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We consider an operator Ψ defined on a set of real valued functions and satisfying two properties of monotonicity
and additive homogeneity. This is motivated by the case of zero sum stochastic games, for which the Shapley
operator is monotone and additively homogeneous. We study the asymptotic of the trajectories defined by

vn = Ψn(0)
n

(n ∈ N,n → ∞) and vλ = λΨ
(

1−λ
λ
vλ
)

(λ ∈ (0, 1], λ → 0). Examining the iterates of Ψ, we exhibit
analytical conditions on the operator that imply that vn and vλ have at most one accumulation point for the
uniform norm. In particular this establishes the uniform convergence of vn and vλ to the same limit for a large
subclass of the class of games where only one player control the transitions. We also study the general case of
two players controlling the transitions, giving a sufficient condition for convergence.
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dynamic programming
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1. Introduction. An important topic in the theory of two-player zero-sum repeated games is the
asymptotic behavior of the values of finitely repeated (resp. discounted) games when the number of stage
becomes large (resp. when the discount factor tends to 0). Three main questions in this framework are:
existence of the limits, their equality, and their identification. Positive results have been obtained for
different class of games, for example absorbing games [10], recursive games [6], games with incomplete
information [1, 14], finite stochastic games [2, 3], and Markov chain games [17] but the original proofs in
each case are specific.

In this paper we follow the operator approach based of the recursive structure of repeated games.
This was used in [21] and [24] to give new proofs in the case of both absorbing games and games with
incomplete information. The idea is to split the problem in two parts: on the first hand, one can derive
from some characteristics of a repeated zero-sum game (e.g. number of states, topology of the sets of
action, nature of the transition function) analytical properties of its Shapley operator. On the other
hand, the asymptotic behavior of some trajectories defined by such an operator can be inferred by these
analytical properties. Following an idea evoked in the appendix of [24], we extend methods of [21] to
study iterates of Shapley operators.

Section 2 is devoted to the first definitions and results.

In section 3 we consider two class of stochastic games: the case where one player controls the transition;
as well as the case of a bounded payoff function. We prove that the Shapley operator of a game in which
one player controls the transition (resp. in which the payoff is bounded) satisfy a convexity inequality
(resp. a Lipschitz condition). In the finite dimensional case, there are inverse properties: an operator
satisfying this convex inequality (resp. this Lipschitz condition) is the Shapley operator of a game in
which one player controls the transition (resp. in which the payoff is bounded).

In section 4 we establish that some properties of Shapley operators induce the same properties on their
iterates.

In section 5 we use this to prove the convergence of vn and vλ for some particular operators, hence
for some classes of games. We establish that for any game where only one player control the transitions,
both family vn and vλ have at most one accumulation point for the uniform norm. In particular when
the state space is precompact and when the vn and vλ are uniformly equicontinuous there is convergence
of both families to the same limit.

Section 6 is an appendix consisting of technical results.

2. Definitions.
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2.1 MHa Operators. Given a set Ω, define F0 as the set of bounded real functions on Ω endowed
with the uniform norm ‖ · ‖∞, and with the usual partial order: f1 ≤ f2 if and only if f(ω) ≤ g(ω) for all
ω in Ω.

From now on F is a closed (hence complete) convex cone in F0 containing the constants. A mapping
Ψ from F to itself is a MHa (Monotone Homogeneous additively) operator if it satisfies both property:

(M) Monotonicity : f ≤ g =⇒ Ψ(f) ≤ Ψ(g)

(Ha) Homogeneous additivity Ψ(f + c) = Ψ(f) + c for c ∈ R

It is immediate to check that any MHa operator satisfies the following additional property:

(Ne) Nonexpansiveness ‖Ψ(x)−Ψ(y)‖∞ ≤ ‖x− y‖∞ ∀(x, y) ∈ X2

We consider, for n ∈ N and λ ∈]0, 1], the following iterates and fixed points:

Vn = Ψ(Vn−1) = Ψn(0) (1)
Vλ = Ψ((1− λ)Vλ) (2)

Notice that Vλ is well-defined since the nonexpansiveness of Ψ implies that Ψ((1 − λ)·) is strictly con-
tracting on the complete set F , hence has a unique fixed point

Example 2.1 For any c ∈ R, the mapping J from R to itself defined by J(x) = x + c is nonexpansive.
In that case, Vn = nc and Vλ = c

λ .

These quantities being unbounded in general (see previous example), we also introduce their normalized
versions

vn =
Vn
n

(3)

vλ = λVλ (4)

In the previous example, one gets vn = vλ = c for all n and λ. In general it is easy to prove that these
normalized quantities are bounded:

Lemma 2.1 For any nonexpansive operator Ψ, sequences vn and vλ are bounded by ‖Ψ(0)‖.

Proof. Since Ψ is non expansive,

‖Vn − Vn−1‖ = ‖Ψ(Vn−1)−Ψ(Vn−2)‖ ≤ ‖Vn−1 − Vn−2‖.

By induction this implies that
‖Vn‖ ≤ n‖V1‖ = n‖Ψ(0)‖.

On the other hand, again using the fact that Ψ is nonexpansive,

‖Vλ‖ − ‖Ψ(0)‖ ≤ ‖Vλ −Ψ(0)‖
= ‖Ψ((1− λ)Vλ)−Ψ(0)‖
≤ (1− λ)‖Vλ‖

and so
‖vλ‖ = λ‖Vλ‖ ≤ ‖Ψ(0)‖.

�

A consequence is that the family vn is of slow variation:

Lemma 2.2 If Ψ satisfies (Ne), then ‖vn+1 − vn‖ = O(1/n)
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Proof. ∥∥∥∥Ψn+1(0)
n+ 1

− Ψn(0)
n

∥∥∥∥
∞
≤ ‖Ψn+1(0)‖∞

n(n+ 1)
+

1
n
‖Ψn+1(0)−Ψn(0)‖∞

≤ 2
n
‖Ψ(0)‖∞

�

To point out the link between the families {vn}n∈N and {vλ}λ∈]0,1] it is also of interest to introduce
the family of strictly contracting operators Φ(α, ·), α ∈]0, 1], defined by

Φ(α, x) = αΨ
(

1− α
α

x

)
. (5)

Then vn and vλ satisfy the relations

vn = Φ
(

1
n
, vn−1

)
; v0 = 0 (6)

vλ = Φ(λ, vλ) (7)

2.2 Shapley operators. A typical example of such an operator is obtained in the framework of
zero-sum two player stochastic games[22]: Ω is a metric space of states, A and B are compact metric
action sets for player 1 and 2 respectively, g is the continous payoff from A × B × Ω to R, and ρ is the
continuous transition probability from A × B × Ω to ∆f (Ω), the set of probabilities on Ω with finite
support . Denote by F the set of continuous bounded real functions on Ω. We suppose in addition that
for each f ∈ F and each b ∈ B (resp. and each a ∈ A),

∫
Ω
f(·)dρ(·|a, b, w) is jointly continuous on A×Ω

(resp. on B × Ω).

