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Abstract

Let (Xt, Yt)t∈T be a discrete or continuous-time Markov process with state space
X × Rd where X is an arbitrary measurable set. Its transition semigroup is assumed to
be additive with respect to the second component, i.e. (Xt, Yt)t∈T is assumed to be a
Markov additive process. In particular, this implies that the first component (Xt)t∈T is
also a Markov process. Markov random walks or additive functionals of a Markov process
are special instances of Markov additive processes. In this paper, the process (Yt)t∈T is
shown to satisfy the following classical limit theorems:

(a) the central limit theorem,

(b) the local limit theorem,

(c) the one-dimensional Berry-Esseen theorem,

(d) the one-dimensional first-order Edgeworth expansion,

provided that we have supt∈(0,1]∩T Eπ,0[|Yt|α] < ∞ with the expected order α with re-
spect to the independent case (up to some ε > 0 for (c) and (d)). For the statements
(b) and (d), a Markov nonlattice condition is also assumed as in the independent case.
All the results are derived under the assumption that the Markov process (Xt)t∈T has an
invariant probability distribution π, is stationary and has the L2(π)-spectral gap prop-
erty (that is, (Xt)t∈N is ρ-mixing in the discrete-time case). The case where (Xt)t∈T is
non-stationary is briefly discussed. As an application, we derive a Berry-Esseen bound
for the M -estimators associated with ρ-mixing Markov chains.

subject classification : 60J05, 60F05, 60J25, 60J55, 37A30, 62M05

Keywords : Markov additive process, central limit theorems, Berry-Esseen bound, Edge-
worth expansion, spectral method, ρ-mixing, M -estimator.

1 Introduction

In this paper, we are concerned with the class of Markov Additive Processes (MAP). The
discrete and continuous-time cases are considered so that the time parameter set T will denote
N or [0,+∞). Let X be any set equipped by a σ-algebra X and let B(Rd) be the Borel σ-
algebra on R

d (d ≥ 1). A (time homogeneous) MAP (Xt, Yt)t∈T is a (time homogeneous)
Markov process with state space X×R

d and transition semigroup (Qt)t∈T satisfying: ∀t ∈ T,
∀(x, y) ∈ X× R

d, ∀(A,B) ∈ X × B(Rd),

Qt(x, y;A×B) = Qt(x, 0;A ×B − y). (1.1)
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In other words, the transition semigroup is additive in the second component. It follows from
the definition that the first component (Xt)t∈T of a MAP is a (time homogeneous) Markov
process. The second component (Yt)t∈T must be thought of as a process with independent
increments given σ(Xs, s ≥ 0). We refer to [15] for the general structure of such processes.
Note that a discrete-time MAP is also called a Markov Random Walk (MRW). In stochastic
modelling, the first component of a MAP is usually associated with a random environment
which drives or modulates the additive component (Yt)t∈T. The MAPs have been found to
be an important tool in various areas as communication networking (e.g. see [2, 71, 72]),
finance (e.g. see [1, 3, 56]), reliability (e.g. see [17, 37, 64, 70]), . . . Some important instances
of MAP are:

• in discrete/continuous-time : (Xt, Yt)t∈T where (Yt)t∈T is a R
d-valued additive func-

tional (AF) of the Markov process (Xt)t∈T. Therefore any result on the second compo-
nent of a MAP applies to an AF. Basic discrete and continuous-time AFs are respec-
tively

Y0 = 0, ∀t ∈ N
∗, Yt =

t∑

k=1

ξ(Xk); ∀t ∈ [0,+∞[, Yt =

∫ t

0
ξ(Xs) ds (1.2)

where ξ is a R
d-valued function satisfying conditions under which Yt is well-defined for

every t ∈ T. When (Xt)t∈T is a regular Markov jump process, then any non-decreasing
AF has the form (e.g. [16])

∫ t

0
ξ1(Xs) ds+

∑

s≤t

ξ2(Xs−,Xs)

where Xt− = lims→t,s<tXs, ξ1 and ξ2 are non-negative measurable functions such that
ξ2(x, x) = 0 for every x ∈ X. General representations and properties of AFs may
be found in [5, 77, and references therein]. Such AFs are basically introduced when
some kind of “rewards” are collected along with the dynamics of the Markov process
(Xt)t∈T through the state space X. Thus, Yt is the accumulated reward on the finite
interval [0, t]. Even if the state space X is a finite set, the numerical computation of
the probability distribution of such AFs is not an easy task (e.g. see [9, 82]).

• in discrete-time: the Markov renewal processes when the random variables Yt, t ∈ N,
are non-negative; if we consider a hidden Markov chain (Xt, Zt)t∈N, where the so-called
observed process (Zt)t∈N is Rd-valued (Z0 = 0), then (Xt,

∑t
k=1 Zk)t∈N is a MAP.

• in continuous time: the Markovian Arrival Process where (Xt)t∈T is a regular jump
process and (Yt)t∈T is a point process (see [2]), which includes the so-called Markov
Modulated Poisson Process.

Seminal works on MAPs are [21, 22, 59, 69, 75] and are essentially concerned with a finite
Markov process (Xt)t∈T as first component. The second component (Yt)t∈T was sometimes
called a process defined on a Markov process. When X is a finite set, the structure of MAPs
are well understood and an account of what is known can be found in [2, Chap XI]. In
this paper, we are concerned with Gaussian approximations of the distribution of the second
component Yt of a MAP. Central limit theorems for (Yt)t∈T may be found in [7, 27, 30, 50, 51,
59, 61, 75, 83, 84] under various assumptions. Here, such results are derived when (Xt)t∈T has

2



an invariant probability measure π, is stationary and has the L2(π)-spectral gap property (see
conditions (AS1-AS2) below). Moreover, standard refinements of the central limit theorem
(CLT) related to the convergence rate are provided. Before, notations and assumptions used
throughout the paper are introduced.

Let (Xt, Yt)t∈T be a MAP with state space X×R
d and transition semigroup (Qt)t∈T. (X,X )

is assumed to be a measurable space equipped with a σ-algebra X . In the continuous-time
case, (Xt, Yt)t∈T is assumed to be progressively measurable. (Xt)t∈T is also a Markov process
with transition semigroup (Pt)t∈T given by

Pt(x,A) := Qt(x, 0;A× R
d).

Throughout the paper, we assume that (Xt)t∈T has a unique invariant probability measure
denoted by π (∀t ∈ T, π◦Pt = π). We denote by L

2(π) the usual Lebesgue space of (classes of)
functions f : X → C such that ‖f‖2 :=

√
π(|f |2) = (

∫
X
|f |2dπ)1/2 < ∞. The operator norm

of a bounded linear operator T on L
2(π) is defined by ‖T‖2 := sup{f∈L2(π):‖f‖2=1} ‖T (f)‖2.

We appeal to the following conditions.
AS1. (Xt)t∈T is stationary (i.e. X0 ∼ π).
AS2. The semigroup (Pt)t∈T of (Xt)t∈T has a spectral gap on L

2(π):

lim
t→+∞

‖Pt −Π‖2 = 0, (1.3)

where Π denotes the rank-one projection defined on L
2(π) by: Πf = π(f)1X.

AS3. The process (Yt)t∈T satisfies the moment condition

sup
t∈(0,1]∩T

Eπ,0[|Yt|α] <∞ (1.4)

where |·| denotes the euclidean norm on R
d and Eπ,0 is the expectation when (X0, Y0) ∼ (π, δ0).

In the discrete-time case, notice that the moment condition (1.4) reduces to (AS3d)

Eπ,0[|Y1|α] <∞ (AS3d)

and that condition (AS2) is equivalent to the ρ-mixing property of (Xt)t∈N, with ρ-mixing
coefficients going to 0 exponentially fast [81]. Condition (AS2) is also related to the notion
of essential spectral radius (e.g. see [86]).

Under (AS1-AS2), we show that the second component (Yt)t∈T of the MAP satisfies, in
discrete and continuous time, the following standard limit theorems :

(a) the central limit theorem, under (AS3) with the optimal value α = 2;

(b) the local limit theorem, under (AS3) with the optimal value α = 2 and the additional
classical Markov non-lattice condition;

(c) the one-dimensional Berry-Esseen theorem, under (AS3) with the (almost) optimal value
(α > 3);

(d) a one-dimensional first-order Edgeworth expansion, under (AS3) with the (almost) opti-
mal value (α > 3) and the Markov non-lattice condition.

These results correspond to the classical statements for the sequences of independent and
identically distributed (i.i.d.) random variables, with the same order α (up to ε > 0 in (c)
and (d)). Such results are known for special MAPs satisfying (AS2) (comparison with earlier
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works is made after each statement), but to the best of our knowledge, the results (a)-(d)
are new for general MAPs satisfying (AS2), as, for instance, for AF involving unbounded
functionals.

Here, the main arguments are

• for the statement (a): the ρ-mixing property of the increments (Yt+1 − Yt)t∈T of the
process (Yt)t∈T (see Proposition 3.1). This result, which has its own interest, is new to
the best of our knowledge. The closest work to this part is a result of [38] which, by
using φ-mixing properties, gives the CLT for MAPs associated with uniformly ergodic
driving Markov chains (i.e. (Pt)t∈T has a spectral gap on the usual Lebesgue space
L
∞(π)). Condition (AS2) is less restrictive than uniform ergodicity (which is linked to

the so-called Doeblin condition).

• For the refinements (b-d) : the Nagaev-Guivarc’h spectral method. The closest works to
this part are, in discrete-time the paper [49] in which these refinements are obtained for
the AF: Yt =

∑t
k=1 ξ(Xk), and in continuous-time the work of Lezaud [62] which proves,

under the uniform ergodicity assumption, a Berry-Esseen bound for the integral additive
functional (1.2). Here, in discrete-time, we borrow to a large extent the weak spectral
method of [49]: this is outlined in Proposition 4.2, which gives a precise expansion
(close to the i.i.d. case) of the characteristic function of Yt. For continuous-time MAPs,
similar expansions can be derived from the semigroup property of the Fourier operators
of the MAP. Proposition 4.2, and its continuous-time counterpart Proposition 4.4, are
the key results to establish limit theorems (as for instance the statements (b-d)) with
the help of Fourier techniques.

The classical (discrete and continuous-time) models for which the spectral gap prop-
erty (AS2) is met, are briefly reviewed in Subsections 2.2-2.4. The above limit theorems
(a)-(d) are valid in all these examples and open up possibilities for new applications. First,
our moment conditions are optimal (or almost optimal). For instance, in continuous time,
the Berry-Esseen bound in [62] requires that ξ in the integral (1.2) is bounded, while our
statement (c) holds true under the condition π(|ξ|3+ε) <∞. Second, our results are true for
general MAPs. For instance, they apply to Yt =

∑t
k=1 ξ(Xk−1,Xk). This fact enables us

to prove a Berry-Esseen bound for M -estimators associated with ρ-mixing Markov chains,
under a moment condition which greatly improves the results in [76].

The paper is organised as follows. The L2(π)-spectral gap assumption for a Markov process
is briefly discussed in Section 2 and connections to standard ergodic properties are pointed
out. In Section 3, the CLT for (Yt)t∈T under (AS1)-(AS3) with α = 2 is derived. The func-
tional central limit theorem (FCLT) is also discussed. Section 4 is devoted to refinements of
the CLT. First, the Fourier operator is introduced in Subsection 4.1, the characteristic func-
tion of Yt is investigated in Subsection 4.2, and our limit theorems are proved for discrete-time
MAPs in Subsection 4.3. Their extension to the non-stationary case is discussed in Subsec-
tion 4.4. The continuous-time case is studied in Subsection 4.5. The statistical application
to M -estimators for ρ-mixing Markov chains is developed in Section 5.

Finally, we point out that the natural way to consider the Nagaev-Guivarc’h method in
continuous-time is the semigroup property of the Fourier operators of the MAP (see Subsec-
tion 4.1 for details). To the best of our knowledge, this property, which is closely related
to the additivity condition (1.1) defining a MAP, has been introduced and only exploited in
[50].
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2 The L2(π)-spectral gap property (AS2)

2.1 Basic facts on property (AS2)

We discuss the condition (AS2) for the semigroup (Pt)t∈T of (Xt)t∈T. It is well-known that
(Pt)t∈T is a contraction semigroup on each Lebesgue-space Lp(π) for 1 ≤ p ≤ +∞, that is: we
have ‖Pt‖p ≤ 1 for all t ∈ T, where ‖·‖p denotes the operator norm on L

p(π). Condition (AS2),
introduced by Rosenblatt [81] and also called strong ergodicity on L

2(π), implies that (Pt)t∈T
is strongly ergodic on each L

p(π) (1 < p < +∞), that is ‖Pt − Π‖p → 0 when t → +∞.
Moreover, (AS2) is fulfilled under the so-called uniform ergodicity property, i.e. the strong
ergodicity on L

∞(π). These properties, established in [81], can be easily derived from the
Riesz-Thorin interpolation theorem [6] which insures, thanks to the contraction property of
Pt, that

‖Pt −Π‖p ≤ ‖Pt −Π‖αp1‖Pt −Π‖1−α
p2 ≤ 2 min

{
‖Pt −Π‖αp1 , ‖Pt −Π‖1−α

p2

}
, (2.1)

where p1, p2 ∈ [1,+∞] and p ∈ [1,+∞] satisfy 1/p = α/p1 + (1 − α)/p2 for some α ∈ [0, 1].
Indeed, assume that Condition (AS2) holds. Then Inequality (2.1) with (p1 = 2, p2 = +∞)
and α ∈ (0, 1) gives the strong ergodicity on L

p(π) for each p ∈ (2,+∞). Notice that the
value p = +∞ is obtained with α = 0, but in this case, the uniform ergodicity cannot be
deduced from (AS2) and (2.1). In fact the uniform ergodicity condition is stronger than
(AS2) (see [81]). Next Inequality (2.1) with (p1 = 2, p2 = 1) and α ∈ (0, 1) gives the strong
ergodicity on L

p(π) for each p ∈ (1, 2). The value p = 1 is obtained with α = 0, but the
strong ergodicity on L

1(π) cannot be deduced from (AS2) and (2.1). Finally, if the uniform
ergodicity is assumed, then Inequality (2.1) with (p1 = +∞, p2 = 1) and α = 1/2 yields
(AS2).

