ρ k i = M 2 (-1) k 2iN π(k -1) C k-2 ℓ=0 - m RN (z) -m N (z) m ℓ+1 RN (z)m k-1-ℓ N (z) dz = M (-1) k+1 2iN (k -1)π C k-2 ℓ=0 X N (z)u N (z) -ℓ-1 m N (z) -k+1+ℓ dz Φ N,k (X N , u N ), for 2 ≤ k ≤ 2L -1, where Φ N,k (x, u) = M (-1) k+1 2iN (k -1)π C k-2 ℓ=0 x(z)u(z) -ℓ-1 m N (z) -k+1+ℓ dz.
The main idea of the proof of the theorem lies in the following steps:

1) Prove the convergence of [Υ N (X N , X ′ N , u N , u ′ N ), Φ N,2 (X N , u N ), • • • , Φ N,L (X N , u N )]
T to a Gaussian random vector with the help of the continuous mapping theorem.

2) Compute the limiting covariance between M

L i=1 ĉi ρk i -Ni N ρ k i and M L i=1 ĉi ρℓ i -Ni N ρ ℓ i . 3) Conclude by expressing M ĉ1 -N1 N , • • • , ĉL -NL N , ρ1 -ρ 1 , • • • , ρL -ρ L T as a linear function of M [γ 0 -γ 0 , • • • , γ2L-1 -γ 2L-1 ] T .
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A. Fluctuations of the moments

The convergence of Υ N (X N , X ′ N , u N , u ′ N ) to a Gaussian random variable has been established in [START_REF] Yao | Fluctuations of an improved population eigenvalue estimator in sample covariance matrix model[END_REF]. It has been proved that:

Υ N (X N , X ′ N , u N , u ′ N ) D ------→ M,N →∞ Υ(X, Y, m, m ′ )
where

Υ(x, y, v, w) = 1 2iπc C z m(z)y(z) -w(z)x(z) m(z)v(z) dz.
and (X, Y ) is a Gaussian process with mean function zero and covariance function given by:

cov (X(z), X(z)) = m ′ (z)m ′ (z) (m(z) -m(z)) 2 - 1 (z -z) 2 κ(z, z), cov (Y (z), X(z)) = ∂ ∂z κ(z, z), cov (X(z), Y (z)) = ∂ ∂ z κ(z, z), cov (Y (z), Y (z)) = ∂ 2 ∂z∂ z κ(z, z).
We also need to prove the convergence in distribution of Φ N,k (X N , u N ), for 2 ≤ k ≤ L. The cornerstone of the proof is the convergence of X N : C → C to a Gaussian process X(z) which is ensured in [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF]Lemma 9.11]. Since u N -------→ N,M →+∞ m, (X N , u N ) converges in distribution to (X, m).

Let Φ k (x, u) be defined as:

Φ k (x, u) = (-1) k 2icπ C x(z)u(z) -k dz.
We want to show that Φ k (X N , u N ) converges in distribution to a Gaussian vector. The continuous mapping theorem is useful to transform one convergence to another.

Proposition 1 (cf. [START_REF] Kallenberg | Foundations of mordern Probability[END_REF]Th. 4.27]): For any metric spaces S 1 and S 2 , let ξ, (ξ n ) n≥1 be random elements

in S 1 with ξ n D ---→ n→∞ ξ and consider some measurable mappings f , (f n ) n≥1 : S 1 → S 2 and a measurable set Γ ⊂ S 1 with ξ ∈ Γ a.s. such that f n (s n ) → f (s) as s n → s ∈ Γ. Then f n (ξ n ) D ---→ n→∞ f (ξ).
Consider the set:

Γ = (x, u) ∈ C 2 (C, C) , inf C |u| > 0 .
Then, since inf C |m| > 0 (see [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF]Section 9.12]), the dominated convergence theorem implies that the convergence of (x N , y N ) → (x, y) ∈ Γ leads to Φ N,k (x N , y N ) → Φ k (x, y). The continuous mapping theorem applies, thus giving:

Φ N,k (X N , u N ) D ------→ M,N →∞ Φ k (X, u).
January 23, 2012 DRAFT It now remains to prove that the limit law Φ k (X, u) is Gaussian. For that, it suffices to notice that the integral can be written as the limit of a finite Riemann sum and that a finite Riemann sum of the elements of a Gaussian random vector is still Gaussian.

