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A Spectral Approach for Sifting Process in Empirical
Mode Decomposition

Oumar Niang, Éric Deléchelle, and Jacques Lemoine

Abstract—In this paper, we propose an alternative to the algo-
rithmic definition of the sifting process used in the original Huang’s
empirical mode decomposition (EMD) method. Although it has
been proven to be particularly effective in many applications, EMD
method has several drawbacks. The major problem with EMD is
the lack of theoretical Framework which leads to difficulties for
the characterization and evaluation this approach. On top of the
mathematical model, there are other concerns with mode mixing
and transient phenomena, such as intermittency or pure tones sep-
aration. This paper follows a previous published nonlinear diffu-
sion-based filtering to solve the mean-envelope estimation in sifting
process. The major improvements made in this present work are a
non-iterative resolution scheme for the previously proposed partial
differential equation (PDE), a new definition of the stopping func-
tion used in the PDE framework, and finally an automatic regular-
ization process based on inverse problem theory to deal with mode
mixing or transient detection problem. Obtained results confirm
good properties of the new version of the PDE-based sifting process
and its usefulness for decomposition of various kinds of data. The
efficiency of the method is illustrated on some examples using in-
formative and pathological signals for which standard EMD algo-
rithm fails.

Index Terms—Diffusion equations, eigenvalues, empirical mode
decomposition (EMD), inverse problems, mean-envelope, mode
mixing, Tikhonov regularization, transient.

I. INTRODUCTION

T HE empirical mode decomposition (EMD) [1] is an algo-
rithm that produces a representation of a discrete signal

in terms of elementary modes, termed intrinsic mode functions
(IMFs). This nonlinear decomposition method extracts, through
an iterative sifting procedure, IMFs which are conditioned on
the function to be represented. These IMFs are local averages
which are extracted from highest local frequencies to the lowest
through an amazingly effective and simple collection of algo-
rithms. Each IMF generated is typically completely unrelated
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to the ones of higher local frequency which were extracted ear-
lier in the process. This particular representation in many cases
is amenable to further analysis using the Hilbert transform.

There are many variants of the sifting procedure, many of
which were suggested in [1], [2]. To date, only one variant has
led to a convergence analysis, namely the B-spline method [3].
The elementary component IMF’s, as defined by Huang [1],
have been characterized in terms of solutions of Sturm-Liouville
equations [4] but the sifting procedure and an understanding of
the decomposition process have eluded researchers. Sifting is
an iterative procedure whose limit determines a special local av-
erage of the signal. The analogy with wavelets would be that this
is a coarsening operation to a signal with fewer extrema (and
therefore lower frequency of oscillation) and that the difference
between this (nonlinear) projection and the signal would corre-
spond to a wavelet representation at that resolution level.

The origin of EMD is essentially algorithmic in nature, and
hence, the method lacks of a solid theoretical framework. In a
recent paper [5], we have proposed an analytical approach for
sifting process based on Partial Differential Equation (PDE).
The utility of the proposed method has been successfully
demonstrated with the help of several synthetic signals, which
demonstrate that this approach performs as well as the classical
EMD algorithm. Following this work, we proposed here two
major contributions. First, we give a new definition of the
characteristic points of the signal to be decomposed. Second,
a noniterative scheme to solve the coupled PDEs system for
upper and lower envelopes estimation. Finally, we proposed
a regularization approach to detect “pathological” cases. As a
consequence, some of the inherent drawbacks of the original
EMD algorithm are taken into account, and the decomposition
obtained, from particular signal cases, show very good results.

II. EMD BASICS

This section presents the EMD method [1] in a nutshell. All
the details regarding the implementation of EMD algorithm and
Matlab EMD codes are fully available in [7]. EMD method it-
eratively decomposes a complex signal (i.e., a signal with sev-
eral characteristic time scales coexisting) into several elemen-
tary AM-FM type components, called Intrinsic Mode Functions
(IMFs).