Also notice that the strong ergodicity property on L
p(π) holds if and only if there exists

some strictly positive constants C and ε such that we have for all t ∈ T:

‖Pt −Π‖p ≤ C e−εt. (2.2)

Indeed, if κ0 := ‖Pτ − Π‖p < 1 for some τ ∈ T (which holds under the strong ergodicity
property), then we have for all n ∈ N

∗: ‖Pnτ−Π‖p = ‖Pn
τ −Π‖p = ‖(Pτ−Π)n‖p ≤ κn0 . Writing

t = w+nτ with n ∈ N
∗ and w ∈ [0, τ), we obtain: ‖Pt−Π‖p = ‖Pw(P

n
τ −Π)‖p ≤ κn0 ≤ C e−εt

with C := 1/κ0 and ε := (−1/τ) ln κ0. The converse implication is obvious. Thus, the strong
ergodicity property on L

2(π), i.e condition (AS2), is equivalent to require L
2(π)-exponential

ergodicity (2.2), that is the L
2(π)-spectral gap property.

In the next subsection, Markov models with a spectral gap on L
2(π) arising from stochastic

modelling and potentially relevant to our framework are introduced. Assumption (AS2) can
be also met in more abstract settings, as for instance in [41] where the L

2-spectral gap
property for classic Markov operators (with a state space defined as the d-dimensional torus)
is proved.

2.2 Geometric ergodicity and property (AS2)

Recall that (Xt)t∈N is V -geometrically ergodic if its transition kernel P has an invariant
probability measure π and is such that there are r ∈ (0, 1), a finite constant K and a π-a.e
finite function V : X 7→ [1,+∞] such that

∀n ≥ 0, π − a.e. x ∈ X, sup
{
|Pnf(x)− π(f)|, f : X → C, |f | ≤ V

}
≤ K V (x) rn. (VG)
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In fact, when (Xt)t∈N is ψ-irreducible (i.e. ψ(A) > 0 =⇒ P (x,A) > 0,∀x ∈ X) and aperiodic
[67], condition (VG) is equivalent to the standard geometric ergodicity property [78]: there
are functions r : X → (0, 1) and C : X 7→ [1,+∞) such that: for all n ∈ N, π − a.e. x ∈ X,

∥∥Pn(x, ·) − π(·)
∥∥
TV

:= sup
{
|Pnf(x)− π(f)|, f : X → C, |f | ≤ 1

}
≤ C(x) r(x)n.

There is another equivalent operational condition to geometric ergodicity for ψ-irreducible
and aperiodic Markov chains (Xt)t∈N, the so-called “ drift-criterion”: there exist a function
V : X → [1,+∞], a small set C ⊂ X and constants δ > 0, b <∞ such that

PV ≤ (1− δ)V + b1C .

We refer to [67] for details and applications, and to [57] for a recent survey on the CLT for the
additive functionals of (Xt)t∈N in (1.2). Now, the transition kernel P is said to be reversible
with respect to π if

π(dx)P (x, dy) = π(dy)P (y, dx)

or equivalently if P is self-adjoint on the space L2(π). It is well known that a V -geometrically
ergodic Markov chain with a reversible transition kernel has the L

2(π)-spectral gap property
[78]. Moreover, for a ψ-irreducible and aperiodic Markov chain (Xt)t∈N with reversible tran-
sition kernel, (V -)geometric ergodicity is shown to be equivalent to the existence of a spectral
gap in L

2(π), and, when X0 ∼ µ, we also have [78, Th 2.1],[80]

∥∥µPn(·)− π(·)
∥∥
TV

≤ 1

2

∣∣µ− π
∣∣
L2(π)

rn. (R)

where r := limn→+∞
(
‖Pn −Π‖2

)1/n
and

∣∣µ− π
∣∣
L2(π)

:= ‖dµ/dπ− 1‖2 if well-defined and ∞
otherwise. Note that the reversibility condition is central to the previous discussion on the
L
2(π)-spectral gap property. Indeed, there exists a ψ-irreducible and aperiodic Markov chain

which is geometrically ergodic but does not admit a spectral gap on L
2(π) [43].

Such a context of geometric ergodicity and reversible kernel is relevant to the Markov
Chain Monte Carlo methodology for sampling a given probability distribution, i.e. the target
distribution. Indeed, the basic idea is to define a Markov chain (Xt)t∈N with the target
distribution as invariant probability measure π. Then a MCMC algorithm is a scheme to draw
samples from the stationary Markov chain (Xt)t∈N. But, the initial condition of the algorithm,
i.e. the probability distribution of X0, is not π since the target distribution is inaccessible.
Therefore the convergence in distribution of the Markov chain to π in regard of the probability
distribution of X0 must be guaranteed and the knowledge of the convergence rate is crucial
to monitor the sampling. Thus, central limit theorem for the Markov chains and quantitative
bounds as in (R) are highly expected. Geometric ergodicity of Hasting-Metropolis type
algorithms has been investigated by many researchers. Two standard instances are the full
dimensional and random-scan symmetric random walk Metropolis algorithm [25, 55, and
references therein]. Note that the first algorithm is also referred to as a special instance of
the Hasting algorithm and the second one to as a Metropolis-within-Gibbs sampler. Let π be
a probability distribution on R

d which is assumed to have a positive and continuous density
with respect to the Lebesgue measure. The so-called proposal densities are assumed to be
bounded away from 0 in some region around zero (the moves through the state space X are
based on these probability distributions). These conditions assert that the corresponding
transition kernel for each algorithm is ψ-irreducible, aperiodic and is reversible with respect
to π. Geometric ergodicity for the Markov chain (Xt)t∈N (and so the existence of a spectral
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gap in L
2(π)) is closely related to the tails of the target distribution π. For instance, in the

first algorithm, it can be shown that π must have an exponential moment [55, Cor 3.4]. A
sufficient condition for geometric ergodicity in case of super-exponential target densities, is
of the form [55, Th 4.1]

lim
|x|→+∞

〈 x|x| ,
∇π(x)
|∇π(x)| 〉 < 0.

For the second algorithm, sufficient conditions for geometric ergodicity are reported in [25]
when the target density decreases either subexponentially or exponentially in the tails. A
very large set of examples and their respective merit are discussed in these two references.
We refer to [79, and references therein] for a recent survey on the theory of Markov chains in
connection with MCMC algorithms.

2.3 Uniform ergodicity and hidden Markov chains

As quoted in the introduction, a discrete-time MAP is closely related to a hidden Markov
chain. Standard issues for hidden Markov chains require to be aware of the convergence rate
of the hidden Markov state process (Xt)t∈N. One of them is the state estimation via filtering
or smoothing. In such a context, minorization conditions on P are usually involved. The
basic one is: there exists a bounded positive measure ϕ on X such that for some m ∈ N

∗:

∀x ∈ X,∀A ∈ X , Pm(x,A) ≥ ϕ(A). (UE)

It is well-known that this is equivalent to the uniform ergodicity property or to condition
(VG) with V (x) = 1 [67, Th 16.2.1, 16.2.2]. Recall that uniform ergodicity gives the L

2(π)-
spectral gap property (AS2), but the converse is not true. Another minorization condition is
the so-called “Doeblin condition”: there exists a probability measure ϕ such that for some
m, ε < 1 and δ > 0 [20]

ϕ(A) > ε =⇒ ∀x ∈ X, Pm(x,A) ≥ δ. (D0)

It is well known that, for ergodic and aperiodic Markov chains, (D0) is equivalent to the
uniform ergodicity. We refer to [14, and the references therein] for an excellent overview of
the interplay between the Markov chain theory and the hidden Markov models.

2.4 Property (AS2) for continuous time Markov processes

The Markov jump processes are a basic class of continuous-time Markov models which has
a wide interest in stochastic modelling. The L

2(π)-exponential convergence has received
attention a long time ago. We refer to [18] for a good account of what is known on ergodic
properties for such processes. In particular, the L

2(π)-spectral gap property is shown to be
equivalent to the standard exponential ergodicity for the birth-death processes:

∃β > 0 such that ∀(i, j) ∈ X
2,∃Ci ≥ 0, |Pt(i, j) − πj| ≤ Ci exp(−βt) t→ +∞

where (Pt(i, j))i,j∈X is the matrix semigroup of (Xt)t≥0. This is also true for the reversible
Markov jump processes. Hence, in these cases, criteria for exponential ergodicity are also valid
to check the L2(π)-exponential convergence. Moreover, explicit bounds on the spectral gap are
discussed in details in [18]. For the birth-death processes, we also refer to [58, and references
therein]) where explicit formulas are obtained for classical Markov queuing processes. The
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birth-death processes are often used as reference processes for analyzing general stochastic
models. This idea was in force in the Liggetts’s derivation of the L2-exponential convergence
of supercritical nearest particle systems [63]. The interacting systems of particles are also a
source of examples of processes with a L2-spectral gap. We refer to [63] for such a discussion on
various classes of stochastic Ising models. In physics and specially in statistical physics, many
evolution models are given by stochastic ordinary/partial equations. When the solutions are
finite/infinite dimensional Markov processes, standard issues arise: existence and uniqueness
of an invariant probability measure, ergodic properties which include the rate of convergence
to the invariant measure with respect to some norm. Such issues may be included in the
general topic of the stability of solutions of stochastic differential equations (SDEs). Thus,
it is not surprising that ergodic concepts as the V -geometric ergodicity and Lyapunov-type
criteria associated with, originally developed by Meyn and Tweedie [67] for studying the
stability of discrete-time Markov models, have been found to be of value (e.g. see [32, and
references therein]). Here, we are only concerned with the L

2(π)-exponential convergence so
that we only mention some results related with.

An instance of L2(π)-spectral gap can be found in [28] where the following SDE is consid-
ered

dXt = −1

2
b(Xt) dt+ dWt X0 = x ∈ R

d

where (Wt)t≥0 is the standard d-dimensional Brownian motion and b(·) is a gradient field
from R

d to R
d (with suitable properties ensuring essentially the existence of a unique strong

solution to the equation, which has a unique invariant probability measure). When b(·) is
a radial function satisfying b(x) ∼ C|x|α for α > 1 when x → +∞, then the semigroup is
shown to be ultracontractive and to have a L

2(π)-spectral gap [28].

Another instance of L2(π)-spectral gap is related to the R-valued Markov process solution
to

dXt = b(Xt) dt+ a(Xt) dWt (2.3)

where (Wt)t≥0 is the standard 1-dimensional Brownian motion and X0 is a random variable
independent of (Wt)t≥0. Standard assumptions ensure that the solution of the SDE above is a
positive recurrent diffusion on some interval and a (strictly) stationary ergodic time-reversible
process. Under additional conditions on the scale and the speed densities of the diffusion
(Xt)t≥0 [29, (A4) and reinforced (A5), Prop. 2.8], the transition semigroup of (Xt)t≥0 is
shown to have the L

2(π)-spectral gap property (explicit bounds on the spectral gap are also
provided). The basic example studied in [29] is when a(x) := cxν and b(x) := α(β − x) with
ν ∈ [1/2, 1], α, β ∈ R. Conditions ensuring the L

2(π)- spectral gap property are provided in
terms of these parameters. Applications to some classical models in finance are discussed.
Note that statistical issues for continuous-time Markov processes as the jump or diffusion
processes, are related to the time discretization or sampling schemes of these processes. This
often provides discrete-time Markov chains which inherit ergodic properties of the original
continuous-time process. Thus we turn to the discussion on the discrete-time case (e.g.
see [19] for the jump processes, [29] and the references therein for the (hidden) diffusions).
Finally, the context of the stochastic differential equation (2.3) can be generalized to Markov
H-valued processes solution to infinite dimensional SDEs, where H is a Hilbert space. A
good account of these generalizations can be found in [33, and references therein].
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3 The ρ-mixing property and central limit theorems

Let (Xt, Yt)t∈T be a MAP taking values in X × R
d. E(x,0), Eπ,0 are the expectation with

respect to the initial conditions (X0, Y0) ∼ (δx, δ0) and (X0, Y0) ∼ (π, δ0) respectively. First,
basic facts for MAPs are proposed. Second, they are used to show that, for a discrete-time
MAP, the increment process (Yn − Yn−1)n∈N∗ is exponentially ρ-mixing under (AS1-AS2).
Then, a CLT is obtained under conditions (AS1-AS2) and the expected moment condition
(AS3) (i.e. (AS3d)) with α = 2.