The game is played as follow: an initial stage ω1 ∈ Ω is given, known by each player. At each stage m,
knowing past history and current state ωm, player 1 (resp. player 2) chooses σ ∈ ∆(A) (resp. τ ∈ ∆(B)).
A move am of player 1 (resp. bm of player 2) is drawn accordingly to σ (resp. τ). The payoff gm at stage
m is then g(am, bm, ωm) and ωm+1, the state at stage m+ 1, is drawn accordingly to ρ(am, bm, ωm).

There are several ways of evaluating a payoff for a given infinite history:

(i)) 1
n

∑n
m=1 gm is the payoff of the n−stage game

(ii)) λ
∑+∞
m=1(1− λ)i−1gm is the payoff of the λ−discounted game.

For a given initial state ω, we denote the values of those games by vn(ω) and vλ(ω) respectively; vn and
vλ are thus functions from Ω into R.

The Shapley operator Ψ of this stochastic game is the mapping from F to itself defined by, for each
f ∈ F and ω ∈ Ω,

Ψ(f)(ω) = sup
σ∈∆(A)

inf
τ∈∆(B)

{
g(σ, τ, ω) +

∫
Ω

f(ω′)dρ(ω′|σ, τ, ω)
}

(8)

= inf
τ∈∆(B)

sup
σ∈∆(A)

{
g(σ, τ, ω) +

∫
Ω

f(ω′)dρ(ω′|σ, τ, ω)
}

(9)

where we still denote by g and ρ the multilinear extensions from A×B to ∆(A)×∆(B) of the corresponding
function.

Such a Shapley operator is a MHA operator, and the value vn of the n-stage game (resp. the value vλ
of the λ-discounted game) satisfy relation (6) (resp. (7)), see [23] for example.

This recursive structure holds in a wide class of games [15] ; more generally we will thus say that
an operator from F to itself is a Shapley operator if there are two sets X and Y , and two functions
g : X × Y × Ω→ R and ρ : X × Y × Ω→ ∆fΩ such that for any f ∈ F and ω ∈ Ω,

Ψ(f)(ω) = sup
σ∈X

inf
τ∈Y

{
g(σ, τ, ω) +

∫
Ω

f(ω′)dρ(ω′|σ, τ, ω)
}

(10)

= inf
τ∈Y

sup
σ∈X

{
g(σ, τ, ω) +

∫
Ω

f(ω′)dρ(ω′|σ, τ, ω)
}
. (11)
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Notice that any such operator is MHa.

The asymptotic behavior of vn (resp. vλ) as n tends to +∞ (resp. as λ tends to 0) is a major topic in
game theory: one study properties of a stochastic game through a family of games with expected duration
converging to infinity. This approach is also called the compact case since we can interpret vn and vλ as
values of some time-discretizations of a game played in continuous time between time 0 and 1 [23]. In
that framework letting n go to infinity or λ to 0 gives a finer and finer discretization of the continuous
interval [0, 1], hence it is natural to expect convergence of those values.

2.3 The finite dimension case. When Ω is finite with cardinal k, we identify it to {1, · · · , k} and
F to Rk. To simplify the notations in that case, we will write ∆k instead of ∆f (Ω), and we will write
the state as an index in Ψ, g and ρ. For example formula (8) will be written as

Ψi(x) = sup
σ∈∆(A)

inf
τ∈∆(B)

{gi(σ, τ) + 〈ρi(σ, τ), x〉} (12)

where 〈 , 〉 is the usual scalar product.

In that finite dimensional case MHa operators are known as topical operators and have been widely
studied [7, 8, 9]. In particular it is known that properties (M) and (Ha) provide a characterization of
Shapley operators [12]:

Proposition 2.1 An operator Ψ from Rk to itself is the Shapley Operator of a k-states stochastic game
if and only if it is a MHa operator.

Even in that finite dimensional case, there are examples of nonexpansive operators [11] or MHa oper-
ators [9] such that neither vn nor vλ does converge.

3. Axiomatic Approach. The aim of this part is to link the characteristics of a game to some
properties of its Shapley operator.

3.1 Property satisfied by Player 1-controlled games.

Definition 3.1 A stochastic game is Player 1-controlled if the first player controls the transitions, that
is if the transition function ρ does not depend on the action v ∈ V of the second player.

We will characterize Player 1-controlled games by introducing a new property of operators:

Definition 3.2 An operator Ψ from F to itself satisfies property (C) if for every ω in Ω the function
Ψ(·)(ω) is a convex mapping from F to R: for any f1, f2 in F and t ∈ [0, 1],

Ψ(tf1 + (1− t)f2) ≤ tΨ(f1) + (1− t)Ψ(f2)

A MHaC operator is an operator satisfynig properties (M) (Ha) and (C) ; we prove the following
Proposition:

Proposition 3.1 Any Shapley operator of a Player 1-controlled game is MHaC.

Proof. Since Ψ is a Shapley operator, we already know that it is MHa. Since the first player controls
the transitions, then for every ω ∈ Ω:
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Ψ(tx+ (1− t)y) = sup
u∈∆(A)

inf
v∈∆(B)

{g(u, v, ω) + Eρ(u,ω)(tx+ (1− t)y)}

= sup
u∈∆(A)

{
t

[
inf

v∈∆(B)
{g(u, v, ω)}+ Eρ(u,ω)x

]
+ (1− t)

[
inf

v∈∆(B)
{g(u, v, ω)}+ Eρ(u,ω)y

]}
≤ t sup

u∈∆(A)

inf
v∈∆(B)

{g(u, v, ω) + Eρ(u,ω)x}

+(1− t) sup
u∈∆(A)

inf
v∈∆(B)

{g(u, v, ω) + Eρ(u,ω)y}

= tΨ(x) + (1− t)Ψ(y)

�

When Ω is finite the reverse holds:

Proposition 3.2 An operator Ψ from Rk to itself is the Shapley operator of a player 1-controlled game
iff it is MHaC.

Proof. Let Ψ be a MHaC operator from Rk to itself, and let Ψi be the i-th coordinate of Ψ. Let
D ⊂ Rk be the set on which every Ψi is differentiable and let Pi = {∇Ψi(x), x ∈ D}. Since any MHa
operator is nonexpansive, Rademacher’s theorem implies that D = Rk.

For any f ∈ D, monotonicity of Ψ implies that

Ψi(f + tej) ≥ Ψi(f)

for all 1 ≤ i, j ≤ k and t > 0, hence that ∂Ψi
∂j (f) ≥ 0. Homogeneous additivity implies that for any c ∈ R,

Ψi(f + c) = Ψi(f) + c

hence that
∑k
j=1

∂Ψi
∂j (f) = 1, which prove that Pi ⊂ ∆k for every i.

Moreover, Property (C) implies that for any i,

∀(x, y) ∈ Rk ×D, 〈∇Ψi(y), x− y〉 ≤ Ψi(x)−Ψi(y). (13)

For any y ∈ D let gi(y) = Ψi(y)− 〈∇Ψi(y), y〉}. Let us prove that

Ψi(x) = sup
y∈D
{gi(y) + 〈∇Ψi(y), x〉}. (14)

Notice first that inequality (13) is

Ψi(x) ≥ sup
y∈D
{gi(y) + 〈∇Ψi(y), x〉}.