The underlying principle of this decomposition is to locally
identify the most rapid oscillations in the signal, defined as a
waveform interpolating interwoven local maxima and minima.
To do so, the local maxima points (and, respectively, the local
minima points) are interpolated with a cubic spline, to determine
the upper (and, respectively, the lower) envelope. The mean en-
velope (i.e., the half sum of the upper and the lower envelopes)
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is then subtracted from the initial signal, and the same interpola-
tion scheme is reiterated on the remainder. The so-called sifting
process terminates when the mean envelope is reasonably zero
everywhere, and the resultant signal is designated as the first
IMF. The higher order IMFs are iteratively extracted applying
the same procedure for the initial signal, after removing the pre-
vious IMFs. In the original definition of IMF [1], to be an IMF
a signal must satisfy two criteria, the first one being that the
number of local maxima and the number of local minima must
differ by at most one, and the second, the mean of its upper and
lower envelopes must equal zero. In the original version of EMD
algorithm, Huang et al. [1] have to determine a criterion for the
sifting process to stop. This is accomplished by limiting the size
of the standard deviation computed from the two consecu-
tive sifting results.

The first IMF , and the first residual , of a signal
are found by iterating through the (inner) loop of Algorithm 1.

The sifting procedure performed on can then be performed on
the residual to obtain and and repeated (outer loop)
until the residual is reasonably not too small. So, for any one-
dimensional discrete signal, , EMD can finally be presented
with the following representation:

(1)

where is the th IMF (or mode) of the signal, and is the
final residual trend (a low order polynomial component). Sifting
procedure generates a finite (and limited) number of IMFs that
are nearly orthogonal to each other.

Algorithm 1 : Sifting process at level - STANDARD FORM

1: set , Initialization

2: repeat Loop

3: set ,

4: find extrema of (minima and maxima)

5: compute upper envelope by interpolating between
maxima

6: compute lower envelope by interpolating between
minima

7: compute proto-local mean

8: update proto-mode function

9: until is an IMF. End Loop

10: set , and
Result

In all cases, an IMF can be viewed as a (nonlinear) frequency
narrow-band wavelet with amplitude modulation by a lower
frequency signal

In stochastic situations involving broadband noise, one can
make an interpretation of EMD in terms of a constant filter
bank [8], [9].

III. EMD DRAWBACKS AND IMPROVEMENTS

The implementation of EMD requires some attention to deal
with the selection of the stopping criteria for the sifting process
and the management of the end points for cubic splines interpo-
lation in the EMD process. But another important obstacles, to
this approach, lie on the problem of “intermittencies” and “mode
mixing.” Before to present a novel formulation attempting to
improve the standard EMD approach, we review some of the
published works dealing with these drawbacks.

A. Stopping Criterion

When testing for IMF criteria in the sifting process, two tests
must be passed. The number of extrema and zero-crossings must
not differ by more than one. The second criterion is that the
mean between the upper and lower envelopes must be close to
zero according to some criterion. The criteria that have been
considered so far in [1] leads, in certain situations, to overde-
composition. As an improvement, Rilling et al. [2] proposed
an approach to choosing stopping criteria in order to guarantee
globally small fluctuations in the mean while taking into account
locally large excursions. This is accomplished by introducing at
each sifting iteration an amplitude and an evaluation function.
They used two thresholds, one designed to ensure globally small
fluctuations in the mean of the cubic splines from zero, and the
second allowing small regions of locally large deviations from
zero.

B. Border Effects

However, although a powerful method, EMD must be used
cautiously when extracting the IMFs. As mentioned in [2] when
locating the extrema of the time series at each sifting process,
the end points (boundary conditions) of the time series are to be
treated differently in order to minimize error propagations due
to finite observations in length. There are a variety of techniques
that have been used in past studies on EMD, and [2] offers one
of the simplest yet very robust by mirrorizing the extrema at the
time series boundary conditions.