3.1 Basic facts on MAPs

Let F
(X,Y )
t := σ(Xu, Yu, u ≤ t), FX

t := σ(Xu, u ≤ t) and F
Y
t := σ(Yu, u ≤ t) be the filtration

generated by the processes (Xt, Yt)t∈T, (Xt)t∈T and (Yt)t∈T respectively.

The additivity property (1.1) for the semigroup (Qt)t∈T reads as follows for any measurable
(C-valued) function g on X× R

d and any a ∈ R
d:

Qt(g)a = Qt(ga) (3.1)

where ga(x, y) := g(x, y+a) for every (x, y) ∈ X×R
d. Let us introduce the following notation:

Q̃s(x; dx1 × dy1) := Qs(x, 0; dx1 × dy1).

Then, we have:
Lemma 3.1. For any C-valued function g on X×R

d such that E[|g(Xu, Yu)|] <∞ for every
u ∈ T, we have:

E[g(Xs+t, Ys+t) | F (X,Y )
s ] = Qt(gYs)(Xs, 0) = Q̃t(gYs)(Xs). (3.2)

or in terms of the increments of the process (Yt)t∈T:

E[g(Xs+t, Ys+t − Ys) | F (X,Y )
s ] = Qt(g)(Xs, 0) = Q̃t(g)(Xs) = E(Xs,0)[g(Xt, Yt)]. (3.3)

Proof. The two formula are derived as follows:

E[g(Xs+t, Ys+t) | F (X,Y )
s ] = E[g(Xs+t, Ys+t) | Xs, Ys] (Markov property)

= Qt(g)(Xs, Ys)

= Qt(gYs)(Xs, 0) (from (3.1))

= Q̃t(gYs)(Xs);

E[g(Xs+t, Ys+t − Ys) | F (X,Y )
s ] = E[g(Xs+t, Ys+t − Ys) | Xs, Ys] (Markov property)

= E[g−Ys(Xs+t, Ys+t) | Xs, Ys]

= Qt(g0)(Xs, 0) = Q̃t(g)(Xs) (from (3.2))

= E(Xs,0)[g(Xt, Yt)].

Lemma 3.2. For every n ≥ 1, any C-valued function g such that for every 0 ≤ u1 ≤ · · · ≤ un

E
[
|g(Xu1

, Yu1
,Xu2

, Yu2
− Yu1

, . . . ,Xun , Yun − Yun−1
)|
]
<∞

9



we have for any s ≥ 0 and t1, . . . , tn ≥ 0:

E[g(Xs+t1 , Ys+t1 − Ys, . . . ,Xs+
∑n

i=1
ti , Ys+

∑n
i=1

ti − Ys+
∑n−1

i=1
ti
) | F (X,Y )

s ]

=

∫
Q̃s(Xs; dx1 × dz1)

n∏

i=2

Q̃s(xi−1; dxi × dzi)g(x1, z1, . . . , xn, zn)

= (
n
⊗
i=1
Q̃ti)(g)

(
Xs

)
. (3.4)

Proof. Lemma 3.1 gives the case n = 1. Let us check that Formula (3.4) is valid for n = 2.
This can help the reader to follow the induction.

E[g(Xs+t1 , Ys+t1 − Ys,Xs+t1+t2 , Ys+t1+t2 − Ys+t1) | F (X,Y )
s ]

= E

[
E
[
g(Xs+t1 , Ys+t1 − Ys,Xs+t1+t2 , Ys+t1+t2 − Ys+t1) | F

(X,Y )
s+t1

]
| F (X,Y )

s

]

= E

[
E
[
g(Xs+t1 , Ys+t1 − Ys,Xs+t1+t2 , Ys+t1+t2 − Ys+t1) | Xs+t1 , Ys+t1

]
| F (X,Y )

s

]

= E
[ ∫

g(Xs+t1 , Ys+t1 − Ys, x2, y2 − Ys+t1)Qt2(Xs+t1 , Ys+t1 ; dx2 × dy2) | F (X,Y )
s

]

= E
[ ∫

g(Xs+t1 , Ys+t1 − Ys, x2, z2)Q̃t2(Xs+t1 ; dx2 × dz2) | F (X,Y )
s

]
(using (1.1))

=

∫
Q̃t1(Xs; dx1 × dz1)

∫
Q̃t2(x1; dx2 × dz2)g(x1, z1, x2, z2) (using (3.3))

= (Q̃t1 ⊗ Q̃t2)(g)
(
Xs

)
.

Let us now complete the induction. Assume that Property (3.4) is valid for n− 1. Then

E[g(Xs+t1 , Ys+t1 − Ys, . . . ,Xs+
∑n

i=1
ti , Ys+

∑n
i=1

ti − Ys+
∑n−1

i=1
ti
) | F (X,Y )

s ]

= E

[
E
[
g(Xs+t1 , Ys+t1 − Ys, . . . ,Xs+

∑n
i=1

ti , Ys+
∑n

i=1
ti − Ys+

∑n−1

i=1
ti
) | F (X,Y )

s+t1

]
| F (X,Y )

s

]

= E

[
(

n
⊗
i=2
Q̃ti)

(
g(Xs+t1 , Ys+t1 − Ys, ·, · · · , ·)

)(
Xs+t1

)
| F (X,Y )

s

]
(induction)

=
(
Q̃t1 ⊗ (

n
⊗
i=2
Q̃ti))(g)

(
Xs

)
(using (3.3)).

Corollary 3.1. Under (AS1), the following properties hold.

1. The process (Yt)t∈T has stationary increments, i.e.

Eπ,0

[
g(Ys+t1 − Ys, . . . , Ys+

∑n
i=1

ti − Ys+
∑n−1

i=1
ti
)
]
= π

(
(⊗n

1 Q̃ti)(g)
)

(3.5)

does not depend on s for any function g as in Lemma 3.2.

2. If Eπ,0[|Yu|] <∞ for every u ∈ T, then:

∀(s, t) ∈ T
2, Eπ,0[Ys+t] = Eπ,0[Yt] + Eπ,0[Ys].
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3. (ξn := Yn − Yn−1)n∈N∗ is a stationary sequence of Rd-valued random variables and if h is
a C-valued function such that Eπ,0

[
|h(ξ1, . . . , ξn)|2

]
= 1, then Q̃⊗n

1 (h) ∈ L
2(π) with

‖Q̃⊗n
1 (h)‖2 ≤ 1, (3.6)

where Q̃⊗n
1 denotes the n-fold kernel product

n
⊗
i=1
Q̃1.

Proof. Take the expectation of (3.4) with respect to the probability mesure π:

Eπ,0

[
g(Ys+t1 − Ys, . . . , Ys+

∑n
i=1

ti − Ys+
∑n−1

i=1
ti
)
]

= Eπ,0

[( n
⊗
i=1

Q̃ti

)
(g)(Xs)

]
= EπPs,0

[( n
⊗
i=1

Q̃ti

)
(g)(X0)

]

= Eπ,0

[( n
⊗
i=1

Q̃ti

)
(g)(X0)

]
(invariance property of π).

The second property is deduced from the stationarity of the increments of (Yt)t∈T. Indeed,
we can write Eπ,0[Yt] = Eπ,0[Ys+t − Ys] = Eπ,0[Ys+t]− Eπ,0[Ys]. That (ξn)n∈N∗ is a stationary
sequence of random variables follows from (3.5) with s = 0, t1 = · · · = tn = 1. The last
property follows from (3.4) and the Jensen inequality

∥∥Q̃⊗n
1 h‖22 =

∥∥E(·,0)
[
h(ξ1, . . . , ξn)

]
‖22 ≤ Eπ,0

[
|h(ξ1, . . . , ξn)|2

]
= 1.

Lemma 3.3. Let ξn := Yn−Yn−1 for n ∈ N
∗ (recall that Y0 = 0 a.s.). Let f and h be two C-

valued functions such that Eπ,0

[
|f(ξ1, . . . , ξn)|2

]
< ∞ and Eπ,0

[
|h(ξn+t, . . . , ξn+t+m)|2

]
< ∞

for (t, n,m) ∈ (N∗)3. Under (AS1), the covariance has the following form

Covπ,0
(
f(ξ1, . . . , ξn);h(ξn+t, . . . , ξn+t+m)

)
= Eπ,0

[
f(ξ1, . . . , ξn)(Pt−1 −Π)

(
Q̃⊗m+1

1 (h)
)
(Xn)

]

(3.7)

where Q̃⊗m+1
1 denotes the (m+ 1)-fold kernel product

m+1
⊗
i=1

Q̃1.

Proof. Apply formula (3.4) with E(x,0) to the specific function g(x1, z1, . . . , xn+t+m, zn+t+m) =
f(z1, . . . , zn)
× h(zn+t, . . . , zn+t+m) with t, n,m ≥ 1:

E(x,0)

[
f(ξ1, . . . , ξn)h(ξn+t, . . . , ξn+t+m)

]
= Q̃⊗n+m+t

1 (g)(x)

=

∫

(X×Rd)n+t+m

Q̃1(x; dx1 × dz1)
n+t+m∏

i=2

Q̃1(xi−1; dxi × dzi)g(x1, . . . , zn+t+m)

=

∫

(X×Rd)n
Q̃1(x; dx1 × dz1)

n∏

i=2

Q̃1(xi−1; dxi × dzi)f(z1, . . . , zn)

×
∫

(X×Rd)t−1

n+t−1∏

i=n+1

Q̃1(xi−1; dxi × dzi)

×
∫

(X×Rd)m+1

n+t+m∏

i=n+t

Q̃1(xi−1; dxi × dzi)h(zn+t, . . . , zn+t+m).
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The second term reduces to
∫
Xt−1

∏n+t−1
i=n+1 Q̃1(xi−1; dxi ×R

d) =
∫
Xt−1

∏n+t−1
i=n+1 P1(xi−1; dxi) =∫

X
Pt−1(xn; dxn+t−1). The third is Q̃⊗m+1

1 (h)(xn+t−1). Then we have

E(x,0)

[
f(ξ1, . . . , ξn)h(ξn+t, . . . , ξn+t+m)

]

=

∫

(X×Rd)n
Q̃1(x; dx1 × dz1)

n∏

i=2

Q̃1(xi−1; dxi × dzi)f(z1, . . . , zn)Pt−1(Q̃
⊗m+1
1 (h)

)
(xn)

= E(x,0)

[
f(ξ1, . . . , ξn)Pt−1(Q̃

⊗m+1
1 h

)
(Xn)

]
(using (3.4) with E(x,0)).

Then, integrating against the probability measure π(·) gives

Eπ,0

[
f(ξ1, . . . , ξn)h(ξn+t, . . . , ξn+t+m)

]
= Eπ,0

[
f(ξ1, . . . , ξn)Pt−1(Q̃

⊗m+1
1 h

)
(Xn)

]
. (3.8)

Since Π
(
Q̃⊗m+1

1 (h)
)
(x) = π

(
Q̃⊗m+1

1 (h)
)
for every x ∈ X, we obtain

Eπ,0

[
f(ξ1, . . . , ξn)Π(Q̃

⊗m+1
1 (h)

)
(Xn)

]
= Eπ,0[f(ξ1, . . . , ξn)]π

(
Q̃⊗m+1

1 (h)
)

= Eπ,0[f(ξ1, . . . , ξn)]Eπ,0[h(ξn+t, . . . , ξn+t+m)]

where the last equality follows from (3.5).

Remark 3.1. We can prove a continuous-time counterpart of Lemma 3.3. But, we restrict
ourself to the discrete-time version because this is the version we need in the paper.

3.2 ρ-mixing property of (Yn − Yn−1)n≥1 for discrete-time stationary MAPs

Let us recall some basic facts on the ρ-mixing of a (strictly) stationary sequence of random
variables (ξn)n∈N∗ (e.g. see [11]). For any p ∈ N

∗ and q ∈ N
∗ ∪ {∞} with p ≤ q, Gq

p :=
σ(ξp, . . . , ξq) denotes the σ-algebra generated by random variables ξp, . . . , ξq. The ρ-mixing
coefficient at horizon t > 0, denoted by ρ(t), is defined by

ρ(t) := sup
n∈N∗

sup
{
|Corr(f ;h)| f ∈ L

2(Gn
1 ), h ∈ L

2(G∞
n+t)

}
. (3.9)

where Corr(f ;h) is the correlation coefficient of the two random variables f and g. In fact,
ρ-mixing coefficient may be computed as follows from [11, Prop 3.18]: for t > 0

ρ(t) = sup
n∈N∗

sup
m∈N∗

sup
{
|Corr(f ;h)| f ∈ L

2(Gn
1 ), h ∈ L

2(Gn+t+m
n+t )

}
. (3.10)

The stationary sequence (ξn)n∈N∗ is said to be ρ-mixing if

lim
t→+∞

ρ(t) = 0.