On the other hand,

sup
y∈D
{Ψi(y) + 〈∇Ψi(y), x− y〉} = Ψi(x) + sup

y∈D
{Ψi(y)−Ψi(x) + 〈∇Ψi(y), x− y〉}

≥ Ψi(x) + sup
y∈D
{−2‖y − x‖∞}

because Ψ is nonexpansive and Ψi(y) ∈ ∆k. Since D = Rk this proves (14).

Equation (14) establish that Ψ is the Shapley operator of a Player 1-controlled game where the action
set of the first player is D, payoff is g, and transitions are given by ρi(y) = ∇Ψi(y). �

3.2 Property satisfied by games with a bounded payoff. Let us introduce a new property of
operators:

(L) Lipschitz ∃K > 0, ∀x ∈ F , ∀t, t′ > 0,
∥∥tΨ (xt )− t′Ψ ( xt′ )∥∥∞ ≤ K|t− t′|

An operator is MHaL if it satisfies properties (M) (Ha) and (L) ; we show that assumption (L)
characterizes Shapley operators of games with bounded payoff:
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Lemma 3.1 If Ψ is the Shapley operator of a game with bounded payoff, then Ψ is MHaL.

Proof. It is enough to prove that if Ψ is a Shapley Operator it satisfies (L), which is a consequence
of the fact that Val is nonexpansive for the supremum norm: if g1 and g2 are two functions from A×B
to R then ∣∣∣∣ Val

(σ,τ)∈A×B
{g1(σ, τ)} − Val

(σ,τ)∈A×B
{g2(σ, τ)}

∣∣∣∣ ≤ sup
(σ,τ)∈A×B

|g1(σ, τ)− g2(σ, τ)|.

For any ω, applying this inequality to g1(σ, τ) = tg(σ, τ, ω) + Ep(σ,τ,ω)x and g2(σ, τ) = t′g(σ, τ, ω) +
Ep(σ,τ,ω)x gives:

∣∣∣tΨ(x
t

)
(ω)− t′Ψ

(x
t′

)
(ω)
∣∣∣ ≤ sup

∆(A)×∆(B)

|g(σ, τ, ω)| · |t− t′|

By hypothesis there is a K > 0 such that |g(a, b, ω)| ≤ K for all (a, b, ω) ∈ U × V ×Ω, so Ψ satisfies (L).

�

We now prove a weak version of the reverse of Lemma 3.1. First define:

Definition 3.3 A stochastic game with a Shapley operator Ψ defined in (10) has a weakly bounded payoff
if there exists K > 0 such that for every ε > 0, ω ∈ Ω and f ∈ F , there exists an action uε ∈ X (resp.
vε ∈ Y ) of Player 1 (resp. Player 2) which is ε-optimal in Ψ(f)(ω), and such that |g(uε, vε, ω)| ≤ K.

In other terms, in a game with weakly bounded payoff there is a uniform bound K, such that for any
state and for any evaluation of the future, there are almost optimal actions for each player which yields
an expected payoff bounded by K.

With this new definition we can prove:

Proposition 3.3 If Ψ is MHaL from Rk to itself, then Ψ is the Shapley operator of a game with weakly
bounded payoff.

We first prove a preliminary result. As in the proof of Proposition 3.2 define D ⊂ Rk as the set on
which every Ψi is differentiable. Then

Lemma 3.2 If Ψ : Rk → Rk is MHaL for a constant K and if x ∈ D, then for any i:

‖Ψi(x)− 〈∇Ψi(x), x〉‖ ≤ K

Proof. For any x and i, t→ tΨi

(
x
t

)
is K-Lipschitz. If x ∈ D, this function is differentiable at t = 1

and ∣∣∣∣(tΨi

(x
t

))′

t=1

∣∣∣∣ ≤ K
which implies the result. �

We now prove Proposition 3.3:

Proof of Proposition 3.3. Suppose Ψ MHaL for a constant K and let 1 ≤ i ≤ k. For every a
and b in D define Πi(a, b) =

∫ 1

0
∇Ψi(ta+ (1− t)b)dt. Ψi being differentiable almost everywhere on any

segment (because of the nonexpansiveness of Ψ), it implies that Πi is well defined as soon as a 6= b, and
also when a = b since we supposed that u ∈ D.

Define gi(a, b) = Ψi(a)− 〈Πi(a, b), a〉.

We prove that for any x ∈ Rk

Ψi(x) = Vala∈D,b∈D{gi(a, b) + 〈Πi(a, b), x〉}

and that (a, a) is a couple of ε-optimal strategies as soon as a ∈ D
⋂
B(x, ε/2).
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Let a ∈ D
⋂
B(x, ε/2) and b ∈ D. We have

gi(a, b) + 〈Πi(a, b), x〉 = Ψi(a) + 〈Πi(a, b), x− a〉 (15)
= Ψi(x) + (Ψi(a)−Ψi(x)) + 〈Πi(a, b), x− a〉 (16)

so
Ψi(x)− ε ≤ gi(a, b) + 〈Πi(a, b), x〉 ≤ Ψi(x) + ε.

On the other hand Ψi(x)−Ψi(y) =
〈∫ 1

0
∇Ψi(tx+ (1− t)y)dt, x− y

〉
, so gi(x, y) = gi(y, x), which implies

Ψi(x)− ε ≤ gi(a, b) + 〈Πi(a, b), x〉 ≤ Ψi(x) + ε.

for any u ∈ D as soon as b ∈ D
⋂
B(x, ε/2). The couple (a, a) is thus a couple of ε−optimal strategies.

This prove that Ψ is the Shapley operator of a game with weakly bounded payoff since D = Rk and
|gi(a, a)| ≤ K for every a ∈ D according to Lemma 3.2. �

Remark 3.1 The interest of property (L) lies in the fact that one doesn’t know if there are stochastic
games with finite number of states and bounded payoff where the sequence vn does not converge. By
Lemma 3.1 and Proposition 3.3 this relates heavily to the study of existence of a cycle time for MHaL
Operators defined on a finite dimensional space.

3.3 Recession Operator. Let us define a new property of operators: we say that Ψ satisfies
property (R) if Ψ has a recession operator R (Ψ), that is

∃ R (Ψ) : F → F , ∀x ∈ F , lim
t→0+

∥∥∥tΨ(x
t

)
−R (Ψ)(x)

∥∥∥
∞

= 0

Remark 3.2 Since
∥∥tΨ (xt )−Φ(t, x)

∥∥
∞ ≤ t‖x‖∞, condition (R) is satisfied if and only if for any

x ∈ F , Φ(λ, x) converges as λ goes to 0.

In particular, the Shapley operator of a game with bounded payoff satisfies condition (R) and

R (Ψ)(·) = Φ(0, ·).

Remark 3.3 The recession operator R (Ψ) is additively homogeneous: for any c ∈ R R (Ψ)(x + c) =
R (Ψ)(x)+c. It is also positively multiplicatively homogeneous : for any c ∈ R+ R (Ψ)(cx) = cR (Ψ)(x).

An interest of the Recession operator lies in the following lemma

Lemma 3.3 Let Ψ be a MHAR operator, then any accumulation point for the uniform norm of either
{vn} or {vλ} is a fixed point of the recession operator R (Ψ).