C. Intermittencies

As noted in [1] and [10], intermittency (or riding waves) is
a major obstacle to the use of EMD on many signals. Intermit-
tency for example occurs in turbulent flow or in any signal that
is constantly changing such as speech. In this case we refer to
intermittency as a component at a particular time scale either
coming into existence or disappearing from a signal entirely.
Since EMD locally pulls out the highest frequency component
as the current IMF, intermittency in a signal means that the fre-
quency tracked by a particular IMF will jump as the intermit-
tent component begins or ends. This situation is illustrated with
signal in Fig. 1(a) where we can see why transient signals or in-
termittency artifacts must be taking out in the beginning of an
EMD sifting process.

A solution to intermittency is proposed in [11] in which a
change in the choice of extrema for the envelopes limits the
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Fig. 1. Some pathological cases for original EMD approach. (a) A mixed mode
signal showing an intermittency around � � ���. (b) A tow-tones signal. (c) A
wave-like signal with only one extrema at � � ���.

scale over which the sifting process allows a component to pass.
Intermittent affect the outcome of the IMF generation. In gen-
eral, riding waves are defined as a transient signals that are in-
terrupting the predominant pattern of the wave. Particular to
intermittency detection, intermittency is defined as any set of
a maximum and minimum extrema such that the distance be-
tween the adjacent extrema points is less than the designated
threshold, . In original EMD during the process of removing
intermittency from an IMF, a search is made in the signal for all
maximum and minimum extrema which the distance between
any two extrema is greater than or equal to . In order to sepa-
rate the intermittency artifacts into a different IMF, those points
found during the process are removed, and all values that are
less than the threshold are retained, and the EMD calculation is
continued. There is currently no automatic heuristics for selec-
tion of threshold values, due to the complexity of such analysis.
A recent method to alleviate some of the common problems of
EMD such as mode mixing is Ensemble EMD (EEMD) intro-
duced by Wu and Huang [12] to try increasing the robustness of
EMD. In EEMD, the final EMD is estimated by averaging nu-
merous EMD runs with the addition of noise.

Another solution involving a masking signal is presented in
[13]. The masking signal technique allows EMD to be used to
separate intermittency from other components that would be
inseparable with standard EMD algorithm. This approach is
based on an elegant usage of the standard Algorithm 1. The
basic idea is to insert a masking signal, a single sine tone for
which frequency is chosen appropriately, that prevents lower

frequency components from being included in the first IMF,
thus capturing intermittency components. Because of its focus
on frequency, the corresponding implementation is presented
in Algorithm 2. Hence, we see that intermittency management
is performed through a double sifting process and assuming
the knowledge of the ’cut-off’ frequency imposed by
the masking signal (see [13] for more details on frequency
selection).

Algorithm 2 : Sifting process at level - MASKING SIGNAL

1: choose masking tone at frequency Initialization

2: set 1st Proc.

3: perform Algorithm 1 on to obtain

4: set 2nd Proc.

5: perform Algorithm 1 on to obtain

6: set , and
Result

D. Pure Tones Separation

When considering the performance of EMD on a combination
of pure tones, it is important to note that a sum of pure tones can
be rewritten as a product of two tones.

If , then we observe that the resulting signal can be
viewed as Amplitude Modulated (AM) wave, see Fig. 1(b).
The performance of EMD on pairs of pure tones is discussed in
[2], where the authors show that we can define a confusion fre-
quency band , with , such that
and cannot be separated.

The previous cited approach, Algorithm 2 [13], using
masking signal for intermittency management performs as
well for tones separation. Hence, the masking signal technique
allows EMD to be used to separate components that are similar
in frequency that would be inseparable with standard EMD
algorithm.

E. Variation With Non Local Extrema

In its actual version, EMD acts on oscillating signals that
present local extrema. Consider the simple case for which a
signal is defined as

with . So, the temporal derivative of is

Hence on interval , and no minima and maxima are
defined. See Fig. 1(c) for an example of such a wavelike signal.
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Hence, the two components would be inseparable with standard
EMD Algorithm 1.

