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Optimal control of the convergence
rate of Global-in-time Schwarz
algorithms

Florian Lemarié1, Laurent Debreu2, and Eric Blayo3

Abstract In this study we present a global-in-time non-overlapping Schwarz
method applied to the one dimensional unsteady diffusion equation. We de-
rive efficient interface conditions using an optimal control approach once the
problem is discretized. Those conditions are compared to the usual optimized
conditions derived at the PDE level by solving a min-max problem.

1 Introduction

Schwarz-like domain decomposition methods are very popular in mathemat-
ics, computational sciences and engineering notably for the implementation
of coupling strategies. They are based on a separation of a given original
problem into subproblems easier to solve. The connection between subprob-
lems is done iteratively with information exchange leading, at convergence, to
the solution of the original problem. In order to accelerate the convergence
speed of the iterative process it has been originally suggested by Tan and
Borsboom [1994] to design the interface conditions by solving an optimiza-
tion problem related to the convergence rate of the method. There are mainly
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two ways to optimize the convergence speed: either by trying to find the best
local approximation of the absorbing boundary conditions, or by adding re-
laxation parameters in the transmission conditions between the subproblems
(e.g. Hadjidimos et al. [2000]).

In this study we specifically address the optimization problem arising from
the use of Robin type transmission conditions in the framework of a global-
in-time Schwarz method (sometimes called Schwarz waveform relaxation).
For this type of problem the existing work has been achieved mainly at the
PDE level [Gander et al., 1999, Gander and Halpern, 2007]. The aim here is
to use the optimal control theory paradigm [Lions, 1968] to find parameters
optimized at the discrete level and thus to systematically make a comparison
with the parameters determined at the PDE level. This paper is organized as
follows : in section 2 we briefly recall the basics of optimized Schwarz meth-
ods in the framework of a time evolution problem. Section 3 is dedicated to
the determination of the optimal control problem that we intend to address.
Finally in section 4 we apply our approach to a diffusion problem.

2 Optimization of the convergence at the PDE level

2.1 Model problem and Optimized Schwarz Methods

Let us consider a bounded domain Ω ⊂ Rn. The problem is to find u such
that u satisfies

Lu = f in Ω × [0, T ] (1)

Bu = g on ∂Ω × [0, T ] (2)

where L and B are two partial differential operators. This problem is com-
plemented by an initial condition

u(x, 0) = u0(x) x ∈ Ω (3)

We consider a splitting of our domain Ω into two non-overlapping domains
Ω1 and Ω2 communicating through their common interface Γ . The operator L
introduced previously is split into two operators Lj restricted to Ωj (j = 1, 2).
By noting F1, F2, G1 and G2 the operators defining the interface conditions,
the multiplicative form of the Global-in-time Schwarz algorithm reads
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(4)
where the initial guess u0

2(0, t) must be given. The operators Fj and Gj must
be chosen to impose the desired consistency of the solution on the interface
Γ . We consider here the one-dimensional diffusion equation with constant
(possibly discontinuous) diffusion coefficients κj(κj > 0, j = 1, 2). We thus
define Lj = ∂t − κj∂

2
x and Γ = {x = 0}. In this context we require the equal-

ity of the subproblems solution and of their normal fluxes on the interface
Γ . To obtain such a consistency we use mixed boundary conditions of Robin
type

Fj = κj∂x + p1 Gj = κj∂x + p2 (j = 1, 2) (5)

where p1 and p2 are two parameters that can be optimally chosen to improve
the convergence speed of algorithm (4).

2.2 Optimization of the convergence factor

To demonstrate the convergence of algorithm (4) a classical approach is to
define the error ekj between the exact solution u⋆ and the iterates uk

j . A
Fourier analysis enables the transformation of the original PDEs into ODEs
that can be solved analytically. The analytical solution on each subdomain
is then used to define a convergence factor ρ of the corresponding Schwarz
algorithm. For a diffusion problem, defined on subdomains of infinite size,
one finds

ρ(p1, p2, ω) =
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(6)

where p1 and p2 are two degrees of freedom that can be tuned to accelerate
the convergence speed. A general approach to choose the Robin parameter is
to solve a minimax problem [Gander et al., 1999]

min
p1,p2∈R

(

max
ω∈[ωmin,ωmax]

ρ(p1, p2, ω)

)

(7)

For the diffusion problem under consideration here, the analytical solution
of the optimization problem (7) has been derived in Lemarié et al. [2010] in
a general two-sided case (i.e. with p1 6= p2) with discontinuous coefficients
κ1 6= κ2. For the sake of simplicity, we consider in the present study the
continuous case (κ1 = κ2 = κ) and we recall the result found in Lemarié
et al. [2010] in this case.
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Theorem 1. Under the assumption κ1 = κ2 = κ, the optimal parameters p⋆1
and p⋆2 of the minmax problem (7) are given by
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α
√
2κ
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where α = (ωminωmax)
1/4, β = α−1(
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5

0 if 2 < β <
√
6

Even if the diffusion coefficients are continuous the two-sided case provides a
faster convergence than the one-sided case studied by Gander and Halpern
[2003] (Fig. 1).

General remarks :

• The usual methodology to optimize the convergence at the continuous
level comes with a few assumptions that may lead to inaccuracies once the
problem is discretized. For example, as discussed in Lemarié et al. [2008]
(Sec. 5), the infinite domain assumption used to determine the convergence
factor (6) may lead to appreciable differences in the optimized parameters
compared to an approach taking the finiteness of the subdomains into
account. We numerically found that the infinite domain assumption is
valid as long as the dimensionless Fourier number Fo = κj/(L

2
jω) (with

Lj the size of subdomain Ωj) of the problem does not exceed a critical
value Foc = 0.02.