Proof. Recall that

vn = Φ
(

1
n
, vn−1

)
vλ = Φ(λ, vλ)

so the result follow immediately from Remark 3.2, and Lemma 2.2 in the case of vn. �

Remark 3.4 The set of fixed point of R (Ψ) may however be large, for example in the case of games
with incomplete information[21].

To conclude this section, we prove that either (L), or (C) in the finite dimension case, is a sufficient
condition for (R) to hold:

Lemma 3.4 If Ψ is MHaC from Rk to itself, then Ψ satisfies (R).
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Proof. Given x ∈ Rk, let f(t) := tΨ
(
x
t

)
− tΨ(0) be defined from R+∗ to Rk. Since Ψ is nonex-

pansive, ‖f(t)‖∞ ≤ t‖x/t‖∞ = ‖x‖∞, which implies that f is bounded. Moreover,

‖f(t)− f(t′)‖∞ ≤ |t− t′| · ‖Ψ(0)‖∞ + |t− t′| ·
∥∥∥Ψ(x

t

)∥∥∥
∞

+ t′ ·
∥∥∥Ψ(x

t

)
−Ψ

(x
t′

)∥∥∥
∞

≤ |t− t′| ·
(∥∥∥Ψ(x

t

)∥∥∥
∞

+ ‖Ψ(0)‖∞ +
‖x‖∞
t

)
so f is continuous. Finally, Ψ satisfies (C), which implies that for t′ < t:

f(t) = tΨ
(x
t

)
− tΨ(0)

= tΨ
(
t′

t
· x
t′

+
(

1− t′

t

)
· 0
)
− tΨ(0)

≤ t′Ψ
(x
t′

)
+ (t− t′)Ψ(0)− tΨ(0)

= f(t′).

We have established that each coordinate fi of f is nonincreasing and bounded, it follows that each fi(t)
converges as t goes to 0, which implies that Ψ satisfies (R). �

Lemma 3.5 Any MHAL Operator satisfies property (R).

Proof. Suppose that Ψ is MHaL and let x ∈ F . Let h be the function defined on ]0, 1[ by
h(t) = tΨ(xt ). Since Ψ satisfies (L), for any sequence tn in ]0, 1[ converging to 0 the corresponding
sequence h(tn) is Cauchy, hence converges. This prove that the function h converges as t goes to 0, which
implies that Ψ satisfies (R). �

The following corollary follows immediately from lemmas 3.1 and 3.5:

Corollary 3.1 If Ψ is the Shapley operator of a game with bounded pay off, Ψ is MHaR.

4. Iterated Operators. First let us define the lim sup and lim inf of sequences in F0:

Definition 4.1 For any bounded sequence xn in F0,

lim sup(xn)(ω) = lim sup(xn(ω))

for every ω.

Notice that
x ≤ lim supxn

for any accumulation point x of xn for the uniform norm, but that the lim sup of a sequence is not
necessarily an accumulation point itself for the uniform norm.

The following proposition, proved in [24], gives a sufficient condition for an element of F to be greater
than both lim sup vn and lim sup vλ:

Proposition 4.1 Let Ψ : F → F be a MHa operator.

If x ∈ F satisfies Ψ(Lx) ≤ (L+ 1)x for every L large enough, then lim sup vn ≤ x and lim sup vλ ≤ x.

If x ∈ F satisfies Ψ(Lx) ≥ (L+ 1)x for every L large enough, then lim sup vn ≥ x and lim sup vλ ≥ x.

An interesting consequence is a sufficient condition for vn and vλ to converge: define

L + = {x ∈ F ,Ψ(Lx) ≤ (L+ 1)x for all L large enough}
L − = {x ∈ F ,Ψ(Lx) ≥ (L+ 1)x for all L large enough} .

Then if the intersection L + ∩L + is nonempty, it is a singleton {v} and v = lim vn = lim vλ.

However, there are examples of simple games where Proposition 4.1 does not apply immediately.
Consider the following 0-player game (meaning that each set action is reduced to one element): there are
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two states ω0 and ω1 with payoff 0 and 1 respectively, and a deterministic transition from each state to
the other :

g(ω0) = 0
g(ω1) = 1

ρ(ω1|ω0) = 1
ρ(ω0|ω1) = 1

The Shapley operator of such a game is given by

Ψ
(
a
b

)
=
(

b
a+ 1

)
and one verifies that

v2n =
(

1
2
1
2

)
v2n+1 =

( n
2n+1
n+1
2n+1

)
vλ =

(
1−λ
2−λ

1
2−λ

)

hence both vn and vλ converges to
(

1
2
,

1
2

)
. In that case one checks that

L + = {(x, x), x ≥ 1}
L − = {(x, x), x ≤ 0}

hence the intersection is empty. However, let us consider the game played by blocks of two stages. Its
Shapley operator is given by:

Ψ̃
(
a
b

)
=
(
a+ 1
b+ 1

)
and Proposition 4.1 immediately imply that in this new game both vn and vλ converge to (1, 1), hence

that in the initial game both vn and vλ converge to
(

1
2
,

1
2

)
.

Given a stochastic game Γ with a Shapley operator Ψ it is thus worthwhile to study the game Γm

played by blocks of stages of a fixed length m, with payoff at stage l equals to
∑m
k=1 glm+k. This leads

to a new Shapley operator equals to Ψm. Since the payoff function in Γm is not bounded as m goes to
+∞, it is convenient to also introduce the game Γm, with payoff at stage l equals to 1

m

∑m
k=1 glm+k. The

Shapley operator of this normalized game is given by x→ 1
mΨm(mx).

This motivates us to define, for a general MHA operator:

Definition 4.2 If Ψ is an MHa operator and m ∈ N∗, we define operators Ψm(·) Φm(λ, ·), Ψm(·) and
Φm(λ, ·)by:

Ψm(x) = Ψ
(
Ψm−1(x)

)
(17)

Φm(λ, x) = Φ(λ,Φm−1(λ, x)) (18)

Ψm(x) =
1
m

Ψm(mx) (19)

Φm(λ, x) = λΨm

(
1− λ
λ

x

)
(20)

vn,m =
(Ψm)n(0)

n
(21)

Φm(λ, ·) being 1− λ contracting, one can also define

vλ,m = Φm (λ, vλ,m) (22)
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In the two following propositions, we show that if an operator Ψ satisfies some properties, it is also
the case for operators Ψm and Ψm:

Lemma 4.1 If Ψ is MHa, then so does Ψm for any m ∈ N. Moreover,

a) If Ψ is MHaC, so does Ψm.

b) If Ψ is MHaR, so does Ψm and R (Ψm) = (R (Ψ))m

c) If Ψ is MHaL for a constant K, so does Ψm for the constant mK.

Proof. If it easy to check that if Ψ is MHa, then Ψm is also MHa.