The convergence of Υ N (X N , X ′ N , u N , u ′ N ) and Φ N,k (X N , u N ) is not sufficient to conclude about that of the whole vector. The additional requirement is to prove the convergence to a Gaussian distribution of any linear combination of

[Υ N (X N , X ′ N , u N , u ′ N ), Φ N,2 (X N , u N ), • • • , Φ N,L (X N , u N )]
T , which can be easily established in the same way as before. It implies that this vector converges to a Gaussian vector. This ends the first step of the proof.

B. Computation of the variance

We now come to the second step. We shall therefore evaluate the quantities:

V 1,1 = E Υ(X, Y, m, m ′ )Υ(X, Y, m, m ′ ) , V 1,k = V k,1 = E Υ(X, Y, m, m ′ )Φ k (X, m) , 2 ≤ k ≤ L, V k,ℓ = E [Φ k (X, m)Φ ℓ (X, m)] , 2 ≤ k, ℓ ≤ 2L -1.
The details of the calculations are in Appendix B and yield:

V k,ℓ = - (-1) k+ℓ 4π 2 c 2 C1 C2 m ′ (z 1 )m ′ (z 2 ) (m(z 1 ) -m(z 2 )) 2 - 1 (z 1 -z 2 ) 2 1 m k (z 1 )m ℓ (z 2 ) dz 1 dz 2 , (13) 
for

1 ≤ k, ℓ ≤ 2L -1. Let w M = M [γ 0 -γ 0 , • • • , γ2L-1 -γ 2L-1 ] T .
We have just proved that vector w M converges asymptotically to:

w M D -------→ N,M →+∞ N 2L (0, W),
where

W = 0 0 0 V
and V is the (2L -1) × (2L -1) matrix whose entries V k,l are given by [START_REF] Couillet | Eigen-Inference for Energy Estimation of Multiple Sources[END_REF].

Remark 9: The zeros in the variance are simply from the fact that γ0 -γ 0 = 0.

C. Fluctuations of the eigenvalues estimates

To transfer this convergence to

q M M ĉ1 -N1 N , • • • , ĉL -NL N , ρ1 -ρ 1 , • • • , ρL -ρ L T
, we shall use Slutsky's lemma which is as below:

Lemma 2 (cf. [START_REF] Vaart | Asymptotic statistics[END_REF]): Let X n , Y n be sequences of vector or matrix random elements. If X n converges in distribution to a random element X, and Y n converges in probability to a constant C, then DRAFT January 23, 2012

Y -1 n X n D -→ C -1 X
provided that C is invertible.

We will show that w M satisfies the following linear system:

w M = MM q M ( 14 
)
where MM converges in probability to M which is given by

M =         1 • • • 1 0 • • • 0 ρ 1 • • • ρ L c 1 • • • c L . . . . . . . . . . . . . . . . . . ρ 2L-1 1 • • • ρ 2L-1 L (2L -1)c 1 ρ 2L-2 1 • • • (2L -1)c L ρ 2L-2 L         .
To this end, let us work out the expression of w k,M , the k-th element of w M .

If k = 1, it is easy to see that w 1,M = 0.

For k ≥ 2, w k,M is given by:

w k,M = M L i=1 ĉi ρk-1 i - N i N ρ k-1 i = M L i=1 ĉi ρk-1 i - N i N ρk-1 i + N i N ρk-1 i - N i N ρ k-1 i = M L i=1 ĉi - N i N ρk-1 i + N i N (ρ i -ρ i ) k-2 ℓ=0 ρℓ i ρ k-2-ℓ i .
Then define

MM =         1 • • • 1 0 • • • 0 ρ1 • • • ρL N1 N • • • NL N . . . . . . . . . . . . . . . . . . ρ2L-1 1 • • • ρ2L-1 L N1 N 2L-2 ℓ=0 ρℓ 1 ρ 2L-2-ℓ 1 • • • NL N 2L-2 ℓ=0 ρℓ L ρ 2L-2-ℓ L         .
We can see easily that the equation ( 14) is satisfied and MM converges in probability to M. It remains to check that M is invertible. Note that the non-singularity of matrix M has been already established in We note that as M and N increase, the estimator in [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF] exhibits an error floor since the separability condition is not satisfied and thus is no longer consistent. We also conduct the same experiment when ρ 1 , ρ 2 and ρ 3 are set respectively to 1, 1.5 and 2. We note that in this case, the asymptotic gap with Mestre's estimator is further large (See Fig. 4).

In the second experiment, we verify by simulations the accuracy of the Gaussian approximation. We consider the case where there are two different eigenvalues ρ 1 = 1 and ρ 2 = 3 that are uniformly distributed. Unlike the first experiment, we assume that the multiplicities are not knwon. We represent in Fig 5 the histogram for ρ1 and ρ2 when N = 60 and M = 120. We also represent in red line, the corresponding Gaussian distribution. We note that as it was predicted by our derived results, the histogram is similar to that of a Gaussian random variable.