IV. PDE-BASED EMD

As proposed in [5], a possible form for fourth order diffusion
equation is

(2)

where is the stopping function possibly depending on
both position and time, and where the time variable is artificial,
and measures the degree of processing (e.g., smoothing) of the
signal, as opposed to a real time. Equation (2) can be viewed
as a long-range diffusion (LRD) equation (see, for example,
[14, p. 244]), with thresholding function depending only
on position (constant in time) and more precisely on some char-
acteristic fix points of the signal to decompose. After derivation,
(2) reads

(3)

where the subscript denotes partial differentiation with re-
spect to the variable and denotes partial differentiation
of order with respect to the variable . In the following,
we use the notation for initial condition
and for asymptotic solution of (3) whose
existence is proven in [6].

In order to implement sifting procedure in a PDE-based
framework, the following processes are based on the definition
of characteristic points of a function: (i) turning-points; (ii)
curvature-points. Thanks to these characteristic points, we
define a coupled PDEs system in sifting process to estimate
lower and upper envelopes.

A. A Coupled PDEs System

In a previous paper [5] and more in [6], we have intro-
duced and studied a coupled PDEs system where the stopping
functions , for upper and lower envelopes, are related to
maxima and minima points (MMP), so depend on both
first and second derivatives of , in such a way such that

at maxima of , in the same way at minima
of . So, LRD acts only between two consecutive maxima
(respectively, minima) points until fourth-order derivative of

is canceled. Since, stopping functions are piecewise
constant, after convergence of the PDE solution (see [6]) the
resulting asymptotic signal (re-
spectively, ) is a piecewise cubic
polynomial curve interpolating the successive maxima (respec-
tively, minima) of signal.

Then, the coupled PDEs system, based on (3) reads

(4)

with , and where stopping func-
tions, , depend on signal derivatives, with . In [5], a
reasonable choice for stopping functions was

(5)

After convergence of system (4) asymptotic solutions
and , stand, respectively, for upper and lower envelopes
of signal . Hence, mean-envelope of is obtained by

In the case of signal variation with nonlocal extrema, (5) for
stopping functions is not adapted. As the algorithmic version of
the EMD, such a signal is not decomposed into IMFs with the
PDE version. In order to discard this drawback, we proposed
here a another possible formulation for stopping functions based
on characteristic points defined by maximum curvature points
(MCP) of . So, the new formulation reads

(6)

where is used in place of in (5), so that stopping function
(respectively, ) is zeroed at local negative (respectively,

positive) curvature maxima of .

B. A More General PDE-Interpolator With Tension Parameter

A possible more general form for (3) is

(7)

adding Laplacian term to biharmonic one. So, in this form
is the tension parameter, and ranges from 0 to 1. Zero tension

leads to the biharmonic equation for (3) and corresponds
to the minimum curvature construction for upper and lower en-
velopes. The case corresponds to infinite tension, resulting
on piecewise linear envelopes.

C. Numerical Resolutions

Numerical resolutions for coupled PDEs system based on (7)
is implemented in [5] via classical iterative Crank-Nicolson or
Du Fort and Frankel schemes.

Equation (7) can be resolved numerically in its discrete ex-
plicit version

where is the column vector of signal sam-
ples for upper or lower envelopes or and is a ma-
trix formed with finite difference approximation coefficients of
second- and fourth-order differential operators, as

and the finite difference operator of the derivative. So the
explicit form is

(8)

with the identity matrix. This scheme is known to be stable
conditionally to time step . An unconditionally stable scheme
based on an implicit version reads
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Fig. 2. An example of signal decomposition with nonlocal extrema. (a) Top plot, original signal with its upper, lower, and mean envelopes. Middle plot, proto-mode
signal � ��� after one iteration of sifting process. Bottom plot, proto-local mean envelope � ���. (b) A detail on signal and its lower, upper, and mean envelopes.

leading to the following numerical resolution:

(9)

Both in (8) and (9) matrix is construct with discrete version
of stopping function values . The discrete version of for
(5) and (6) are done by

where , and with and
forward and backward first difference operators on the

dimension, and where stands for the minmod limiter
.

Some results of signal decompositions obtained with (5) and
implicit scheme (9) are reported in [5].

V. SPECTRAL APPROACH

In this section, we introduced a spectral approach for the res-
olution of (7) with a noniterative scheme.