To prove part a) of the lemma, we proceed by induction on m: if we assume that Ψm satisfies (C),
then for any t ∈ [0, 1],

Ψm+1(tx+ (1− t)y) = Ψ(Ψm(tx+ (1− t)y))
≤ Ψ(tΨm(x) + (1− t)Ψm(y))
≤ tΨm+1(x) + (1− t)Ψm+1(y))

For assertion b) we also proceed by induction on m: assume that Ψm satisfies (R) and R (Ψm) =
(R (Ψ))m and fix x in F . Since Ψm satisfies (Ne), it follows that∥∥∥∥tΨm+1

(x
t

)
− tΨm

(
R (Ψ)(x)

t

)∥∥∥∥
∞
≤
∥∥∥tΨ(x

t

)
−R (Ψ)(x)

∥∥∥
∞
. (23)

Since Ψ satisfies (R), the righthand member of (23) goes to 0 as t converges to 0. The induction hypothesis
implies that ∥∥∥∥tΨm

(
R (Ψ)(x)

t

)
−R (Ψ)m+1(x)

∥∥∥∥
∞

goes to 0 as well, and so we have established the convergence to 0 of∥∥∥tΨm+1
(x
t

)
−R (Ψ)m+1(x)

∥∥∥
∞

as required.

For part c) we proceed again by induction: assume the property true for m. Notice that

tΨm+1
(x
t

)
− t′Ψm+1

(x
t′

)
=

[
tΨm+1

(x
t

)
− t′Ψm

(
tΨ
(
x
t

)
t′

)]

+

[
t′Ψm

(
tΨ
(
x
t

)
t′

)
− t′Ψm+1

(x
t′

)]
By induction hypothesis,∥∥∥∥∥tΨm+1

(x
t

)
− t′Ψm

(
tΨ
(
x
t

)
t′

)∥∥∥∥∥
∞

=

∥∥∥∥∥tΨm

(
tΨ
(
x
t

)
t

)
− t′Ψm

(
tΨ
(
x
t

)
t′

)∥∥∥∥∥
∞

≤ mK|t− t′|

On the other hand, Ψ being nonexpansive,∥∥∥∥∥t′Ψm

(
tΨ
(
x
t

)
t′

)
− t′Ψm+1

(x
t′

)∥∥∥∥∥
∞

≤ t′

∥∥∥∥∥ tΨ
(
x
t

)
t′

−Ψ
(x
t′

)∥∥∥∥∥
∞

=
∥∥∥tΨ(x

t

)
− t′Ψ

(x
t′

)∥∥∥
∞

≤ K|t− t′|
and we deduce that

∥∥∥tΨm+1
(x
t

)
− t′Ψm+1

(x
t′

)∥∥∥
∞
≤ (m+ 1)K|t− t′|.

�
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Proposition 4.2 If Ψ is MHa, then so does Ψm for any m ∈ N. Moreover,

a) If Ψ is MHaC, so does Ψm.

b) If Ψ is MHaR, so does Ψm.

c) If Ψ is MHaL, so does Ψm for the same constant.

Proof. It follows directly from Lemma 4.1 (and for the second assertion, from the observation that
any recession operator is multiplicatively homogeneous). �

The operator Ψm is a more natural operator to consider than Ψm for several reasons: first notice that
property (L) is preserved for the same constant for operator Ψm, but not for Ψm. Another point is that
in the case of a Shapley operator, the payoff of Ψm is given by a sum of the payoffs in m stages of the
original game, hence Ψm gives a weight m to the present and 1 to the future. The operator Ψm, which
can be seen as a normalized version of Ψm, is thus a more adequate description of the game played by
blocks of m stages. This is emphasized by two following propositions:

Proposition 4.3 Let Ψ be any MHa operator. Then the equality vn,m = vnm holds for any m ∈ N∗ and
n ∈ N. In particular, for any m ∈ N∗,

lim sup
n→+∞

vn,m = lim sup
n→+∞

vn.

Proof. To prove the first part of the proposition, just verify that

vn,m =
(Ψm)n(0)

n
=

1
m

Ψmn(0)
n

= vnm.

In particular, for any m,
lim sup
n→+∞

vn,m = lim sup
n→+∞

vnm.

Lemma 2.2 implies that

lim sup
n→+∞

vnm = lim sup
n→+∞

vn

hence the second part of the proposition. �

Proposition 4.4 Let Ψ be an MHAL operator. Then for any m ∈ N∗,

lim sup
λ→0

vλ,m = lim sup
λ→0

vλ.

The proof of this proposition is technical and postponed to the appendix. The idea is that the operator
Φm(λ, ·) and Φm(µ, ·) are close to each other for µ = 1− (1− λ)m.

Take for example the case of a Shapley operator and m = 2. Then Φ2(λ, ·)(ω1) is the value of the
one-shot game with payoff

λg(a1, b1, ω1) + λ(1− λ)g(a2, b2, ω2) + (1− λ)2f(a3, b3, ω3)

while Φ2(2λ− λ2, ·)(ω1) is the value of the one-shot game with payoff(
λ− λ2

2

)
g(a1, b1, ω1) +

(
λ− λ2

2

)
g(a2, b2, ω2) + (1− λ)2f(a3, b3, ω3).

Remark 4.1 It is unclear whether Proposition 4.4 still holds for an operator which does not satisfy
condition (L).

5. Convergence of vn and vλ - Operator Approach.
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5.1 MHaC operators : the case of vn. This section study the asymptotics of vn for MHAC
operators. We prove the following proposition:

Proposition 5.1 If Ψ is MHaCR then vn has at most one accumulation point for the uniform norm.

which implies the following corollaries:

Corollary 5.1 If Ψ is MHaC from Rk to itself then vn converges.

Proof. Since the space is finite dimensional, any MHaC operator satisfies also condition (R) by
Lemma 3.4 ; and the bounded sequence vn has at least one accumulation point. The result thus follows
from Proposition 5.1. �

Corollary 5.2 Suppose that a Player 1-controlled zero-sum stochastic game with a Shapley operator Ψ
satisfies the two following hypotheses:

(i) its payoff g is bounded

(ii) the set {vn, n ∈ N} is relatively compact in F for the uniform topology.

Then the sequence vn converges uniformly as n tends to infinity.

Proof. The Shapley operator of such a game is MHaC by Proposition 3.1, and since the payoff
g is bounded Lemma 3.1 implies that it satisfies also (R). So, by Proposition 5.1, vn has at most one
accumulation point, towards which it converges since the set {vn, n ∈ N} is relatively compact. �

Notice that Corollary 5.2 and Ascoli’s Theorem imply in particular

Corollary 5.3 Suppose that a Player 1-controlled zero-sum stochastic game with a Shapley operator Ψ
satisfies the two following hypotheses:

(i) its payoff g is bounded

(ii) the state space Ω is endowed with a distance d such that (Ω, d) is precompact and such that the
sequence vn is uniformly equicontinuous.

Then the sequence vn converges uniformly as n tends to infinity.

Remark 5.1 Classes of games that satisfy the assumptions of Corollary 5.3 include repeated games with
incomplete information and standard signalling [1], as well as Markov chain games [17] and stochastic
games with incomplete information on one side where the informed player controls the transitions [20].

The remainder of this section is devoted to the proof of Proposition 5.1, for which we will need a basic
lemma:

Lemma 5.1 If Ψ satisfies (C) et (R), then for every x and y,

Ψ(x+ y) ≤ Ψ(x) + R (Ψ)(y).