VI. DISCUSSION

The present work is a theoretical contribution to the important problem of estimating the covariance matrices of large dimensional data. Two important assumptions (separability condition, exact knowledge of the multiplicity) have been in particular relaxed with respect to previous work. From a numerical point of view, it should be noticed however, that the situation is more contrasted: If the multiplicities are known, previous simulations show good performance; if not, then one needs to enlarge the dimension of the observations to achieve a good performance. Moreover, if the eigenvalues of R N are far away from each other, then only the largest eigenvalue is well-estimated because in the expression of the moments, the term corresponding to the largest eigenvalue prevails. On the other hand, if the eigenvalues are too close to each other, matrix Γ is ill-conditioned, thus enlarging the induced error. These phenomenas are [START_REF] Vaart | Asymptotic statistics[END_REF] DRAFT inherent to the moment method, and preliminary studies show that using trigonometric moments might help mitigating these numerical problems. APPENDIX A PROOF OF LEMMA 1 By Cauchy's formula, write:

L k=1 N k N ρ ℓ k = 1 2iπN Γ L r=1 N r ω ℓ ω -ρ r dω,
where Γ is a counterclockwise oriented contour that circles all eigenvalues {ρ 1 , • • • , ρ L }. Performing the changing variable ω = -1 m N (z) in the same manner as in [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], we get:

L k=1 N k N ρ ℓ k = (-1) ℓ+1 2iπN C L r=1 N r m ′ N (z)dz m ℓ+1 N (z) (ρ r m N (z) + 1)
, where the contour C is counterclockwise oriented which contains the whole support S.

From (3), we can establish that: The second term on the right hand side of ( 16) is then equal to zero. It remains thus to deal with C zm ′ N (z) m ℓ N (z) . If ℓ ≥ 2, by integration by parts, we obtain:

m N (z) = - 1 N z L r=1 N r 1 + ρ r m N (z) , thus yielding: L k=1 N k N ρ ℓ k = (-1) ℓ 2iπ C zm ′ N (z) m ℓ+1 N (z) m N (z)dz. (15) 
C zm ′ N (z) m ℓ N (z) dz = 1 ℓ -1 C dz m ℓ-1 N (z)
.

We thus obtain:

L k=1 N k N ρ ℓ k = M (-1) ℓ 2iπN (ℓ -1) C dz m ℓ-1 N (z) . ( 17 
)
Finally, we propose to substitute the unknown term m N (z) by its asymptotic equivalent m RN (z). Let --→ 0.

Consequently:

γi -γ i a.s.

------→ In this section, we will show the calculations of the variance matrix V. The computation of V 1,1 has been carried out in [START_REF] Yao | Fluctuations of an improved population eigenvalue estimator in sample covariance matrix model[END_REF] where it was shown that:

V 1,1 = - 1 4π 2 c 2 C1 C2 m ′ (z 1 )m ′ (z 2 ) (m(z 1 ) -m(z 2 )) 2 - 1 (z 1 -z 2 ) 2 1 m(z 1 )m(z 2 ) dz 1 dz 2 ,
with C 1 and C 2 defined in the theorem. Using the fact that inf z∈C |m(z)| > 0 together with Fubini's theorem, the quantity V k,ℓ for k ≥ 2, ℓ ≥ 2, becomes:

V k,ℓ = - (-1) k+ℓ 4π 2 c 2 C1 C2
E [X(z 1 )X(z 2 )] m -k (z 1 )m -ℓ (z 2 )dz 1 dz 2 .

Substituting E [X(z 1 )X(z 2 )] by κ(z 1 , z 2 ), we obtain:

V k,ℓ = - (-1) k+ℓ 4π 2 c 2 C1 C2 m ′ (z 1 )m ′ (z 2 ) (m(z 1 ) -m(z 2 )) 2 - 1 (z 1 -z 2 ) 2 1 m k (z 1 )m ℓ (z 2 ) dz 1 dz 2 .
Finally, it remains to compute V k,1 . Expanding Υ(X, Y, m, m ′ ) and Φ k (X, m), we obtain:

V k,1 = - (-1) k+1 4π 2 c 2 C1 C2 z 2 m(z 2 )m k (z 1 ) E X(z 1 )X ′ (z 2 ) dz 1 dz 2 - m ′ (z 2 ) m(z 2 ) 2 m k (z 1 ) E [X(z 1 )X(z 2 )] dz 1 dz 2 = - (-1) k+1 4π 2 c 2 C1 C2 z 2 ∂ 2 κ(z 1 , z 2 ) m(z 2 )m(z 1 ) k dz 1 dz 2 - C1 C2 m ′ (z 2 )κ(z 1 , z 2 ) m 2 (z 2 )m k (z 1 ) dz 1 dz 2 .
By integration by parts, we obtain: Hence,

V k,1 = - (-1) k+1 4π 2 c 2 C1 C2
κ(z 1 , z 2 )dz 1 dz 2 m(z 2 )m k (z 1 ) .