A. Linear System Equations Resolution

The approach is based on the fact that (7) can be decomposed
into a linear system of equations of the following two forms:

from explicit numerical scheme (8), or alternatively from im-
plicit numerical scheme by (9)

(10)

where and are the linear operators including stopping func-
tion values and differential operator formed by fourth order and
second order. So, referring to numerical schemes (8) and (9),
and are given by

(11a)

(11b)

As implicit scheme is unconditionally stable for all step
size , we will concentrate on this scheme for the rest of the
document.

B. Asymptotic Solution

In our case, we are looking for the asymptotic solution of (7).
So, noting that the iterative scheme(10) can be rewrite in term
of initial solution as

after convergence, the asymptotic solution is given by

(12)

The operator matrix , as a real-valued has real-valued eigen-
values. More, it easy to show that eigenvalues of are always
greater or equal to 1. Then, eigenvalues of are always
smaller or equal to 1, . Finding the eigenvalues and
eigenvectors of the operator matrix is closely related to its de-
composition

(13)

where is a matrix of ’s eigenvectors and is a diag-
onal matrix having ’s eigenvalues at the diagonal. It is
easy to see that we have

So, the asymptotic solution of (13) is obtained by

(14)

As is a diagonal matrix with eigenvalues only at loci
where matrix is zeroed, i.e., where stopping function ,
and where , then, the asymptotic eigenvalue
matrix is a diagonal matrix with eigenvalues only at
loci where matrix is zeroed, and where .
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So, we can define the asymptotic eigenvalue matrix
in the following manner:

C. Quasi-Asymptotic Solution

In order to solve intermittency problem [1], [11], we propose
a solution to taking out transient signal during sifting process.

We define the quasi-asymptotic eigenvalue matrix
as depicted

(15)

where is a threshold so that , , and the
quasi-asymptotic solution is now

.
(16)

So, during the sifting process in EMD, one can impose an
intermittency frequency so that the resulting IMF will not
contains any frequency components smaller than . Now, the
question is “how to choose ?” We propose, in Section VII, a
possible solution to this question.

VI. IMPLEMENTATION AND RESULTS

A. Implementation

The spectral resolution for sifting process is resumed in
Algorithm 3.

Algorithm 3 : Sifting process at level - SPECTRAL
APPROACH

1: set , , choose Initialization

2: repeat Loop

3: set ,

4: compute from , using MMP (5) or MCP (6)

5: compute matrix operator (11b)

6: perform eigendecomposition of (13)

7: compute asymptotic eigenvalue matrix (15)

8: find upper and lower envelopes and (16)

9: compute proto-local mean

10: update proto-mode function

11: untill is an IMF End Loop

12: set , and
Result

B. Some Results

1) Example 1 (Locally Oscillating Monotone Signal): We il-
lustrate in Fig. 2, the use of MCP-based approach in order to
extract IMF from a locally oscillating but monotone signal (i.e.,

Fig. 3. An example of signal decomposition with intermittencies. (a) Eigen-
value solution with � � �. (b) Eigenvalue solution with � � ����. (a)–(b) Top
plot, original signal with upper, lower, and mean envelopes. Middle plot, proto-
mode signal � ��� after the first iteration of the sifting process. Bottom plot,
the resulting proto-mean envelope signal � ���. (c) A detail on signal with its
envelopes.

without extrema on an interval). The composed signal is a sum
of a low-amplitude pure tone with a quadratic function .
Results obtained after the first iteration ( and ) of the sifting
process are illustrated on Fig. 2(a), where we can see that despite
an absence of extrema, for example in time interval ,
see Fig. 2(b), upper and lower envelopes are well detected. The
classical EMD algorithm Algorithm 1 or the MMP-based ap-
proach, in Algorithm 3, will fall in this situation.