Proof. Since Ψ satisfies (C), then for any t ∈]0, 1],

Ψ(y + (1− t)x) = Ψ
(
t
y

t
+ (1− t)x

)
≤ tΨ

(y
t

)
+ (1− t)Ψ(x)

which gives as t tends to 0
Ψ(x+ y) ≤ Ψ(x) + R (Ψ)(y)

since we assumed that Ψ satisfies (R).

�
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Remark 5.2 We have thus
Ψ(x+ y)−Ψ(x) ≤ y

as soon as y = R (Ψ)(y). This gives insight on each coordinate and is stronger than just using the
nonexpansive inequality

‖Ψ(x+ y)−Ψ(x)‖∞ ≤ ‖y‖∞

We now prove Proposition 5.1 :

Proof of Proposition 5.1. Let Ψ be an operator MHaCR and v an accumulation point of {vn}.
The aim of this proof is to get the inequality

lim sup
n→+∞

vn ≤ v.

Since the reverse inequality is true for any accumulation point v, this will establish that v is the only
accumulation point of {vn}.

Recall that v = R (Ψ)(v) by Lemma 3.3. Let ε > 0 and m such that ‖vm − v‖∞ ≤ ε. The operator
Ψm is MHaCR according to Proposition 4.2, so for any L > 0 one can apply Lemma 5.1 to Ψm and
x = L(v + ε). This gives:

Ψm(L(v + ε)) ≤ R (Ψm)(L(v + ε)) + Ψm(0)

According to Proposition 4.2, R (Ψm) = (R (Ψ))m. Moreover, Remark 3.3 implies that R (Ψ)(L(v+ε)) =
L(v + ε). Since Ψm(0) = vm ≤ v + ε we thus deduce that

Ψm(L(v + ε)) ≤ (L+ 1)(v + ε)

Apply Proposition 4.1 to Ψm and v + ε:

lim sup
n→+∞

vn,m ≤ (v + ε)

hence, by Proposition 4.3,
lim sup
n→+∞

vn ≤ v + ε.

This inequality holds for any ε > 0, which implies the result. �

Remark 5.3 In the case of a finite number of states (Corollory 5.1), convergence of vn can be proved in
the same way with an hypothesis slightly weaker than C[8].

5.2 MHaC operators : the case of vλ. In this section we prove the analogous of Proposition 5.1
for the family {vλ}:

Proposition 5.2 If Ψ is MHaCL then {vλ} has at most one accumulation point for the uniform topology.

This proposition has the following interesting corollary:

Corollary 5.4 Suppose that a Player 1-controlled zero-sum stochastic game with a Shapley operator Ψ
satisfies the two following hypotheses:

(i) its payoff g is bounded

(ii) the set {vλ, λ ∈]0, 1]} is relatively compact.

Then the sequence vλ converges uniformly as λ tends to 0.

Proof. The Shapley operator of such a game is MHaC by Lemma 3.1, and since the payoff g
is bounded Lemma 3.1 implies that it satisfies also (L). So, by Proposition 5.2, vλ has at most one
accumulation point, towards which it converges since the set {vλ, λ ∈]0, 1]} is relatively compact. �

By Ascoli’s Theorem we also have
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Corollary 5.5 Suppose that a Player 1-controlled zero-sum stochastic game with a Shapley operator Ψ
satisfies the two following hypotheses:

(i) its payoff g is bounded

(ii) the state space Ω is endowed with a distance d such that (Ω, d) is precompact and such that the
sequence vλ is uniformly equicontinuous.

Then the sequence vλ converges uniformly as λ tends to 0.

As in the previous section, to prove Proposition 5.2 we study iterations of the operator. We use the
following consequence of Proposition 4.1:

Lemma 5.2 Assume that Ψ is MHaCR, R (Ψ)(x) ≤ x, and Φ(λ0, x) ≤ x for some λ0 > 0. Then
lim sup vλ ≤ x.

Proof. According to Proposition 4.1, it is enough to show that Φ(λ, x) ≤ x for every λ ≤ λ0, and
according to Lemma 5.1,

Φ(λ, x) = λΨ
((

1
λ
− 1
)
x

)
(24)

= λΨ
((

1
λ0
− 1
)
x+

(
1
λ
− 1
λ0

)
x

)
(25)

≤ λΨ
((

1
λ0
− 1
)
x

)
+ λR (Ψ)

((
1
λ
− 1
λ0

)
x

)
(26)

=
λ

λ0
Φ(λ0, x) +

(
1− λ

λ0

)
R (Ψ)(x) (27)

≤ λ

λ0
x+

(
1− λ

λ0

)
x (28)

= x. (29)

�

We can now prove Proposition 5.2 :

Proof of Proposition 5.2. Let v be an accumulation point of vλ, which implies v ≤ lim sup vλ.
It is thus enough to prove that v satisfies lim sup vλ ≤ v.

Fix m in N∗ and λ > 0, and denote

µ = 1− (1− λ)m

v′ = v +
(2− µ)‖v − vλ‖∞ +K(mλ− µ)

µ

where K is the constant of property (L). We want to apply Lemma 5.2 to Ψm, x = v′ and λ0 = µ ; we first
verify that the hypotheses of this lemma are satisfied. The operator Ψm is MHaCR by Proposition 4.2.
According to Lemma 3.3, R (Ψ)(v) = v so R (Ψm)(v) = v, which implies by additive homogeneity that
R (Ψm)(v′) = v′. It remains to show that Φm(µ, v′) ≤ v′. First we find an upper bound of Φm(λ, v′):

Φm(λ, v′) = Φm

(
λ, v − ‖v − vλ‖∞ +

2‖v − vλ‖∞ +K(mλ− µ)
µ

)
≤ Φm

(
λ, vλ +

2‖v − vλ‖∞ +K(mλ− µ)
µ

)
= vλ + (1− λ)m

2‖v − vλ‖∞ +K(mλ− µ)
µ

≤ v + ‖v − vλ‖∞ + (1− µ)
2‖v − vλ‖∞ +K(mλ− µ)

µ

= v′ −K(mλ− µ)
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According to Corollary A.1, Φm(µ, v′) ≤ Φm(λ, v′)+K(mλ−µ), so we deduce that indeed Φm(µ, v′) ≤ v′.

We can thus apply Lemma 5.2 which implies that

lim sup
γ→0

vγ,m ≤ v′

and so, according to Lemma 4.4, we have established that for every m ∈ N∗ and λ > 0,

lim sup
γ→0

vγ ≤ v′

≤ v +
2‖v − vλ‖∞ +K(mλ− 1 + (1− λ)m)

1− (1− λ)m
(30)

Fix ε and λ > 0, and choose m =
[
ε
λ

]
in (30). Since (1 − λ)[

ε
λ ] converges to e−ε as λ tends to 0, we

deduce that for λ small enough,

lim sup
γ→0

vγ ≤ v + 2
2‖v − vλ‖∞ +K(ε+ e−ε − 1)

1− e−ε

Since v is an accumulation point of the family vλ, this implies by letting λ go to 0 that

lim sup
γ→0

vγ ≤ v + 2K
ε+ e−ε − 1

1− e−ε
. (31)

Letting ε tend to 0 in (31) finally prove
lim sup
γ→0

vγ ≤ v

�

Remark 5.4 The proof of Propositions 5.1 also establish that if vn converges uniformly and Ψ is
MHACR, then lim

n→+∞
vn ≥ lim sup

λ→0
vλ.