• The optimization problem (7) aims at minimizing the maximum value of
ρ(p1, p2, ω) over the entire interval [ωmin, ωmax]. This provides a very robust
method general enough to deal with the worst case scenario when all the
temporal frequencies are present in the error. An even more efficient way
to proceed would be to adjust the values of p1 and p2 at each iteration
so that those parameters are efficiently chosen to “fight” the remaining
frequencies in the error.

3 Optimal control of the Robin parameters

To investigate the robustness of the optimized parameters once the problem is
discretized, the use of the optimal control theory appears as a natural choice.
We aim at controlling the Robin parameter in order to get the best possible
convergence speed in the sense of a given cost function J . Moreover, following
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Fig. 1 Convergence factor optimized at the PDE level in the two-sided [Lemarié et al.,
2010] and one-sided case [Gander and Halpern, 2003].

the approach of Gander and Golub [2003] and the previous discussion, we
consider the possibility to use different parameters pj for different steps of
the iterative process. It is easy to check that by choosing different parameters
at each iteration we still converge to the solution of the global problem. A
first way to choose the parameters is to look, at each iteration k, for pk1 and
pk2 minimizing the error at the interface. In this case the cost function that
we intend to minimize at each iteration would be

J (pk1 , p
k
2) =

1

2
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(8)

The constant W must be chosen to balance both terms. The cost function
(8) is designed in agreement with the consistency we want to impose at the
interface between subdomains. An other strategy could be to minimize the
error at a given iteration K. The cost function would thus be

J
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2)k=1,K

)
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1

2
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K
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)2
dt

(9)

leading to an optimization on 2K parameters. This latter approach is partic-
ularly interesting when we intend to obtain the best possible approximation
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of the exact solution after a number of iterations set in advance. We propose
here to lead our study with this kind of approach with K = 5.

The optimal control approach does not per se reduces the computational
cost of the algorithm because many evaluation of the cost function are re-
quired during the minimization process. We use this approach as a tool to
improve our understanding of the behaviour of the Robin parameters in or-
der to find new directions to further accelerate the convergence speed when
Robin-type interface conditions are used. We denote by p

⋆,num
1

and p
⋆,num
2

the parameters found numerically by solving the optimal control problem.
Those parameters correspond to two vectors of size K. Similarly we will de-
note by p⋆,ana1 and p⋆,ana2 the parameters found analytically (cf Theorem 1).

4 Numerical experiments

We discretized problem (4) using a backward Euler scheme in time and a
second order scheme defined on a staggered grid in space. We decompose
the domain Ω into two non-overlapping subdomains Ω1 = [−500m, 0] and
Ω2 = [0, 500m]. The diffusion coefficient is κ = 10−2m2 s−1 and the total
simulation time is T = 81920s with ∆t = 10s. The parameter values lead
to a dimensionless Fourier number smaller than 0.02 so that the infinite
domain assumption is valid. We simulate directly the error equations, i.e.
f1 = f2 = 0 in (4) and u0(x) = 0. We start the iteration with a random ini-
tial guess u0

2(0, t) (t ∈ [0, T ]) so that it contains a wide range of the temporal
frequencies that can be resolved by the computational grid. We first perform
the Optimized non-overlapping Schwarz Method (referred as OSM case) using
p⋆,ana1 and p⋆,ana2 and then using an optimal control of the Robin parameters
with K = 5 (referred as OptCon case). We first check that the minimization
of cost function J consistently implies the reduction of the errors ‖ej‖∞ of
the associated algorithm (Fig. 2). We also notice that in the OptCon case the
convergence speed is significantly improved compared to the OSM case. In-
deed, 9 iterations of the OSM are required to obtain the same accuracy than
the OptCon case after only 5 iterations. In order to have more insight on the
way the parameters p⋆,num

1
and p

⋆,num
2

evolve throughout the iterations we
plot, in Fig. 3, the corresponding convergence factor (6) at each iteration. It
is striking to realize that the optimal convergence is obtained through a com-
bination of 2-point (equivalent to the one-sided case) and 3-point (equivalent
to the two-sided case) equioscillations sometimes shifted along the ω-axis to
adapt to the temporal frequencies still present in the error. The first two it-
erations aim at working mainly on the high-frequency components while the
last three iterations are optimized to work on the low-frequency component.
The adaptivity of the Robin parameters from one iteration to the other brings
more flexibility to the method enabling more scale selectivity.
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Fig. 2 Evolution of the L∞-norm of the error (left) and of the cost function J (right)

with respect to the iterates k in the OSM and OptCon cases.

Fig. 3 Sequence of convergence factors ρ(ω) resulting from the optimal control of the

Robin parameters determined to get the best possible convergence after K = 5 iterations.

5 Conclusion

Due to its simplicity, the use of Robin-type transmission conditions is very
attractive when one wants to couple unsteady problems defined on non-
overlapping subdomains. Once the Robin parameters are properly chosen
one can achieve a fast convergence [Gander et al., 1999]. In the present study
we showed that there is still room for improvement in the design of the Robin
conditions. If the Robin parameters are adjusted from one iteration to the
other we showed, thanks to an optimal control approach, that we can signif-
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icantly improve the convergence speed. It is important to emphasize the fact
that the optimal control paradigm proposed in this study is general enough
to be used with any type of PDE and an arbitrary number of subdomains.
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