2) Example 2 (Extraction of Transient Signals): We illus-
trate in Fig. 3 the use of a threshold in (16) to defined values of
the quasi-asymptotic eigenvalue matrix. The composed signal
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Fig. 4. AM-FM signal analysis with the standard EMD algorithm. (a) The three
firsts analytical AM-modulated Fourier components issued from (18). (b) De-
composition obtained with the standard EMD approach resulting on only one
IMF ��� , and a negligible residual � .

is a sum of a pure tone with some transient signals at different
scales. Using asymptotic solution , the decomposition
give output where the IMF is composed on a mixing between
tone oscillations and intermittencies. See Fig. 3(a) for the out-
puts (noted and ) after one iteration of the sifting process.
We can see, Fig. 3(b), that for , “manually” choosen,
the proposed approach is able to extract precisely all intermit-
tencies with a good precision [see Fig. 3(c) for a detail]. The
decomposition can be interpreted as a locally adapted filtering
process. See Section VII for an automatic determination of the
optimal value of .

3) Example 3 (Amplitude-Frequency Modulated Signal): In
this example, we show how the proposed approach is able to de-
compose a multicomponent AM-FM signal. For this, we take the
informative example of signal used in [4, example 4.4] which
can be considered as a true IMF (in the sense of Huang et al.).
The considered signal, with , is

Noting that, using Fourier series, can be expressed as

(17)

where is the Bessel function of the first kind of order
, and with , , ,

, and for . The three first
components of the Fourier series are illustrated on Fig. 4(a).

Fig. 5. AM-FM signal analysis with MCP-based approach. Top plot, signal to
decomposed. Middle plots, the two IMFs and the residual. Bottom plot, instan-
taneous frequency representation for ��� and ��� . The two IMFs and the
residual can be compared with analytical Fourier series components given by
(18) and represented on Fig. 4(a).

We sample uniformly with increment on in-
terval , resulting on a vector length of 512 points.
Notice that may be regarded as the Amplitude Mod-
ulated part of , and as the frequency modu-
lated component. Hence, in classical EMD algorithm, the de-
composition result shows that is an IMF.

With the proposed method, we have the choice between the
two definitions of the stopping function, from (5) based on
minimal and maximal points (MMP) of or from (6) based
on maximal curvature points (MCP) of . The MMP-based
approach give similar result that the classical EMD algorithm,
i.e., is considered as an IMF, resulting on a negligible
residual, see Fig. 4(b). But, using the MCP-based approach, the
decomposition result shows two IMFs plus a quadratic residual,
see Fig. 5. Each IMF is an Amplitude Modulated sinusoidal
function for which instantaneous frequency (IF), estimated
from Hilbert transform [1], is illustrated in Fig. 5.

This result is consistent with the following approximation of
(17), neglecting terms of rank , we can rewrite as

We can see a very good agreement between and ,
and , and finally and , Figs. 4(a) and 5.
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Fig. 6. An example of Mackey-Glass time series obtained from (18). To plot,
the discrete MG time series. Bottom plot, power spectral density estimate via
Welch’s method in dB per unit frequency.

As described in [4], this example use a well-behaved func-
tion for which the instantaneous frequency computed using
Hilbert transform changes sign. So, despite the fact that is
viewed as an IMF with the classical EMD algorithm or with
the MMP-based approach, this IMF not admits a well-behaved
Hilbert transform, its Instantaneous Phase is nonmonotone and
physically unrealistic. But, using the MCP-based approach,
is decomposed into two IMFs for which IPs are realistic and cor-
respond to theoretical result.

4) Example 4 (Chaotic Process): In this example, we use
a synthesized time series that is generated by the following
Mackey-Glass (MG) time-delay differential equation [15]

To obtain the time series value (of 512 samples length) at in-
teger points, we applied the fourth-order Runge-Kutta method
to find the numerical solution to the above MG equation with
the discrete version

(18)

with , , , , , and initial value
for . The MG process and its power spectral den-

sity (PSD) are both illustrated in Fig. 6.
A first decomposition using original EMD algorithm is illus-

trated on Fig. 7(a). As we can see, the time series is in this
case essentially viewed as a FM-modulated IMF, with central
frequency .

With the MCP-based EMD, represented on Fig. 7(b), the
result shows that is decomposed on three FM-modulated
IMFs. For each IMF, , the Central Frequency esti-
mated from instantaneous frequency is , with

.