We know from condition (AS2) that (Xn)n∈N is ρ-mixing [81]. In the special case when
Yn :=

∑n
k=1 ξ(Xk), it is clear that (Yn − Yn−1)n≥1 is also ρ-mixing from [11, p. 28]. We

extend this fact to general (Yn)n∈N in the next proposition.
Proposition 3.1 (ρ-mixing). Under (AS1-AS2), the stationary sequence (ξn := Yn−Yn−1)n∈N∗

is ρ-mixing at an exponential rate: there exists ε > 0 such that

ρ(t) = O
(
exp(−εt)

)
.
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Proof. For the sake of simplicity, assume that d = 1. First, note that the random variables
f and h in (3.10) can be assumed to be of L

2-norm 1. Thus, we just have to deal with
covariances. Recall that (ξn := Yn − Yn−1)n∈N∗ is known to be stationary under (AS1) from
Corollary 3.1. The σ-algebra Gn

1 and Gn+t+m
n+t in the mixing coefficients will be relative to

the stationary sequence (ξn)n∈N∗ . Second, let us consider two L
2-normed random variables

f(ξ1, . . . , ξn) ∈ L
2(Gn

1 ), h(ξn+t, . . . , ξn+t+m) ∈ L
2(Gn+t+m

n+t ). For any m ≥ 1, the map x 7→
Q̃⊗m+1

1 (h)(x) belongs to L
2(π) and we have

∥∥Q̃⊗m+1
1 (h)‖2 ≤ 1 from Corollary 3.1 (see (3.6)).

Since Pt and Π are contractions on L
2(π), we have (Pt−1 −Π)

(
Q̃⊗m+1

1 (h)
)
∈ L

2(π).

The Cauchy-Schwarz inequality and the last comments allow us to write from (3.7)

Cov(f ;h)2 ≤ Eπ,0

[
|f(ξ1, . . . , ξn)|2

]
Eπ,0

[∣∣(Pt−1 −Π)
(
Q̃⊗m+1

1 (h)
)
(Xn)

∣∣2
]

= Eπ,0

[∣∣(Pt−1 −Π)
(
Q̃⊗m+1

1 (h)
)
(X0)

∣∣2
]

(π is Pn-invariant)

=
∥∥(Pt−1 −Π)

(
Q̃⊗m+1

1 (h)
)∥∥2

2

≤ ‖Pt−1 −Π‖22
∥∥Q̃⊗m+1

1 (h)
∥∥2
2

(since Q̃⊗m+1
1 (h) ∈ L

2(π))

≤ ‖Pt−1 −Π‖22 (since
∥∥Q̃⊗m+1

1 (h)‖2 ≤ 1).

Therefore, it follows that for every t ≥ 1:

sup
{
|Corr(f ;h)| f ∈ L

2(Gn
1 ), h ∈ L

2(Gn+t+m
n+t )

}
≤ ‖Pt−1 −Π‖2.

The right hand side term in the inequality above does not depend on m and n, so that we
obtain from (3.10)

ρ(t) ≤ ‖Pt−1 −Π‖2.
The proof is completed by using the exponential estimate (2.2) of ‖Pt−1 −Π‖2 under (AS2).

3.3 Central limit theorem for the Markov additive processes

In a first step, we consider a discrete-time X × R
d-valued MAP, (Xn, Yn)n∈N, for which

the driving Markov chain (Xn)n∈N is assumed to satisfy (AS1-AS2). Recall that Condition
(AS3d) for α = 2 is

Eπ,0

[
|Y1|2

]
<∞.

This condition implies that Eπ,0[|Y1|] <∞, and we suppose that Eπ,0[Y1] = 0 for convenience
(if not, replace Yn by Yn − Eπ,0[Yn] = Yn − nEπ,0[Y1] from Corollary 3.1).

We know from Proposition 3.1 that (Yn+1 − Yn)n∈N is stationary and is exponentially ρ-
mixing when (AS1-AS2) hold. Then, under the expected moment condition Eπ,0[|Y1|2] <∞,
the CLT for (Yn)n∈N∗ follows from [52, 73] (e.g. see [11, Th 11.4]). To the best of our
knowledge, Theorem 3.1 for general MAP is new. The notation N (0, 0) stands for the Dirac
distribution at 0.
Theorem 3.1. Under (AS1-AS2) and (AS3d) for α = 2, (Yn/

√
n)n∈N converges in distribu-

tion when n → +∞ to the d-dimensional Gaussian law N (0,Σ), where Σ is the asymptotic
covariance d× d-matrix

Σ := lim
n

1

n
Eπ,0 [Yn Y

∗
n ]

where the symbol ∗ denotes the transpose operator.
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That (Yn/
√
n)n∈N satisfies the CLT under the condition Eπ,0[|Y1|2] < ∞ was known in

some cases. Such standard situations are recalled in the two next remarks (with d = 1 to
simplify).
Remark 3.2 (Martingale method). If there exists a measurable function ξ : X → R such that
Yn − Yn−1 = ξ(Xn) and Eπ,0[|Y1|2] = π(ξ2) <∞, then (Yn/

√
n)n∈N converges in distribution

to the Gaussian law N (0, σ2) where σ2 = π(ξ2) + 2
∑+∞

ℓ=1 π(ξP
ℓξ) ∈ [0,+∞). This result

follows from the Gordin-Lifsic theorem [34]. Indeed, (AS2) implies that (Xn)n∈N is ergodic
and that there is a solution ξ̃ ∈ L

2(π) to the Poisson equation: ξ̃ − P ξ̃ = ξ. Then, the
difference martingale method of [34] can be used to obtain the CLT.
Remark 3.3 (Uniform ergodicity). Recall that the Markov chain (Xn)n∈N is said to be uni-
formly ergodic if limn→+∞ ‖Pn − Π‖∞ = 0. This property implies (AS2) (but is stronger)
and is fulfilled if and only if (Xn)n∈N is ergodic, aperiodic and satisfies the Doeblin condition
(D0). In addition, for an aperiodic and ergodic Markov chain (Xn)n∈N, Doeblin’s condition is
equivalent to the uniform mixing (or φ-mixing) property, and then, the φ-mixing coefficients
go to 0 at least exponentially fast (see [10, 81]).

Set ξn := Yn − Yn−1. If (Xn)n∈N is uniformly ergodic and if Eπ,0[Y
2
1 ] < ∞, then the real

number σ2 = Eπ,0[ξ
2
1 ] + 2

∑+∞
ℓ=1 Eπ,0[ξ1 ξℓ] is well-defined in [0,+∞). If σ2 > 0, then the

sequence (Yn/
√
n)n∈N converges in distribution to N (0, σ2) [38]. This CLT is established

as follows: the stationarity and the uniform ergodicity of (Xn)n∈N extend to the sequence
(ξn)n∈N, and the φ-mixing coefficients of (ξn)n∈N also go to 0 at an exponential rate (see [38,
Rk. 4, Lem. 1]). The proof is completed using [53, Th.18.5.2].

The CLT for a continuous-time MAP (Xt, Yt)t≥0 is deduced from the discrete-time state-
ment.
Theorem 3.2. Under (AS1-AS2) and (AS3) with α = 2, (Yt/

√
t)t>0 satisfies a CLT.

Proof. For t ∈ [0,+∞), we set t = n+ v, where n is the integer part of t and v ∈ [0, 1). We
can write:

Yt√
t
=

(Yt − Yn)√
t

+

√
n√
t

Yn√
n
. (3.11)

Recall that (Qt)t≥0 is the transition semigroup of (Xt, Yt)t≥0. It is easily checked that the
MAP (Xt, Yt)t≥0 “sampled” at discrete instants, (Xn, Yn)n∈N, is a discrete-time MAP with
transition kernel Q := Q1 which satisfies (AS1-AS2) and (AS3d). Therefore, (Yn/

√
n)n∈N

satisfies a CLT thanks to Theorem 3.1. Finally, the sequence ((Yt − Yn)/
√
t)t>0 converges in

probability to 0 from the Tchebychev inequality and condition (AS3d):

Pπ,0

{
|Yt − Yn| >

√
tε
}

= Pπ,0

{
|Yv| >

√
tε
}

(stationary increments)

≤ Eπ,0

[
|Yv|2

]

tε2
≤

supv∈(0,1] Eπ,0

[
|Yv|2

]

tε2
−−−−→
t→+∞

0.

Therefore, (Yt/
√
t)t>0 satisfies a CLT from (3.11).

Remark 3.4 (FCLT). Proposition 3.1 allows us to deduce from [8, Th. 19.2] that a functional
central limit theorem also holds (d = 1). That is, under the assumptions of Theorem 3.1, we
have: (

Y⌊nt⌋√
n

)

t≥0

L−−−−−→
n→+∞

(Bt)t≥0 (3.12)

as random elements of D[0,∞), the Skorokhod space of cadlag functions on R+, and where
(Bt)t≥0 is a Brownian motion with zero drift and some variance parameter. Let us give some
comments on the FCLT relevant to our context.
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(a) The case of a discrete-time MAP (Xn, Yn)n∈N with (Xn)n∈N satisfying the Doeblin con-
dition is covered by [38]. (Yn)n∈N is shown to be φ-mixing and a FCLT for φ-mixing
sequences is used. We extend their approach to our case of L2-spectral gap.

(b) Under (AS1-AS2) and the expected moment condition of order 2, Maigret [65] has es-
tablished a FCLT for (Yn := ξ(Xn−1,Xn))n∈N∗ in the specific case where (Xn)n∈N is
Harris-recurrent. It is worth noticing that Condition (AS2) cannot be compared with
the Harris-recurrence property.

(c) If (Xt)t≥0 is a stationary ergodic Markov process with a strongly continuous transition
semigroup (Pt)t≥0 on L

2(π), the following convergence holds for any f ∈ L
2(π) such that

π(f) = 0 [7, Th. 2.1, Prop. 2.3] (see also [84] in the Harris-recurrent case):

(
1√
n

∫ nt

0
ξ(Xs)ds

)

t≥0

L−−−−−→
n→+∞

(Bt)t≥0

where (Bt)t≥0 is a Brownian motion with zero drift and some variance parameter. Set
Yt :=

∫ t
0 ξ(Xs)ds. Since ξ ∈ L

2(π), we have Eπ,0

[
|Yt|2

]
≤ π(|ξ|2) for every t ∈ (0, 1], thus

(AS3) with α = 2 is true. Then, the convergence result above is easily deduced from
(3.12) using the discrete-time stationary MAP (Xn, Yn)n≥1 introduced in the proof of
Theorem 3.2.

(d) Glynn and Whitt deal with the integral functional of a regenerative process in [30, 31].
Their results apply to a Markov process which is a specific instance of a regenerative pro-
cess. Conditions for the CLT (FCLT) to hold are expressed in terms of a second moment

on the increments YT1
:=

∫ T1

0 ξ(Xs)ds of the process (Yt)t>0 over a regeneration cycle of
length T1 (and an additional condition of negligeability in probability of sup0≤s≤T1

|Ys|).
The fact that we only consider the Markov case makes our conditions easier to check.

4 Refinements of the central limit theorem for MAPs

Let (Xt, Yt)t∈T be a MAP taking values in X × R
d. The canonical scalar product on R

d is
denoted by 〈·, ·〉. The Fourier operators associated with (Xt, Yt)t∈T are introduced in the next
subsection and are shown to satisfy a semigroup property. In the discrete-time case, precise
expansions of the characteristic function of the additive component Yt can be deduced from
[49] under (AS2). They are central to the derivation of our limit theorems in this section.
Limit theorems are first considered for discrete-time MAPs. A local limit theorem, a Berry-
Esseen bound and a first-order Edgeworth expansion are obtained. The continuous-time case
is addressed thanks to the basic reduction to the discrete-time case used for the CLT.

4.1 Fourier operators. A semigroup property

For any t ∈ T and ζ ∈ R
d, we consider the linear operator St(ζ) acting (in a first step) on

the space of bounded measurable functions f : X → C as follows:

∀x ∈ X,
(
St(ζ)f

)
(x) := E(x,0)

[
ei〈ζ,Yt〉 f(Xt)

]
. (4.1)

Note that St(0) = Pt. In the discrete-time case, S1(ζ) corresponds to the Fourier operator
which was first introduced by Nagaev [68] in the special case when Yn =

∑n
k=1 ξ(Xk) (see
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[42, 44] and the reference therein), and was extended to discrete-time MAPs in [4, 40] to
prove local limit theorems and renewals theorems (see also [26]). All these works are based
on the following formula (see Proposition 4.1 below):

∀ζ ∈ R
d,∀n ∈ N,

(
Sn(ζ)f

)
(x) := E(x,0)

[
ei〈ζ,Yn〉 f(Xn)

]
=

(
S1(ζ)

nf
)
(x). (4.2)

This formula clearly reads as the semigroup property: Sm+n(ζ) = Sm(ζ) ◦ Sn(ζ). In the
continuous-time, it seems that the operators St(ζ) were first introduced in [50] for investigat-
ing AFs of continuous-time Markov processes on a compact metric state space X. In [50], Pt

was assumed to have a spectral gap on the space of all continuous C-valued functions on X,
and (St(ζ))t>0 was thought of as a semigroup (see (SG) below) on this space.