This extends the expression of V k,l for any k, ℓ ∈ {1, • • • , L -1}, thus yielding:

V k,ℓ = - (-1) k+ℓ 4π 2 c 2 C1 C2 m ′ (z 1 )m ′ (z 2 ) (m(z 1 ) -m(z 2 )) 2 - 1 (z 1 -z 2 ) 2 1 m k (z 1 )m ℓ (z 2 ) dz 1 dz 2 . (18) 

Fig. 1 .

 1 Fig. 1. Empirical and asymptotic eigenvalue distribution of RN for L = 3, ρ1 = 1, ρ2 = 3, ρ3 = 10, N/M = c = 0.1, N = 60, N1 = N2 = N3 = 20.

Fig. 2 .

 2 Fig. 2. Empirical and asymptotic eigenvalue distribution of RN for L = 3, ρ1 = 1, ρ2 = 3, ρ3 = 5, N/M = c = 3/8, N = 30, N1 = N2 = N3 = 10.

(

  •) T and (•) H respectively stand for the transpose and transpose conjugate; trace of M is denoted by Tr(M); determinant of M, by det(M); the mathematical expectation operator, by E. If z ∈ C, then ℜ(z)

Remark 4 :

 4 Denote by m RN (z) and m RN (z) the Stieltjes transforms of F RN and F RN . Notice in particular that

  Γ k is a positively oriented (clockwise) contour taking values on C\{ρ 1 , • • • , ρ L } and only enclosing ρ k . With the change of variable w = -1 m M (z) and the condition that the limiting support S of the January 23, 2012 DRAFT

Theorem 6 :

 6 Let Assumptions 1, 2, 3b hold true. Let (ĉ 1 , • • • , ĉL , ρ1 , • • • , ρL ) be the estimators obtained in Theorem 4. Then

Fig. 3 .Fig. 4 .

 34 Fig. 3. Experienced MSE with N when N M = 3 8 and (ρ1, ρ2, ρ3) = (1, 3, 5)

Fig. 5 .

 5 Fig. 5. Comparison of empirical against theoretical variances for c1 = c2 = 0.5 and ρ1 = 1 and ρ2 = 3

  γ0 , • • • , γ2L-1 the real quantities given by: . Then, by the dominated convergence theorem and the fact that with probability one [22, Section 9.12],inf z∈C |m N (z)| > 0 and inf z∈C |m RN (z)| > 0,one obtains: for all k ≥ 2,

C2 z 2 ∂

 2 2 κ(z 1 , z 2 ) m(z 2 )m k (z 1 ) dz 2 = -C2 κ(z 1 , z 2 ) m(z 2 )m k (z 1 ) dz 2 + C2 m ′ (z 2 )κ(z 1 , z 2 ) m(z 2 ) 2 m k (z 1 ) dz 2 .

The precise technical statement of the separability condition together with a mathematical interpretation are available in[START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], but are not necessary here.[START_REF] Vaart | Asymptotic statistics[END_REF] DRAFT

Section III, where this property was required to prove the existence of an estimator. As a consequence, using Slutsky's lemma, we deduce that:

This ends the proof for the fluctuation.

V. SIMULATIONS

In this section, we compare the performance of the proposed method with that of Mestre's estimator in [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF]. We also verify by simulations the accuracy of the Gaussian approximation stated by the Central Limit theorem.

In the first experiment, we consider a covariance matrix R N with three different eigenvalues (ρ 1 , ρ 2 , ρ 3 ) = (1, 3, 5) uniformly distributed i.e, N1 N = N2 N = N3 N = 1 3 . We set the ratio between the number of samples and the number of variables N M to 3/8, a situation for which the separability does not obviously hold (see Fig. 2). Since the knowledge of the multiplicities is available when using the estimator in [START_REF]Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], we assume, the same for the proposed method. Hence, the estimation of the polynomial whose roots are ρ i could not be as described previously. It is actually performed using the Newton-Girard formulas, which relates the coefficients of a polynomial to the power sum of its roots.