Similarly, the proof of Proposition 5.2 shows that if vλ converges uniformly and Ψ is MHACL, then
lim
λ→0

vλ ≥ lim sup
n→+∞

vn.

In the particular framework of dynamic programming, it is already known [13] that uniform convergence
of either vn or vλ implies uniform convergence of the other to the same limit.

Remark 5.5 In the special case of dynamic programming with a finite number of states, existence of the
uniform value was proven in[4] for a finite action space. It was then established for compact action spaces
and continuous payoff and transition functions[5, 23], and finally without any assumptions [19]. It was
also extended to the case of two player games with an informed controller [18].

In the framework of dynamic programming with a general state space one can also find an alternative
proof of Corollary 5.2 in [19], as well as sufficient topological conditions for the existence of the uniform
value. For similar results in a continuous-time framework, see [16]

5.3 A criterion for 2-player games Define a new property of operators:

(D) Derivability ∃ ϕ : F → F , ∀x ∈ F ,

lim
λ→0+

∥∥∥∥Φ(λ, x)−R (Ψ)(x)
λ

− ϕ(x)
∥∥∥∥
∞

= 0.

This property of operators is interesting since it is proved in [21] that :

Lemma 5.3 Let Γ be a stochastic game with a finite state space, compact actions spaces and continuous
payoff and transition functions. Then its Shapley operator Ψ is MHaDL.

In the case of MHaDL operators, Lemma 4.1 can be reformulated as :
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Lemma 5.4 Suppose Ψ MHaDL, and let x be such that R (Ψ)(x) ≤ x and ϕ(x) ≤ 0. Then lim sup vn ≤ x
and lim sup vλ ≤ x.

We do not know yet how to use Lemma 5.4 to prove that for stochastic games satisfying the hypotheses
of 5.3, both vn and vλ converge to the same limit.

However, let us introduce a new property slightly stronger than (D):

(Du) Uniform derivability ∀m ∈ N, ∃ ϕm : F → F , ∀x ∈ F ,

lim
λ→0+

∥∥∥∥Φm(λ, x)−R (Ψm)(x)
λ

− ϕm(x)
∥∥∥∥
∞

= 0 uniformly in m.

Note that we do not assume that the convergence is uniform in x.

We can now use Lemma 5.4 to prove:

Proposition 5.3 Assume that Ψ is MHaDuL, then vλ has at most one accumulation point for the
uniform topology. Moreover, if vλ converges uniformly, then so does vn to the same limit.

Proof. Let Ψ be MHaDuL and v an accumulation point of the family vλ, which satisfies R (Ψ)(v) =
v by Lemma 3.3. We prove that 0 is an accumulation point of the family ϕm(v) . By property (Du) there
is a function f from ]0, 1] to R+, nondecreasing and converging to 0 as t goes to 0, such that for any m
and µ, ∥∥∥∥Φm(µ, v)− v

µ
− ϕm(v)

∥∥∥∥
∞
≤ f(µ) (32)

On the other hand, contractiveness implies that for any λ,

‖Φm(λ, v)− v‖∞ ≤ ‖Φm(λ, v)− vλ‖∞ + ‖v − vλ‖∞ (33)
= ‖Φm(λ, v)−Φm(λ, vλ)‖∞ + ‖v − vλ‖∞ (34)
≤ (1− λ)m‖v − vλ‖∞ + ‖v − vλ‖∞ (35)
≤ 2‖v − vλ‖∞. (36)

Combining inequalities (32) and (36) as well as Corollary A.1 one obtains that for any λ and m,

‖ϕm(v)‖∞ ≤
2‖v − vλ‖∞ +K(mλ− µ)

µ
+ f(µ) (37)

where µ = 1− (1− λ)m.

Let ε > 0, and choose m =
[
ε
λ

]
in (37). Since (1− λ)[

ε
λ ] tends to e−ε as λ goes to 0, we deduce that

for every ε > 0, and every λ small enough,

∥∥∥ϕ[ ελ ](v)
∥∥∥
∞
≤

4‖v − vλ‖∞ + 2K(ε+ e−ε − 1)
1− e−ε

+ f(1− e−ε). (38)

Let ε′ > 0 ; since f(t) tends to 0 as t goes to 0 one can choose ε > 0 such that

f(1− e−ε) ≤ ε′

3
(39)

and

2K
(ε+ e−ε − 1)

1− e−ε
≤ ε′

3
. (40)

Such ε being fixed, since v is an accumulation point of the family vλ one can find λ > 0 such that

4‖v − vλ‖∞
1− e−ε

≤ ε′

3
. (41)
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Inequalities (38) to (41) thus implies that for any ε′ > 0, one can find an m such that ‖ϕm(v)‖∞ ≤ ε′.
Such an m being fixed, denote v′ = v+ ε′. Since R (Ψ)(v′) = v′ and ϕm(v′) = ϕm(v)− ε′ ≤ 0, according
to Lemma 5.4, we deduce that

lim sup
λ→0

vλ,m ≤ v′

lim sup
n→+∞

vn,m ≤ v′.

According to Lemmas 4.4 and 4.3, we thus have

lim sup
λ→0

vλ ≤ v + ε′

lim sup
n→+∞

vn ≤ v + ε′.

This is true for any ε′ > 0, so

lim sup
λ→0

vλ ≤ v

lim sup
n→+∞

vn ≤ v.

In the same way one prove that

lim inf
λ→0

vλ ≥ v

lim inf
n→+∞

vn ≥ v

and we have proved the strong convergence of vλ and vn to v. �

In the same vein one can prove

Proposition 5.4 Assume that Ψ is MHaDu, and suppose that the sequence vn satisfies

vn+1 − vn = o

(
1
n

)
.

Then vn has at most one accumulation point for the uniform topology. Moreover, if vn converges
uniformly, then so does vλ to the same limit.

Proof. Let v be an accumulation point of vn ; it satisfies R (Ψ)(v) = v by Lemma 3.3. By property
(Du) there is a nonincreasing function h from R+ to itself such that limL→+∞ h(L) = 0 and that for
every m ∈ N∗

‖Ψm(Lv)− (L+ 1)v − ϕm(v)‖∞ ≤ h(L). (42)

Let ε > 0, and L > 1 such that h(L) ≤ ε. By hypothesis, there exists N ∈ N∗ such that

n ≥ N =⇒ ‖vn+1 − vn‖∞ ≤
ε

n
. (43)

Moreover, since v is an accumulation point of the sequence vn, there exist n ≥ N such that

‖vn − v‖∞ ≤
ε

L+ 1
(44)

Denote m =
[
n
L

]
, L′ = n

m and observe that L ≤ L′ ≤ Lm+1
m ≤ 2L.