Here, in view of (AS2), the above mentioned semigroup property has to be considered on
the Lebesgue spaces Lp(π) (1 ≤ p ≤ ∞).
Proposition 4.1. For all t ∈ T and ζ ∈ R

d, St(ζ) defines a linear contraction on L
p(π), and

we have:
∀ζ ∈ R

d, ∀(s, t) ∈ T
2, St+s(ζ) = St(ζ) ◦ Ss(ζ). (SG)

In particular, Relation (4.2) holds for all f ∈ L
p(π).

Proof. The first assertion is easy to prove. Next, for any ζ ∈ R
d and f ∈ L

p(π), let us
set: g(x, y) := f(x) ei〈ζ,y〉 with x ∈ X and y ∈ R

d. Then, using the Markov property and
Lemma 3.1:

(St+s(ζ)f)(x) := E(x,0)

[
ei〈ζ,Yt+s〉f(Xt+s)

]

= E(x,0)

[
E(x,0)[e

i〈ζ,Yt+s〉f(Xt+s) | F (X,Y )
s ]

]
= E(x,0)

[
(QtgYs)(Xs, 0)

]

= E(x,0)[e
i〈ζ,Ys〉(Qtg)(Xs, 0)] = E(x,0)

[
ei〈ζ,Ys〉)EXs,0[f(Xt)e

i〈ζ,Yt〉]
]

= E(x,0)

[
ei〈ζ,Ys〉(St(ζ)f)(Xs)

]
=

(
Ss(ζ)

(
St(ζ)f

))
(x)

the third equality results from: gYs(x, y) = f(x) ei〈ζ,(y+Ys)〉 = ei〈ζ,Ys〉 g(x, y). This gives the
semigroup property (SG). The last assertion is obvious.

4.2 Expansions of the characteristic function of the additive component

Here we assume that (Xn, Yn)n∈N is a discrete-time MAP taking values in X× R
d (possibly

derived from a continuous-time MAP) such that the driving Markov chain (Xn)n∈N is station-
ary and satisfies (AS2). This last property ensures that S1(0) has good spectral properties,
and the iterates S1(ζ)

n occurring in (4.2) are studied using the Nagaev-Guivarc’h spectral
method which consists in applying the perturbation theory to the Fourier operators S1(ζ)
for small ζ. However using the standard perturbation theorem requires strong assumptions
on Y1. Here we shall appeal to the weak spectral method introduced in [45] and based on
the Keller-Liverani perturbation theorem [60]. This method is fully developed in the Markov
framework in [49, see references therein]. In the sequel, F (ℓ) denotes the partial derivative of
order ℓ of a C-valued function F defined on an open subset of Rd.

Conditions (AS1-AS2) are assumed to hold throughout the subsection.
Proposition 4.2. Let m0 ∈ N

∗. Under condition (AS3d) for some α > m0, there exists a
bounded open neighborhood O of ζ = 0 in R

d such that we have for all f ∈ L
s(π) with any

s > α
α−m0

:

∀n ∈ N, ∀ζ ∈ O, Eπ,0

[
ei 〈ζ,Yn〉 f(Xn)

]
= λ(ζ)n L(ζ, f) +Rn(ζ, f), (4.3)
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where λ(·), L(·, f), Rn(·, f) are C-valued functions of class Cm0 on O, with λ(0) = 1 and
L(0, f) = π(f). Moreover, we have the following properties for ℓ = 0, . . . ,m0:

− sup
ζ∈O

|L(ℓ)(ζ, f)| <∞ (4.4a)

− ∃κ ∈ (0, 1), sup
ζ∈O

|R(ℓ)
n (ζ, f)| = O(κn). (4.4b)

If f := 1X, we have Rn(0, 1X) = 0.

When Yn =
∑n

k=1 ξ(Xk), the above properties are proved in [49, Sect. 7.3] by using (4.2)
and some operator-type derivation arguments. For a general additive component Yn, the
method is the same1 using Lemmas 4.1 and 4.2 below which slightly extend [49, Lem. 4.2,7.4].
Mention that, by using the same lemmas, Proposition 4.2 can also be deduced from [35] which
specifies the method introduced in [36, 45] to prove Taylor expansions of λ(·), L(·, f), Rn(·, f)
2.

The operator norm in the space L(Lp,Lp′) of the linear bounded operators from L
p(π) to

L
p′(π) is denoted by ‖ · ‖p,p′ .

Lemma 4.1. If 1 ≤ p′ < p, then the map ζ 7→ S1(ζ) is continuous from R
d to L(Lp,Lp′).

Proof. We have for ζ ∈ R
d, ζ0 ∈ R

d and f ∈ L
p(π), thanks to Hölder’s inequality

∣∣(S1(ζ)− S1(ζ0))f(x)
∣∣p′ =

∣∣∣E(x,0)

[
ei 〈ζ,Y1〉 f(X1)

]
− E(x,0)

[
ei 〈ζ0,Y1〉 f(X1)

]∣∣∣
p′

≤ E(x,0)

[∣∣ei 〈ζ−ζ0,Y1〉 − 1
∣∣p′ |f(X1)|p

′

]

≤ 2p
′

E(x,0)

[
min

{
1, |〈ζ − ζ0, Y1〉|

}p′ |f(X1)|p
′

]
,

the last inequality resulting from the classic inequality |eia − 1| ≤ 2min
{
1, |a|

}
. An integra-

tion with respect to π and the use of Hölder’s inequality give

π
(
|(S1(ζ)− S1(ζ0))f |p

′) ≤ 2p
′

Eπ,0

[
min

{
1, |〈ζ − ζ0, Y1〉|

}(pp′)/(p−p′)](p−p′)/p
Eπ,0

[
|f(X1)|p

]p′/p

≤ 2p
′
∥∥min

{
1, |〈ζ − ζ0, Y1〉|

}∥∥p′
(pp′)/(p−p′)

‖f‖p′p ,

since π is invariant. Thus, we deduce that ‖S1(ζ)−S1(ζ0)‖p,p′ ≤ 2
∥∥min

{
1, |〈ζ−ζ0, Y1〉|

}∥∥
(pp′)/(p−p′)

goes to 0 when |ζ − ζ0| → 0 from Lebesgue’s theorem.

Lemma 4.2. Assume that (AS3d) holds for some α > m0 (m0 ∈ N
∗), and let 1 ≤ j ≤ m0.

If p > 1 and pj := αp/(α + jp) ≥ 1, then ζ 7→ S1(ζ) is j-times continuously differentiable

from R
d to L(Lp,Lpj), and supζ∈Rd ‖S(j)

1 (ζ)‖p,pj ≤ Eπ,0[|Y1|α]j/α.

Proof. For the sake of simplicity, we suppose that d = 1. Below we consider any ζ ∈ R,
ζ0 ∈ R and f ∈ L

p(π). For 1 ≤ j ≤ m0, define (formally) the following linear operator:

∀x ∈ X,
(
S
(j)
1 (ζ)f

)
(x) := E(x,0)

[
(iY1)

j eiζY1 f(X1)
]
.

1See the beginning of the appendix. In particular, mention that λ(ζ) is the dominant eigenvalue of S1(ζ),
L(ζ, ·) is related to the associated eigenprojection, and κ can be chosen as κ = (e−ε + 1)/2 where ε > 0 is
defined in (2.2).

2 As observed in [35], the passage from the Taylor expansions to the differentiability properties can be
derived from [13].
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First we have:
|S(j)

1 (ζ)f(x)|pj ≤ E(x,0)

[
|Y1|jpj |f(X1)|pj

]

so that, from Hölder’s inequality,

‖S(j)
1 (ζ)‖p,pj ≤ Eπ,0

[
|Y1|α

]j/α
.

Second, define ∆ := S
(j−1)
1 (ζ)− S

(j−1)
1 (ζ0)− (ζ − ζ0) S

(j)
1 (ζ0). Then, for j ∈ {1, . . . ,m0 − 1},

we have thanks to the classic inequality |eia − 1− ia| ≤ 2|a|min
{
1, |a|

}

|∆f(x)|pj ≤ 2pj |ζ − ζ0|pjE(x,0)

[
min

{
1, |(ζ − ζ0)Y1|

}pj |Y1|jpj |f(X1)|pj
]
.

It follows from Hölder’s inequality that the operator norm satisfies

‖∆‖p,pj ≤ 2|ζ − ζ0|
∥∥min

{
1, |(ζ − ζ0)Y1|

}
|Y1|j

∥∥
α/j

.

This proves that S
(j−1)
1 (·) is differentiable from R to L(Lp,Lpj), and that its derivatives is

S
(j)
1 . Finally, we obtain:

∣∣(S(j)
1 (ζ)− S

(j)
1 (ζ0))f(x)

∣∣pj ≤ 2pjE(x,0)

[
min

{
1, |(ζ − ζ0)Y1|

}pj |Y1|jpj |f(X1)|pj
]

from which we deduce that the operator norm satisfies

‖S(j)
1 (ζ)− S

(j)
1 (ζ0)‖p,pj ≤ 2

∥∥min
{
1, |(ζ − ζ0)Y1|

}
|Y1|j

∥∥
α/j

.

Thus S1(·) is j-times continuously differentiable from R to L(Lp,Lpj ).

Next, let us return to our probabilistic context. Let ∇ and Hess denote the gradient and
the Hessian operators respectively. In the following proposition, the d-dimensional vector
∇λ(0) and the symmetric d× d-matrix Hessλ(0) are related to the mean vector Eπ,0[Y1] and
the asymptotic covariance matrix associated with the sequence (Yn − nEπ,0[Y1])/

√
n.

Proposition 4.3.

(i) If (AS3d) holds for some α > 1, then ∇λ(0) = iEπ,0[Y1].

(ii) If (AS3d) holds for some α > 2, then the following limit exists in the set of the non-
negative symmetric d× d-matrices:

Σ := lim
n

1

n
Eπ,0

[ (
Yn − nEπ,0[Y1]

) (
Yn − nEπ,0[Y1]

)∗ ]
= −Hessλ(0).

Proof. Assume that d = 1 for the sake of simplicity (for d ≥ 2, the proof is similar by using
partial derivatives). By differentiating at ζ = 0 the equality Eπ,0[e

iζYn ] = λ(ζ)n L(ζ, 1X) +
Rn(ζ, 1X) of Proposition 4.2, we obtain:

iEπ,0[Yn] = nλ(1)(0) + L(1)(0, 1X) +R(1)
n (0, 1X).

Since Eπ,0[Yn] = nEπ,0[Y1] (from Corollary 3.1), we deduce that λ(1)(0) = i and limn Eπ,0[Yn]/n =
iEπ,0[Y1] from (4.4b). To prove (ii), assume for convenience that Eπ,0[Y1] = 0. Then
λ(1)(0) = 0, and differentiating twice the above equality at ζ = 0 gives: −Eπ,0[Y

2
n ] =

nλ(2)(0)+L(2)(0, 1X)+R
(2)
n (0, 1X). We obtain the desired property by using again (4.4b).
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4.3 Refinements of the CLT for discrete-time MAPs

In this subsection, (Xn, Yn)n∈N is a MAP taking values in X × R
d, with a driving Markov

chain (Xn)n∈N satisfying (AS1-AS2). The assumptions below imply that Eπ,0[|Y1|] <∞, and
for convenience we suppose that Eπ,0[Y1] = 0 (if not, replace Yn by Yn − nEπ,0[Y1]).

Theorems 4.1 to 4.3 below have been established in [49] for additive components of the
form Yn =

∑n
k=1 ξ(Xk). To the best of our knowledge, the present extensions to general

MAP are new.

4.3.1 A local limit theorem

The classical Markov nonlattice condition is needed to state the local limit theorem (LLT):

Nonlattice condition. There is no a ∈ R
d, no closed subgroup H in R

d, H 6= R
d, and no

bounded measurable function β : X → R
d such that: Y1+β(X1)−β(X0) ∈ a+H Pπ,0−a.s.

This condition is equivalent to the following operator-type property. For each p ∈ (1,∞) and
for all compact subset K of Rd \ {0}, there exists ρ ∈ (0, 1) such that:

sup
ζ∈K

‖S1(ζ)n‖p = O(ρn). (4.5)

This result is established in [49, Sect. 5] for additive functionals. The proof for general MAPs
is similar. Since Eπ,0[e

i 〈ζ,Yn〉] = π(S1(ζ)
n1X) by (SG), it follows that

sup
ζ∈K

∣∣Eπ,0[e
i 〈ζ,Yn〉]

∣∣ = O(ρn).

Theorem 4.1. The assumptions of Theorem 3.1 are supposed to be satisfied, so that (Yn/
√
n)n∈N∗

converges in distribution to a d-dimensional Gaussian vector with covariance matrix Σ. Let
us assume that Σ is a definite positive matrix. Finally, suppose that the nonlattice condition
is true. Then, we have for all compactly supported continuous function g : Rd → R:

lim
n→+∞

√
detΣ (2πn)

d
2 Eπ,0[g(Yn) ] =

∫

Rd

g(x)dx.