VII. AUTOMATIC MODE MIXING AND TRANSIENT DETECTIONS

In this section we propose a method to estimate, automati-
cally, the optimal quasi-asymptotic parameter , Section V-C,
to deal with the problem of mode mixing and transient detec-
tions in signal as in Example 2 of Section VI-B, illustrated in
Fig. 3.

A. Tikhonov Regularization

Consider the linear problem

(19)

where the input we wish to reconstruct, is the output we mea-
sure, is a linear transformation, and represents an additive
noise process which prevents us from knowing the noise-free
data .

Tikhonov regularization provides a framework for stabilizing
the solution of possible ill-conditioned linear equations [16].
The solution of (19) using Tikhonov regularization can be
written as

(20)

This is a whole family of solutions parameterized by the
weighting factor . Here is the regularization parameter,

is a positive semidefinite linear transformation, denotes
the prior information about the solution . Typically, is the
identity matrix or a banded matrix approximation to the th
derivative.

If the regularization parameter is very large, the effect of the
model error term, , is negligible to that
of the prior error and we find that

. On the other hand, if is small, the problem
reduces to the least-squares case considered in (19) with an ex-
treme sensitivity to noise on the data . So, the regularizing
parameter can be thought of as controlling the balance be-
tween minimizing the regularizing term and minimizing
the term , which corresponds to fitting data.

B. Application to Sifting Process

In order to apply this approach to the problem of mode mixing
and transient detection, we propose to take advantage of the re-
construction relation at level of the decomposition

(21)

where and are, respectively, the proto-mode and the
proto-residual obtained at iteration during the sifting process,
with and , where denotes the decomposed
signal as in (1). If we make the assumption that, initially,
contains mixed modes or transients, then we can identify the
reconstruction relation (21) with the linear problem (19), and
write after one iteration of the sifting process (e.g., )

(22)

where now is considered as noise and the data we wish
to recover. Here, the linear operator is and

.
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Fig. 7. EMD decomposition of a Mackey-Glass time series. (a)–(b) Top plot, the time series (18). Middle plots, IMFs and residual. Bottom plot, Instantaneous
Frequency estimation for each IMF. (a) Decomposition result with original EMD algorithm. Note that the time series is essentially composed of the first IMF
��� . (b) Decomposition result with MCP-based approach resulting on three IMFs.

Therefore, we define the model error and the prior error as

(23)

where is the solution obtained from (17) for a fixed
, and where the operator is a matrix which

approximates the second derivative. Here, acts as a regular-
ization parameter such that and .

C. Estimating Optimal Parameter Using Tikhonov Curve

Perhaps the most convenient way for setting , in (20), is the
“Tikhonov curve,” or “L-curve” [17]. When we plot the prior
error, , versus the model error, ,
we get the characteristic L-shaped curve with a (often) distinct
corner separating vertical and horizontal parts of the curve,
see Fig. 8. The optimal regularization parameter is defined
as that which strives to minimize and balance the two error
terms. A tradeoff between these two error metrics is the use of
regularization at the corner of the L-curve.

In the same way, the optimal is estimated from the
L-curve obtained after plotting versus

for . Here, is considered

Fig. 8. The generic form of the L-curve. The curve is labeled parametrically
with the value of the regularization parameter. The solution which appears op-
timal visually lies slightly to the neighborhood of the corner, e.g., the position
of upwards-pointing curvature.

as the measured data, denotes the prior information about
the solution, and is a regularized version of the solution.

D. Numerical Experimentation

To investigate the performance of the proposed approach we
applied it to transient extraction, mode mixing separation, and
to a “normal” composition. We noticed that the estimation of
the optimal value can be carried out by applying the Tikhonov
regularization to the proto-residual obtained after only one iter-
ation of the sifting process. In order to locate the corners of the
discrete L-curve, we use the algorithm proposed in [18]. Once
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Fig. 9. Numerical experimentation for automatic regularization parameter estimation. A pure tone signal with a superimposed transient. The Tikhonov-curve is
represented with detected corner marked with a circle, as well as the resulting decomposition using the estimated optimal parameter �.