By (42),

‖ϕm(v)‖∞ ≤ h(L′) + ‖Ψm(L′v)− (L′ + 1)v‖∞

≤ h(L) +
1
m
‖Ψm(mL′v)−m(L′ + 1)v‖∞

≤ ε+
1
m

∥∥∥Ψm(mL′v)−Ψm(L′+1)(0)
∥∥∥
∞

+ (L′ + 1)‖vn+m − v‖∞

≤ ε+
1
m

∥∥∥mL′v −ΨmL′(0)
∥∥∥
∞

+ (L′ + 1)‖vn − v‖∞ + (L′ + 1)‖vn+m − vn‖∞
≤ ε+ (2L′ + 1)‖vn − v‖∞ + (L′ + 1)‖vn+m − vn‖∞.
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Using (43) and (44), this implies

‖ϕm(v)‖∞ ≤ ε+
2L′ + 1
L+ 1

ε+
(L′ + 1)m

n
ε

≤ ε+
4L+ 1
L+ 1

ε+
(L′ + 1)
L′

ε

≤ 7ε.

We conclude as in the proof of Proposition 5.3. �

Remark 5.6 While it is true that vn+1 − vn = O
(

1
n

)
for any operator MHa (see Lemma 2.2), it is

unclear whether the stronger hypothesis of Proposition 5.4 is always satisfied.

Appendix A. Appendix. This section is devoted to the proof of Proposition 4.4. The first lemma
relates the operators Ψm and Φm:

Lemma A.1 If Ψ is MHaL for a constant K, then for any t > 0, λ ∈]0, 1[, m ∈ N∗ and x ∈ F the
following inequality holds:

∥∥∥∥Ψm
(x
t

)
− Φm(λ, x)
t(1− λ)m

∥∥∥∥
∞
≤ K

m∑
i=1

∣∣∣∣1− λ

t(1− λ)i

∣∣∣∣
Proof. Proceed by induction on m. For m = 1, Ψ satisfies (L) so∥∥∥∥tΨ(xt )− λ

1− λ
Ψ
(

1− λ
λ

x

)∥∥∥∥
∞
≤ K

∣∣∣∣t− λ

1− λ

∣∣∣∣
so dividing by t, ∥∥∥∥Ψ(xt )− Φ(λ, x)

t(1− λ)

∥∥∥∥
∞
≤ K

∣∣∣∣1− λ

t(1− λ)

∣∣∣∣ . (45)

Assume the result holds for m− 1, that is∥∥∥∥Ψm−1
(x
t

)
− Φm−1(λ, x)
t(1− λ)m−1

∥∥∥∥
∞
≤ K

m−1∑
i=1

∣∣∣∣1− λ

t(1− λ)i

∣∣∣∣
which implies, Ψ being nonexpansive, that∥∥∥∥Ψm

(x
t

)
−Ψ

(
Φm−1(λ, x)
t(1− λ)m−1

)∥∥∥∥
∞
≤ K

m−1∑
i=1

∣∣∣∣1− λ

t(1− λ)i

∣∣∣∣
On the other hand, Ψ satisfies (L), thus one can apply equation (45) with x′ = Φm−1(λ, x) and t′ =
t(1− λ)m−1, which gives∥∥∥∥Ψ(Φm−1(λ, x)

t(1− λ)m−1

)
− Φ(λ,Φm−1(λ, x))
t(1− λ)m−1(1− λ)

∥∥∥∥
∞
≤ K

∣∣∣∣1− λ

t(1− λ)m−1(1− λ)

∣∣∣∣
Triangular inequality implies that∥∥∥∥Ψm

(x
t

)
− Φm(λ, x)
t(1− λ)m

∥∥∥∥
∞
≤ K

m−1∑
i=1

∣∣∣∣1− λ

t(1− λ)i

∣∣∣∣+K

∣∣∣∣1− λ

t(1− λ)m

∣∣∣∣
= K

m∑
i=1

∣∣∣∣1− λ

t(1− λ)i

∣∣∣∣ .
�

A consequence of this lemma is the following comparison between the operators Φm and Φm:

Corollary A.1 If Ψ is MHaL for a constant K, then for any λ ∈]0, 1[, m ∈ N∗ and x ∈ F the following
inequality holds:

‖Φm(µ, x)−Φm(λ, x)‖∞ ≤ K(mλ− µ)
where µ = 1− (1− λ)m.
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Proof. Applying Proposition A.1 with t = µ
m(1−µ) gives∥∥∥∥Ψm

(
1− µ
µ

mx

)
− m(1− µ)Φm(λ, x)

µ(1− λ)m

∥∥∥∥
∞
≤ K

m∑
i=1

∣∣∣∣1− mλ(1− µ)
µ(1− λ)i

∣∣∣∣
Multiplying by µ

m , ∥∥∥∥Φm(µ, x)− (1− µ)Φm(λ, x)
(1− λ)m

∥∥∥∥
∞
≤ K

m∑
i=1

∣∣∣∣ µm − λ(1− µ)
(1− λ)i

∣∣∣∣
and thus, since 1− µ = (1− λ)m,

‖Φm(µ, x)−Φm(λ, x)‖∞ ≤ K
m∑
i=1

∣∣∣ µ
m
− λ(1− λ)i−1

∣∣∣ .
Next, use the fact that for any i between 1 and m, (1− λ)m−1 ≤ (1− λ)i−1 ≤ 1, which implies

m∑
i=1

∣∣∣ µ
m
− λ(1− λ)i−1

∣∣∣ ≤ max
(
|µ−mλ|, |µ−mλ(1− λ)m−1|

)
.

It remains to establish that 0 ≤ µ−mλ(1− λ)m−1 ≤ mλ− µ. The first inequality is equivalent to

(1 + (m− 1)λ)(1− λ)m−1 ≤ 1

which can be shown by taking the logarithmic derivative of the left-hand side and noticing that it is
negative on [0,1].

The second inequality can be written as

mλ+ (2 + (m− 2)λ)(1− λ)m−1 ≥ 2

Both sides are equal for λ = 0, so it is enough to show that the derivative of the left-hand side

m
[
1− (1 + (m− 2)λ)(1− λ)m−2

]
is nonnegative. This can be shown by taking the logarithmic derivative of (1 + (m− 2)λ)(1− λ)m−2 and
noticing that it is negative on [0,1].

�

We can finally prove Proposition 4.4:

Proof of Proposition 4.4. Fix m ∈ N∗ and λ ∈]0, 1], denote µ = 1 − (1 − λ)m and notice that,
since Φm(µ, ·) is 1− µ contracting,

µ‖vλ − vµ,m‖∞ ≤ ‖vλ − vµ,m‖∞ − ‖Φm(µ, vλ)−Φm(µ, vµ,m)‖∞
≤ ‖Φm(µ, vλ)− vλ‖∞
= ‖Φm(µ, vλ)−Φm(λ, vλ)‖∞.

Corollary A.1 thus implies that

‖vλ − vµ,m‖∞ ≤ K
(
mλ

µ
− 1
)
.

For a fixed m, notice that µ ∼ mλ as λ goes to 0, which implies that ‖vλ − vµ,m‖∞ converges to 0 as λ
goes to 0, so a fortiori lim sup vλ,m = lim sup vλ. �
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