Proof. Thanks to (4.3) with f := 1X, Theorem 4.1 can be established as in the i.i.d. case: use
Proposition 4.2 to control L(·, 1X) and Rn(ζ, 1X) and, as in [12], use the nonlattice condition
and the following second-order Taylor expansion of λ(·), which follows from Theorem 3.1 and
from [46, Lem. 4.2]:

Lemma 4.3. Assume that Conditions (AS2) and (AS3d) with α = 2 hold and that Eπ,0[Y1] =
0. Then the function λ(·) in Equality (4.3) satisfies the following second-order Taylor expan-
sion3:

λ(ζ) = 1− 〈ζ,Σζ〉/2 + o(|ζ|2).

Remark 4.1. We mention that a local limit theorem has been obtained in [66] for the process
(Yn :=

∑n
k=1 Zk)n∈N∗ associated with a stationary hidden Markov chain (Xn, Zn)n∈N. In [66],

(Xn)n∈N is only assumed to be an ergodic stationary Markov chain so that the additional
conditions for the local limit theorem to hold are more involved than those of Theorem 4.1.

3A direct application of Proposition 4.2 gives this expansion, but under Condition (AS3d) with α > 2.
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4.3.2 Rate of convergence in the one-dimensional CLT

Here we suppose that d = 1. Under the condition Eπ,0[|Y1|2+ε] <∞, the asymptotic variance
σ2 of Proposition 4.3 is defined by σ2 := limn Eπ,0[Y

2
n ]/n.

Theorem 4.2. Under Conditions (AS1-AS2) and (AS3d) for some α > 3 and if σ2 > 0,
then there exists some constant B > 0 such that

∀n ≥ 1, sup
a∈R

∣∣∣∣Pπ,0

{
Yn
σ
√
n
≤ a

}
−Φ(a)

∣∣∣∣ ≤
B√
n

(4.6)

where Φ(·) is the distribution function of the Gaussian distribution N (0, 1).

Proof. Here, the functions λ(·), L(·) := L(·, 1X) and Rn(·) := Rn(·, 1X) in Proposition 4.2 are
three times continuously differentiable on O and satisfy the following properties:

supu∈O |L(u)− 1|/|u| <∞ (from (4.4a) and L(0) = 1)

supu∈O |Rn(u)/u| = O(κn) (from (4.4b) and Rn(0) = 0)

λ(u) = 1 − σ2u2/2 + O(u3) for u small enough (since λ(1)(0) = 0 and λ(2)(0) = −σ2
from Proposition 4.3).

Then, we can borrow the proof of the Berry-Esseen theorem of the i.i.d. case (see [23]).

Remark 4.2. The details of the previous proof are reported in [48, Th.2] for the additive
functional Yn =

∑n
k=1 ξ(Xk,Xk−1) of a V -geometrically Markov chain. They are the same in

our context. In fact, by writing out the arguments of [48, Th. 2], we can derive the following
more precise property: the constant B in (4.6) depends on the sequence (Yn)n∈N, but only
through σ2 and Eπ,0[|Y1|3+ε]. Of course, this control is not as precise as in the i.i.d. case [23],
but it is enough to obtain interesting statistical properties as in [24, 48] or in Section 5.
Remark 4.3. Let us consider the specific case Yn−Yn−1 = ξ(Xn) for some real-valued measur-
able function ξ. Under Conditions (AS1-AS2), if the real number σ2 defined in Remark 3.2
is positive, then we have (4.6) under the expected moment condition π(|ξ|3) < ∞. This
follows from [47, Cor. 3.1] which is based on the spectral method and martingale difference
arguments (see also [49, Sect. 6]). Note that the moment condition π(|ξ|3) < ∞ is optimal
according to the i.i.d. case [23].
Remark 4.4. Let (Xn)n∈N be a ρ-mixing Markov chain. The additive functionals of (Xn)n∈N
involved in theM -estimation of Markov models (see (5.5)) are of the form Yn =

∑n
k=1 ξ(Xk−1,Xk).

Since (Xn, Yn)n∈N is a MAP, Theorem 4.2 applies provided that ξ : X×X → R is a measurable
function such that Eπ,0[ξ(X0,X1)] = 0 and Eπ,0[ |ξ(X0,X1)|3+ε ] < ∞ for some ε > 0. This
will be supported by the statistical result of Section 5.

Finally let us state a first-order Edgeworth expansion.
Theorem 4.3. Assume that Conditions (AS1-AS2) and (AS3d) hold for some α > 3, that
σ2 is positive and the nonlattice condition is true. Then, there exists µ3 ∈ R such that:

Pπ,0

{
Yn
σ
√
n
≤ a

}
= Φ(a) +

µ3
6σ3

√
n
(1− a2) η(a) + o

(
1√
n

)
(4.7)

where η(·) is the density of the Gaussian distribution N (0, 1).
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Other limit theorems can be stated under Condition (AS2) as, for instance, a multidi-
mensional Berry-Esseen theorem in the Prohorov metric (see [49, Sect. 9]), and the multidi-
mensional renewal theorems (see [39]). Although Proposition 4.2 extends to the case when
the order of regularity m0 is not integer, it does not allow to deal with the convergence of
Yn (properly normalized) to stable laws, since we assume α > m0 (in place of the expected
condition α = m0). For an additive functional Yn =

∑n
k=1 ξ(Xk), a careful examination

of the proof of Lemmas 4.1 and 4.2 shows that this limitation could be overcame under a
condition of the type : ξ ∈ L

β(π) =⇒ Pξ ∈ L
β′

(π) with β′ > β. Anyway mention that, under
Condition (AS2) and the previous condition on ξ, convergence to stable laws is obtained in
[54, Section 2.3] by using a “martingale approximation” approach. A natural question is to
ask wether the last condition on ξ is necessary.

4.4 The non-stationary case

Under (AS2), we discuss the extension of the previous results to the non-stationary case. Let
µ be the initial distribution of (Xn)n∈N. The careful use of [49, Prop. 7.3] allows us to extend
Proposition 4.2 as follows. Under condition (AS3d) 4 with α > m0, and under the following
assumption on µ

(NS) µ is a bounded linear form on L
r(π) with r such that 1 < r < αs/(α +m0s),

where s > α/(α−m0), all the conclusions of Proposition 4.2 remain true when π is replaced
by µ, namely: for some bounded open neighborhood O of ζ = 0 in R

d, we have for f ∈ L
s(π)

∀n ∈ N, ∀ζ ∈ O, Eµ,0

[
ei 〈ζ,Yn〉 f(Xn)

]
= λ(ζ)n L(ζ, f, µ) +Rn(ζ, f, µ), (4.8)

with C-valued functions λ(·), L(·, f, µ), Rn(·, f, µ) satisfying the same properties as in Propo-
sition 4.2. It is worth noticing that λ(·) is the same function as in (4.3), contrary to L(·, f, µ)
and Rn(·, f, µ) which both depend on µ.

Condition (NS) means that µ is absolutely continuous with respect to π with density
φ ∈ L

r′(π) where r′ = r/(r − 1) is the conjugate number of r. It is easily checked that
r′ > αs/

(
(α −m0)s − α

)
> 1. Note that the bigger is the exponent α in Condition (AS3d),

the closer to 1 is the allowed value of r′.

Proposition 4.3 extends to the non-stationary case as follows.

(i) If (AS3d) and (NS) hold with m0 = 1, then ∇λ(0) = i limn Eµ,0[Yn]/n.

(ii) If (AS3d) and (NS) hold withm0 = 2, then the conclusions of Proposition 4.3(ii) remain
true with µ in place of π.

Using the decomposition (4.8) (with f := 1X), we obtain as in the stationary case the following
statements.

1. Under (AS2), (AS3d) with α = 2 and µ satisfying condition (NS) with m0 = 1: the
CLT, and the LLT under the additional non-lattice condition.

4In this non-stationary case, we only require condition (AS3d) with the stationary distribution π and the
mean vector remains Eπ,0[Y1].
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2. Under (AS2), (AS3d) with α > 3 and µ satisfying condition (NS) with m0 = 3: the
Berry-Esseen bound, and under the non-lattice condition, the first order Edgeworth
expansion (4.7) with the additional term −bµη(u)/(σ

√
n), where bµ is the asymptotic

bias: bµ = limn Eµ,0[Yn] (see [49] for details).

For instance, let us sketch the proof of the CLT. Equality (4.8) with f := 1X gives

Eµ,0

[
ei 〈ζ,Yn/

√
n〉] = λ(ζ/

√
n)n L(ζ/

√
n, 1X, µ) +Rn(ζ/

√
n, 1X, µ).

Since m0 = 1 we have limn L(ζ/
√
n, 1X, µ) = 1 and limnRn(ζ/

√
n, 1X, µ) = 0. Finally, the

second-order Taylor expansion of Lemma 4.3 shows that limn λ(ζ/
√
n) = exp(−〈ζ,Σζ〉/2).

In general, the previous statements 1. and 2. do not apply to the case when the initial
distribution µ is a Dirac mass (which is not defined on L

r(π)). However, when the state
space X of the driving Markov chain is discrete, these statements are valid with any initial
distribution δx provided that π(x) > 0 (because δx is then a continuous linear form on each
L
p(π) ≡ ℓp(π)).

4.5 The continuous-time case

In this section, we consider the case where T = (0,+∞). The process (Xt)t>0 is assumed to
satisfy Conditions (AS1-AS2). Let us mention that the moment condition (AS3) reduces to

∀v ∈ (0, 1], Eπ,0

[
|Yv|α

]
<∞

when the semigroup (Qt)t≥0 is strongly continuous on L
2((π, 0)) (so is (Pt)t>0 on L

2(π)).

All the theorems of the previous subsection are extended to (Yt)t>0. Recall that Theo-
rems 4.1 to 4.3 concern the multidimensional local limit theorem, the one-dimensional Berry-
Esseen theorem, the one-dimensional first-order Edgeworth expansion respectively. For the
sake of simplicity, we still assume that Eπ,0[Y1] = 0.
Theorem 4.4. The conclusions of Theorems 4.1 to 4.3 are valid for (Yt/

√
t)t>0 under the

same assumptions, up to the following change: the moment condition (AS3d) is reinforced
(with the same condition on α) in (AS3):

sup
v∈(0,1]

Eπ,0

[
|Yv|α

]
<∞.

Note that the extensions to the non-stationary case presented in Subsection 4.4 can be
adapted to the continuous-time case.

When Yt is defined by Yt :=
∫ t
0 ξ(Xs) ds, any moment condition of the type supv∈[0,1] Eπ,0

[
|Yv|α

]
<

∞ (α ≥ 1) is fulfilled if we have π(|ξ|α) <∞. Indeed:

∀v ∈ [0, 1], Eπ,0

[
|Yv|α

]
≤ Eπ,0

[ ∫ 1

0
|ξ(Xs)|α ds

]
=

∫ 1

0
Eπ,0

[
|ξ(Xs)|α

]
ds = π(|ξ|α).

Note that the nonlattice condition used in Theorem 4.4 is the same as in the discrete-time
case (see Subsection 4.3.1) and plays the same role. Indeed, writing t = n+ v where n is the
integer part of t, we know that Eπ,0[e

i 〈ζ,Yt〉] = π
(
S1(ζ)

n(Sv(ζ)1X)
)
. Using (4.5) and the fact

that Sv is a contraction on L
p(π) (p ∈ (1,+∞)), it follows that

sup
ζ∈K

∣∣Eπ,0

[
ei 〈ζ,Yt〉]∣∣ = O(ρn). (4.9)
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We prove Proposition 4.4 below which is the continuous-time version of Proposition 4.2.
Then, combining Proposition 4.4 with relation (4.9), the Fourier techniques of the i.i.d. case
can be used to extend Theorems 4.1-4.3 to (Yt/

√
t)t>0

Proposition 4.4. Let m0 ∈ N
∗. Write time t as t = n + v where n is the integer part of

t. Under condition (AS3) for some α > m0, there exists a bounded open neighborhood O of
ζ = 0 in R

d such that we have for all f ∈ L
s(π) with any s > α/(α −m0):

∀t ∈ (0,+∞), ∀ζ ∈ O, Eπ,0

[
ei 〈ζ,Yt〉 f(Xt)

]
= λ(ζ)n L

(
ζ, Sv(ζ)f

)
+Rn

(
ζ, Sv(ζ)f

)
,

where λ(·), L(·, ·) and Rn(·, ·) are the functions of Proposition 4.2. Moreover, the C-valued
functions Lv,f (ζ) := L

(
ζ, Sv(ζ)f

)
and Rn,v,f (ζ) := Rn

(
ζ, Sv(ζ)f

)
are of class Cm0 on O, and

we have the following properties for ℓ = 0, . . . ,m0:

sup
ζ∈O, v∈[0,1]

|L(ℓ)
v,f (ζ)| <∞

∃κ ∈ (0, 1), sup
ζ∈O, v∈[0,1]

|R(ℓ)
n,v,f (ζ)| = O(κn).

Note that we have λ(0) = 1, Lv,f (0) = π(f), and Rn,v,1X(0) = 0.