Fig. 10. Numerical experimentation for automatic regularization parameter estimation. (a) A mode mixing signal building with two successive pure tones. (b) A
mode mixing signal building with three successive pure tones. In each case, the Tikhonov-curve is represented with detected corner marked with a circle, as well
as the resulting decomposition using the estimated optimal parameter �.

that the first iteration is realized, the sifting process is carried
out normally (with ) on porto-mode until obtaining the
final IMF and residual.

1) Example 5 (Transient Extraction): The first example,
reported in Fig. 9, concerns a transient superimposed to a pure
tone signal. The associated L-curve exhibits a marked corner
which is well detected. Hence, using the estimated optimal

value, the first IMF, , captures the transient, and the
residual signal, is the transient-free pure tone.

2) Example 6 (2-Mode Mixing Separation in Time): The
second example addresses the mode mixing separation problem.
In this example, the signal is build by a concatenation of two
pure tones with different frequencies, see Fig. 10(a). In this case,
the curve exhibits a marked corner which is well detected. The
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Fig. 11. Numerical experimentation for automatic regularization parameter estimation. (a) A mode mixing signal as a sum of two pure tones with close frequencies.
(b) A “normal” case for which the signal is a sum of two pure tones with very different frequencies. In each case, the Tikhonov-curve is represented with detected
corner marked with a circle, as well as the resulting decomposition using the estimated optimal parameter �.

use of the optimal value makes it possible to separate the two
tones with the highest frequency one in and the lower
in .

3) Example 7 (3-Mode Mixing Separation in Time): The
third example addresses the mode mixing separation problem.
In this example, the signal is build by a concatenation of three
pure tones with different frequencies, see Fig. 10(b). In this case,
the curve exhibits two marked corners which are well detected.
The use of the two optimal values, and makes it possible
to separate the three tones as illustrated in Fig. 10(b).

4) Example 8 (2-Mode Mixing Separation in Frequency):
This fourth example also addresses the mode mixing separation
problem. In this example, the signal is sum of two pure tones
with close frequencies, see Fig. 11(a). In this case, the curve
exhibits a little marked corner but which is as well detected.
The use of the optimal value makes it possible to separate the
two tones with the highest frequency one in and the lower
in .

5) Example 9 (Normal Composition): Finally, the last ex-
ample relates to a “normal” case for which the sifting process
must be applied just as it is with . Indeed, in this case the
signal to analyze is the sum of two pure tones, see Fig. 11(b).
One can note that the associated curve does not present a

L-shape as for the two preceding examples. So, no corner is
detected and the optimal parameter is set to , and the
sifting process is performed to obtained the first tone in
and the second one in as illustrated in Fig. 11(b).

VIII. CONCLUSION

It is a well-known fact that EMD method is developed on
the basis of an algorithm and hence it suffers from a lack of
a full and generally accepted theoretical framework. Thus, it is
of great importance to develop an analytical formulation for the
so called mean envelope to characterize this method. The main
problem is due to the fact that the local mean of a signal depends
on its characteristic local time-scales. In our previous paper, the
utility of the PDE-based Framework method has been success-
fully demonstrated with the help of several synthetic signals,
which shows that this approach performs as well as the classical
EMD method. In this paper, a novel spectral approach, which es-
timates the mean-envelope of a signal has been presented. Here,
we have extended the PDE-based approach in order to cover
cases where classical EMD is quite weak for signal analysis. It is
the case of signals without local extrema, or chaotic signals like
chaotic time series. This extension is on one hand based on MCP
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of a signal and on another hand on a regularization approach in-
spired by the well known Tikhonov regularization method. So,
we have also proposed a quasi-asymptotic solution, to deal with
transient component or mode mixing signals. We have shown
how it can resolve automatically the mode mixing and transient
problems, and have proven its powerfulness in the case of com-
plex signals like chaotic time series. The formulation proposed
here is believed to provide with new insights in EMD and calls
for further studies. In our future works, this spectral approach
will be used on real signals for purpose of analysis and charac-
terization of physical data.
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