Proof. From (4.1) and (SG), we obtain for any ζ ∈ R
d, f ∈ L

p (1 ≤ p ≤ ∞):

Eπ,0

[
ei 〈ζ,Yt〉 f(Xt)

]
= π

(
Sn+v(ζ)f

)
= π

(
S1(ζ)

n
(
Sv(ζ)f

))
= Eπ,0

[
ei 〈ζ,Yn〉 (Sv(ζ)f

)
(Xn)

]
,

(4.10)
and the desired expansion then follows from Proposition 4.2. The two following (straight-
forward) extensions of Lemmas 4.1-4.2 are needed to establish the others assertions. Let
t ∈ (0,+∞).

Lemma 4.4. If 1 ≤ p′ < p, then the map ζ 7→ St(ζ) is continuous from R
d to L(Lp,Lp′).

Lemma 4.5. Assume that Eπ,0[|Yt|α] <∞ for some α > m0 (m0 ∈ N
∗), and let 1 ≤ j ≤ m0.

If p > 1 and pj := αp/(α + jp) ≥ 1, then ζ 7→ St(ζ) is j-times continuously differentiable

from R
d to L(Lp,Lpj), and supζ∈Rd ‖S(j)

t (ζ)‖p,pj ≤ Eπ,0[|Yt|α]j/α.

The regularity properties (in ζ) of the functions L
(
ζ, Sv(ζ)f

)
and Rn

(
ζ, Sv(ζ)f

)
are not a

direct consequence of those stated in Proposition 4.2 because of the additional term Sv(ζ)f .
To that effect we need a careful use of the operator-type derivation procedure. This part is
postponed in Appendix A on the basis of [49].

5 A Berry-Esseen theorem for the M-estimators of ρ-mixing
Markov chains

The M -estimators are a general class of estimators in parametric statistics. This covers the
special cases of maximum likelihood estimators, the least square estimators and the minimum
contrast estimators. In the i.i.d. case, a modern treatment on M -estimation is reported in
[85, Chap. 5], and a Berry-Esseen bound for M -estimators is obtained in [74]. In a statistical
framework, such a bound has to be uniform in the parameters. Pfanzagl’s method, which is
applied to Markov data in [48], requires a preliminary result on the rate of convergence in
the CLT for additive functionals, with a precise control of the constants with respect to the
functional (cf Remark 5.1). Earlier extensions of [74] to the Markov context are discussed in
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[48]. For ρ-mixing Markov chains, the closest work to ours is [76]. Our main improvement
is on the moment conditions which are now close to those of the i.i.d. case. A detailed
comparison is presented at the end of the section.

Let Θ be any nonempty parameter set. For a Markov chain (Xn)n∈N with state space X

and transition kernel Pθ which depends on θ ∈ Θ, we introduce the uniform L
2(π)-spectral

gap (i.e. the uniform ρ-mixing) property.

(M) The Markov chain (Xn)n∈N has a uniform L
2(π)-spectral gap with respect to the pa-

rameter set Θ if

1. for all θ ∈ Θ, (Xn)n∈N has a unique Pθ-invariant distribution πθ;

2. for all θ ∈ Θ, (Xn)n∈N is stationary (i.e. X0 ∼ πθ);

3. its transition kernel satisfies Condition (AS2) in a uniform way with respect to θ,
namely there exist C > 0 and κ ∈ (0, 1) such that

∀θ ∈ Θ, ∀n ≥ 1, ‖Pn
θ −Πθ‖2 ≤ C κn,

where Πθ(f) := πθ(f) 1X for f ∈ L
2(π)

In order to derive a Berry-Esseen bound for the M -estimators of (Xn)n∈N satisfying (M),
we need a uniform Berry-Esseen bound for some specific additive functionals of the Markov
chain (Xn)n∈N. In the next subsection, we propose such a uniform Berry-Esseen bound for
the second component of a general parametric MAP. This result will be applied to the MAPs
associated with these specific additive functionals (see Remark 5.1).

5.1 A uniform Berry-Essen bound for the second component of a para-
metric MAP

Here we propose a refinement of Proposition 4.3 and Theorem 4.2. Let us introduce the
following condition.

(A) For every θ ∈ Θ, (Xn, Yn)n∈N is a X×R-valued MAP, Y1 is Pθ-integrable and centered
(i.e. Eθ[Y1] = 0).

Below, the driving Markov chain (Xn)n∈N is assumed to satisfy condition (M). Thus, the
notation Pθ stands for the underlying probability measure, which depends on θ through the
transition kernel Qθ of (Yn,Xn)n∈N and the initial (stationary) distribution (πθ, 0). Eθ[·]
denotes the associated expectation.
Theorem 5.1. Assume that Condition (A) is true for the MAP (Xn, Yn)n∈N and that the
driving Markov chain (Xn)n∈N satisfies Condition (M). If M2 := supθ∈Θ Eθ

[
|Y1|2+ε

]
< ∞

with some ε > 0, then σ2(θ) := limn Eθ[Y
2
n ]/n is well-defined and is finite for each θ ∈ Θ, the

function σ2(·) is bounded on Θ, and there exists a positive constant CY such that

∀n ≥ 1, sup
θ∈Θ

∣∣∣∣σ
2(θ)− Eθ[Y

2
n ]

n

∣∣∣∣ ≤
CY

n
. (5.1)

The constant CY depends on the sequence (Yn)n∈N, but only through the constant M2.

If the two following additional conditions hold true

∃ ε > 0, M3 := sup
θ∈Θ

Eθ

[
|Y1|3+ε

]
<∞ (5.2)

σ0 := inf
θ∈Θ

σ(θ) > 0, (5.3)
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then there exists a positive constant BY such that

∀θ ∈ Θ, ∀n ≥ 1, sup
a∈R

∣∣∣∣Pθ

{
Yn

σ(θ)
√
n
≤ a

}
− Φ(a)

∣∣∣∣ ≤
BY√
n
. (5.4)

The constant BY depends on the sequence (Yn)n∈N but only through σ0 and the constant M3.

Recall that the proofs of Proposition 4.3 and Theorem 4.2 are based on Proposition 4.2.
Here, for any fixed θ ∈ Θ, Proposition 4.2 applies and gives an expansion of Eθ[e

i ζYn f(Xn)],
but for a neighbourhood Oθ of ζ = 0, some C-valued functions λθ(·), Lθ(·, f), Rθ,n(·, f),
and some κθ ∈ (0, 1), which all may depend on θ. Consequently, in order to prove The-
orem 5.1, we must establish that, under Conditions (M), (A) and the moment condition
supθ∈Θ Eθ

[
|Y1|m0+ε

]
< ∞, all the conclusions of Proposition 4.2 are fulfilled in a uniform

way with respect to θ ∈ Θ. This job has been done in [48, Sect. III.2] in the context of
V -geometrically ergodic Markov chains. The arguments in the present setting are the same
up to the following changes: replace the uniform V -geometrical ergodicity assumption of [48]
by Assumption (M), and replace the domination condition (Dm0

) of [48] by the moment
condition supθ∈Θ Eθ

[
|Y1|m0+ε

]
< ∞. The previous assumptions allow us to extend Lemmas

4.1-4.2, and so Proposition 4.2, in a uniform way in θ ∈ Θ.
Remark 5.1. In the next subsection, Theorem 5.1 will be applied as follows. Given a
Markov chain (Xn)n∈N satisfying Condition (M) with respect to Θ, we consider the MAP
(Xn, Yn(p))n∈N where Yn(p) depends on some parameter p ∈ P and is of the form

Yn(p) :=
n∑

k=1

g(p,Xk−1,Xk).

The property of the constant CY in Theorem 5.1 ensures that Inequality (5.1) is uniform in
p and θ when M2 := supp∈P ,θ∈Θ Eθ

[
|Y1(p)|2+ε

]
< ∞ (of course, the asymptotic variance in

(5.1) is replaced by some σ2(θ, p)). In the same way, the Berry-Esseen bound (5.4) is uniform
in p and θ when M3 := supp∈P ,θ∈Θ Eθ

[
|Y1(p)|3+ε

]
<∞ and infp∈P ,θ∈Θ σ(θ, p) > 0.

Note that these comments extend to a general MAP (Xn, Yn)n∈N which may depend on
some parameter γ via its probability distribution and its functional form, provided that the
bounds M2,M3, σ0 in Theorem 5.1 are uniform in γ.
Remark 5.2. The conclusions of Theorem 5.1 are also valid when X0 ∼ µθ with µθ of the
form µθ = φθ dπθ, provided that supθ∈Θ ‖φθ‖r′ < ∞, with r′ defined as in Subsection 4.4
(case m0 = 3).

5.2 A Berry-Esseen bound for the M-estimators of ρ-mixing Markov chains

Throughout this subsection, Θ is some general parameter space and (Xn)n≥0 is a Markov
chain with state space X satisfying the uniform L

2(π)-spectral gap condition (M). The
underlying probability measure and the associated expectation are denoted by Pθ and Eθ[·].
Recall that (Xn)n∈N is assumed to be stationary under (M). Let us introduce the additive
functional of (Xn)n≥0

Mn(α) =
1

n

n∑

k=1

F (α,Xk−1,Xk) (5.5)

where α ≡ α(θ) ∈ A is the parameter of interest, F (·, ·, ·) is a real-valued measurable function
on A × X

2 and A is an open interval on the real line. Function F is assumed to satisfy the
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following moment condition

sup
{
Eθ

[
|F (α,X0,X1)|

]
, θ ∈ Θ, α ∈ A

}
<∞. (5.6)

Set Mθ(α) := Eθ[F (α,X0,X1)]. We assume that, for each θ ∈ Θ, there exists a unique
α0 = α0(θ) ∈ A, the so-called true value of the parameter of interest, such that we have
Mθ(α) > Mθ(α0), ∀α 6= α0. To estimate α0, we consider the M -estimator α̂n defined by

Mn(α̂n) = min
α∈A

Mn(α).

Also assume that, for all (x, y) ∈ X
2, the map α 7→ F (α, x, y) is twice continuously differen-

tiable on A. Let F (1) and F (2) be the first and second order partial derivatives of F with
respect to α. Then

M (1)
n (α) =

1

n

n∑

k=1

F (1)(α,Xk−1,Xk), M (2)
n (α) =

1

n

n∑

k=1

F (2)(α,Xk−1,Xk). (5.7)

We shall appeal to the following assumptions.

(V0) There exists some real constant ε > 0 such that

sup
θ∈Θ, α∈A

Eθ

[∣∣F (1)(α,X0,X1)
∣∣3+ε

+
∣∣F (2)(α,X0,X1)

∣∣3+ε
]
<∞.

(V1) ∀θ ∈ Θ, Eθ[F
(1)(α0,X0,X1)] = 0 and α0 ≡ α0(θ) is the unique parameter value for

which this property is true;

(V2) m(θ) := Eθ[F
(2)(α0,X0,X1)] satisfies inf

θ∈Θ
m(θ) > 0;

(V3) ∀n ≥ 1, M
(1)
n (α̂n) = 0.

Notice that (V0) gives supθ∈Θm(θ) < ∞. Set Y
(1)
n (α) := nM

(1)
n (α) and Y

(2)
n (α) :=

nM
(2)
n (α). Then, thanks to Theorem 5.1 applied to MAPs (Xn, Y

(1)
n (α))n∈N and (Xn, Y

(2)
n (α))n∈N,

the conditions (V0)-(V2) enable us to define the asymptotic variances:

σ21(θ) := lim
n

1

n
Eθ

[
Y (1)
n (α0)

2
]

σ22(θ) := lim
n

1

n
Eθ

[(
Y (2)
n (α0)− nm(θ)

)2]
,

and we know that supθ∈Θ σj(θ) < ∞ for j = 1, 2. The following additional conditions are
also required:

(V4) infθ∈Θ σj(θ) > 0 for j = 1, 2.

(V5) There exist η > 2 and a measurable function W > 0 such that supθ∈Θ Eθ[W
η] < ∞

and

∀(α,α′) ∈ A2, ∀(x, y) ∈ E2, |F (2)(α, x, y)−F (2)(α′, x, y)| ≤ |α−α′|
(
W (x)+W (y)

)
.

(V6) There exists a sequence γn → 0 such that

sup
θ∈Θ

Pθ

{
|α̂n − α0| ≥ d

}
≤ γn,

with d := infθ∈Θm(θ)/
(
4(Eθ[W (X0)] + 1)

)
.
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Theorem 5.2. Assume that the Markov chain (Xn)n∈N satisfies Condition (M), that F
satisfies Condition (5.6), that the M−estimator α̂n is defined as above, and finally that Con-
ditions (V0-V6) are fulfilled. Set τ(θ) := σ1(θ)/m(θ). Then there exists a positive constant
C such that

∀n ≥ 1, sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ

{ √
n

τ(θ)
(α̂n − α0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤ C

(
1√
n
+ γn

)
.

Thanks to Theorem 5.1, the proof of Theorem 5.2 borrows the adaptation of Pfanzgal’s
method given in [48]. One of the main difficulties in this method is to obtain a Berry-Esseen
bound for the additive functionals Yn(p) :=

∑n
k=1 g(p,Xk−1,Xk) with p := (v, q, α0) and

g(p,Xk−1,Xk) := F (1)(α0,Xk−1,Xk) +
v√
q

σ1(θ)

m(θ)

(
F (2)(α0,Xk−1,Xk)−m(θ)

)

for |v| ≤ 2
√
ln q. Observe that we have from (V0-V2):

sup
{(v,q):|v|≤2

√
ln q}, θ∈Θ

Eθ

[ ∣∣g(p,X0,X1)
∣∣3+ε ]

<∞.

Then, Remark 5.1 gives the desired Berry-Esseen bound for (Yn(p))n∈N in a uniform way over
the parameter (θ, p).

When the Xn’s are i.i.d., Theorem 5.2 corresponds to Pfanzagl’s theorem [74] up to
the following changes: in [74], πθ is the common law of the Xn’s; the additive functional
is Mn(α) = (1/n)

∑n
k=1 F (α,Xk); we simply have σ21(θ) = Eθ

[
F (1)(θ,X0)

2
]
and σ22(θ) =

Eθ

[
(F (2)(θ,X0)−m(θ))2

]
, and finally Assumption (V0) is replaced by the weaker (and opti-

mal) moment condition: supθ∈Θ Eθ

[
|F (1)(θ,X0)|3 + |F (2)(θ,X0)|3

]
<∞.

Earlier extensions of [74] to the Markov context are discussed in [48]. Let us compare our
result with that of [76], in which the family of transition probabilities Pθ is assumed to satisfy
a uniform Doeblin condition with respect to θ ∈ Θ. This condition corresponds to a uniform
L
∞-spectral gap condition with respect to Θ which is stronger than our Condition (M) (see

Subsection 2.1). Let us mention that the moment condition on F (1) and F (2) in [76] is the
following (α(θ) = θ in [76]):

sup
x∈X,θ∈Θ

Eθ

[∣∣F (1)(θ,X0,X1)
∣∣3 +

∣∣F (2)(θ,X0,X1)
∣∣3 ∣∣X0 = x

]
<∞.

Because of the supremum over x ∈ X, this condition is in general much stronger than our
moment condition (V0) (despite the order 3+ε in (V0) instead of 3). To see that, neglect the
role of θ and consider a functional f on X. Then the difference between the condition used in
[76] and (V0) is comparable to that between supx∈X E[|f(X1)|3 |X0 = x] and Eπ[|f(X1)|3+ε]
(or, equivalently, between the supremum norm ‖P (|f |3)‖∞ and the norm ‖f‖3+ε of f in
L
3+ε(π)). Consequently, Theorem 5.2 applies to the models considered in [76] but requires

weaker moment conditions.
Remark 5.3. The conclusion of Theorem 5.2 holds true when X0 ∼ µθ and µθ satisfies the
condition given in Remark 5.2. In this case, if F is such that

sup
θ∈Θ, α∈A

Eθ

[
|F (α,X0,X1)

∣∣1+ε]
<∞

for some ε > 0, then Mθ(α) = Eθ[F (α,X0,X1)] can also be defined by (see Subsection 4.4):

Mθ(α) = lim
n→∞

Eθ,µθ
[Mn(α)].
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6 Conclusion

In this paper, we propose limit theorems for the second component (Yt)t∈T of a discrete
or continuous-time Markov Additive Process (MAP) (Xt, Yt)t∈T when (Xt)t∈T has a L

2(π)-
spectral gap. The derivation of the CLT is based on a ρ-mixing condition strongly connected
to the L2(π)-spectral gap property. The results related to the convergence rate in the CLT are
developed from the weak spectral method of [49]. Note that here the discrete and continuous-
time cases are covered in a unified way. In this context, the semigroup property (SG) for
the family of operators

(
St(ζ)

)
t∈T defined by

(
St(ζ)f

)
(x) := E(x,0)

[
ei 〈ζ,Yt〉 f(Xt)

]
(ζ ∈ R

d,
x ∈ X) has a central role. We mention that this semigroup property is essentially true only
for MAPs. The impact of the results is expected to be high for models involving a L

2(π)-
spectral gap, since the limit theorems are valid for general (discrete and continuous time)
MAPs, and under optimal (or almost optimal) moment conditions. This is illustrated in
Section 5 where a Berry-Esseen bound for the M -estimator associated with ρ-mixing Markov
chains, is derived under the (almost) expected moment condition.

A Additional material for the proof of Proposition 4.4.

Here, we study the regularity properties of the functions ζ 7→ L
(
ζ, Sv(ζ)f

)
and ζ 7→ Rn

(
ζ, Sv(ζ)f

)

involved in the decomposition of Proposition 4.4.

1) Let us recall that we have (see (4.2))

∀ζ ∈ R
d,∀n ∈ N, Eπ,0

[
ei〈ζ,Yn〉 f(Xn)

]
= π

(
S1(ζ)

nf
)
.

and, for t in some open neighbourhood O of ζ = 0, (see [49, 7.2])

S1(ζ)
n = λ(ζ)nΠ(ζ) +N(ζ)n,

where λ(ζ) is the dominant eigenvalue of S1(ζ), Π(ζ) is the associated rank-one eigenprojec-
tion and N(ζ) is a bounded linear operator on each L

p(π) 1 < p <∞. Both equalities imply
that

Eπ,0

[
ei〈ζ,Yn〉 f(Xn)

]
= λ(ζ)nπ

(
Π(ζ)f

)
+ π

(
N(ζ)nf

)
. (A.1)

Furthermore the eigenprojection Π(ζ) and the operators N(ζ)n are defined as in the standard
perturbation theory by

Π(ζ) =
1

2iπ

∮

Γ1

(z − S1(ζ))
−1 dz, N(ζ)n =

1

2iπ

∮

Γ0

zn (z − S1(ζ))
−1 dz,

where these line integrals are considered respectively on some oriented circle Γ1 centered at
z = 1, and on some oriented circle Γ0 centered at z = 0, with radius κ < 1 where κ is (for
instance) (1 + exp(−ε))/2 with ε defined in (2.2).

2) Let us return to the continuous-time case. We obtain from (4.10) and (A.1)

∀t ∈ O, Eπ,0

[
ei 〈ζ,Yt〉 f(Xt)

]
= λ(ζ)nπ

(
Π(ζ)(Sv(ζ)f)

)
+ π

(
N(ζ)n(Sv(ζ)f)

)
.

Thus, we can write with the notations introduced in Proposition 4.4

∀t ∈ O, L(ζ, Sv(ζ)f) := π
(
Π(ζ)(Sv(ζ)f)

)
, Rn(ζ, Sv(ζ)f) := π

(
N(ζ)n(Sv(ζ)f)

)
.
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Therefore, we only need to study the regularity of the map ζ 7→ (z − S1(ζ))
−1 ◦ Sv(ζ) on

O for controlling that of the map ζ 7→ Eπ,0

[
ei〈ζ,Yt〉 f(Xt)

]
on O (and, as a result, proving

Proposition 4.4).

3) Recall that ‖ · ‖p,p′ denotes the operator norm in the space L(Lp,Lp′) of the linear
bounded operators from L

p(π) to L
p′(π). The notation W (·) ∈ Cj(θ, θ′) means that there

exists a bounded open neighborhood V of ζ = 0 in R
d such that:

∀ζ ∈ V ,W (ζ) ∈ L(Lθ,Lθ′) andW : V 7→ L(Lθ,Lθ′) has a continuous j-order differential
on V.

Let us introduce the maps U : ζ 7→ (z − S1(ζ))
−1 and V : ζ 7→ Sv(ζ). We are going to apply

the next obvious regularity property. Let 1 ≤ θ2m0+2 < θ2m0+1 < · · · < θ1 < θ0 < ∞ (note
that Lθ0 ⊂ L

θ1 ⊂ · · · ⊂ L
θ2m0+1 ⊂ L

θ2m0+2), and assume that we have:

U ∈ C0(θ2m0+1, θ2m0+2) ∩ C1(θ2m0−1, θ2m0+2) ∩ · · · ∩ Cm0−1(θ3, θ2m0+2) ∩ Cm0(θ1, θ2m0+2)

V ∈ C0(θ0, θ1) ∩ C1(θ1, θ3) ∩ · · · ∩ Cm0−1(θ1, θ2m0−1) ∩ Cm0(θ1, θ2m0+1).

Then UV ∈ Cm0(θ0, θ2m0+2).

4) Let us introduce the following (non-increasing) maps from [1,+∞) to R:

T0(θ) :=
αθ

α+ ε0θ
and T1(θ) :=

αθ

α+ θ

where ε0 will be defined in (A.4). Let θ > 1. Lemma 4.4 and the continuous inclusions
between the Lebesgue spaces show that

T0(θ) ≥ 1 ⇒ ∀θ′ ∈ [1, T0(θ)], Sv(·) ∈ C0(θ, θ′). (A.2)

On the same way, Lemma 4.5 gives for j = 1, . . . ,m0:

T j
1 (θ) ≥ 1 =⇒ ∀θ′ ∈ [1, T j

1 (θ)], Sv(·) ∈ Cj(θ, θ′), (A.3)

and the derivatives in the last property are uniformly bounded in v ∈ [0, 1] on any bounded
open neighborhood of ζ = 0.

Now set θ0 := s, θ1 := T0(s), and observe that the assumption on s (i.e. s > α/(α −m0))
is equivalent to Tm0

1 (θ0) = αθ0/(α+m0θ0) > 1, so that there exists ε0 > 0 such that

(T0T1)
m0T0(θ1) = (T0T1)

m0T0
(
T0(θ0)

)
=

αθ0
α+ (m0 + (m0 + 2)ε0)θ0

= 1. (A.4)

Define

θ2 := T0(θ1), θ3 := T1T0(θ1), θ4 := T0T1T0(θ1), . . . , θ2m0+2 := (T0T1)
m0T0(θ1),

namely: θ2j := (T0T1)
j−1T0(θ1) for j = 1, . . . ,m0 + 1, and θ2j+1 := T1(T0T1)

j−1T0(θ1)
for j = 1, . . . ,m0. Note that θ2m0+2 = 1. From (A.2)-(A.3), V (·) := Sv(·) satisfies the
regularity properties stated in part 3), and the corresponding derivatives (on any bounded
open neighborhood of ζ = 0) are uniformly bounded in v ∈ [0, 1].

Next, setting I := {θ1, θ2, . . . , θ2m0+2}, it follows from (A.2)-(A.3) (with v = 1) that
condition C(m0) of [49, 7.1] holds, so that the conclusions reported in [49, p.48] are true:
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(H0) if θ ∈ I and T0(θ) ∈ I, then ζ 7→ (z−S1(ζ))
−1 ∈ C0 (θ, T0(θ)) uniformly in z ∈ Γ0 ∪Γ1.

and for ℓ = 1, . . . ,m0:

(Hℓ) If θ ∈
ℓ⋂

k=0

[
T−1
0 (T0T1)

−k(I)∩(T1T0)−k(I)
]
, then ζ 7→ (z−S1(ζ))−1 ∈ Cℓ

(
θ, (T0T1)

ℓT0(θ)
)

uniformly in z ∈ Γ0 ∪ Γ1.

Therefore U(·) := (z − S1(·))−1 satisfies the regularity properties stated in part 3).

5) Finally, we deduce from the property of part 3) that there exists a neighbourhood V
of ζ = 0 in R

d such that the map ζ 7→ (z − S1(ζ))
−1 ◦ Sv(ζ) is m0-times continuously

differentiable from V to L(Ls(π),L1(π)) uniformly in z ∈ Γ0 ∪ Γ1 and furthermore we have
for ℓ = 0, . . . ,m0:

sup

{∥∥( (z − S1(ζ))
−1 ◦ Sv(ζ)

)(ℓ)∥∥
s,1

; z ∈ Γ0 ∪ Γ1, ζ ∈ O, v ∈ (0, 1]

}
<∞.
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as hidden Markov models and statistical applications. Bernoulli, 6:1051–1079.

[30] Glynn, P. W. and Whitt, W. (1993). Limit theorems for cumulative processes. Stochastic
Process. Appl., 47:299–314.

31



[31] Glynn, P. W. and Whitt, W. (2002). Necessary conditions in limit theorems for cumu-
lative processes. Stochastic Process. Appl., 98:199–209.

[32] Goldys, B. and Maslowski, B. (2006a). Exponential ergodicity for stochastic reaction-
diffusion equations. In Stochastic partial differential equations and applications—VII, pages
115–131. Chapman & Hall/CRC, Boca Raton, FL.

[33] Goldys, B. and Maslowski, B. (2006b). Lower estimates of transition densities and
bounds on exponential ergodicity for stochastic PDE’s. Ann. Probab., 34:1451–1496.

[34] Gordin, M. I. (1978). On the central limit theorem for stationary Markov processes.
Soviet Math. Dokl., 19:392–394.
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[36] Gouëzel, S. and Liverani, C. (2006). Banach spaces adapted to Anosov systems. Ergodic
Theory Dynam. Systems, 26:189–217.

[37] Gravereaux, J.-B. and Ledoux, J. (2004). Poisson approximation for some point processes
in reliability. Adv. in Appl. Probab., 36:455–470.
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[39] Guibourg, D. and Hervé, L. (2010). A renewal theorem for strongly ergodic Markov
chains in dimension d ≥ 3 and in the centered case. Potential Analysis. 10.1007/s11118-
010-9200-2.

[40] Guivarc’h, Y. (1984). Application d’un théorème limite local à la transcience et à la
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