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Summary. In this study we present a non-overlapping Schwarz waveform relaxation method

applied to the one dimensional unsteady diffusion equation. We derive efficient interface con-

ditions using an optimal control approach once the problem is discretized. Those conditions

are compared to the usual optimized conditions derived at the PDE level by solving a min-max

problem. The performance of the proposed methodology is illustrated by numerical experi-

ments.

1 Introduction

Schwarz-like domain decomposition methods are very popular in mathematics, com-

putational sciences, and engineering notably for the implementation of coupling

strategies. This type of method, originally introduced for stationary problems, can

be extended to evolution problems by adapting the waveform relaxation algorithms

to provide the so-called Schwarz waveform relaxation method [2, 4]. The idea behind

this method is to separate the spatial domain, over which the time-evolution problem

is defined, into subdomains. The resulting time-dependent problems are then solved

separately on each subdomains. An iterative process with an exchange of boundary

conditions at the interface between the subdomains is then applied to achieve the

convergence to the solution of the original problem. To accelerate the convergence

speed of the iterative process, it is possible to derive efficient interface conditions by

solving an optimization problem related to the convergence rate of the method [e.g.;

1, 5].

In this study, we specifically address the optimization problem arising from the

use of Robin type transmission conditions in the framework of a non-overlapping

Schwarz waveform relaxation. For this type of problem, the existing work has been

achieved mainly at the PDE level, giving rise to the optimized Schwarz waveform
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relaxation algorithm [1, 2, 5]. The objective here is to use the optimal control theory

paradigm [9] to find parameters optimized at the discrete level, and thus to system-

atically make a comparison with the parameters determined at the PDE level. This

paper is organized as follows : in section 2 we briefly recall the basics of optimized

Schwarz methods in the framework of a time evolution problem. Section 3 is dedi-

cated to the determination of the optimal control problem that we intend to address.

Finally, in section 4 we apply our approach to a diffusion problem.

2 Optimization of the convergence at the PDE level

2.1 Model problem and Optimized Schwarz Methods

Let us consider Ω a bounded open set of R. The model problem is to find u such that

u satisfies over a time period [0,T ]

L u = f , in Ω × [0,T ], (1)

Bu = g, on ∂Ω × [0,T ], (2)

where L and B are two partial differential operators, and f the forcing. This prob-

lem is complemented by an initial condition

u(x,0) = u0(x), x ∈ Ω . (3)

We consider a splitting of the domain Ω into two non-overlapping domains Ω1 and

Ω2 communicating through their common interface Γ . The operator L introduced

previously is split into two operators L j restricted to Ω j ( j = 1,2). By noting F1,

F2, G1 and G2 the operators defining the interface conditions, the alternating form

of the Schwarz waveform relaxation algorithm reads





L1uk
1 = f1, in Ω1 × [0,T ],

uk
1(x,0) = uo(x), x ∈ Ω1,

B1uk
1(x, t) = g1, in [0,T ]×∂Ω1,

F1uk
1(0, t) = F2uk−1

2 (0, t), in Γ × [0,T ],





L2uk
2 = f2, in Ω2 × [0,T ],

uk
2(x,0) = uo(x), x ∈ Ω2,

B2uk
2(x, t) = g2, in [0,T ]×∂Ω2,

G2uk
2(0, t) = G1uk

1(0, t), in Γ × [0,T ],
(4)

where k = 1,2, ... is the iteration number, and the initial guess u0
2(0, t) must be given.

The operators F j and G j must be chosen to impose the desired consistency of the

solution on the interface Γ . We consider here the one-dimensional diffusion equation

with constant (possibly discontinuous) diffusion coefficients κ j (κ j > 0, j = 1,2). We

define L j = ∂t −κ j∂
2
x , Ω1 =(−L1,0), Ω2 =(0,L2) (L1,L2 ∈R

+ ), and Γ = {x= 0}.

In this context, we require the equality of the subproblems solutions and of their

normal fluxes on the interface Γ ,

u1(0, t) = u2(0, t), κ1∂xu1(0, t) = κ2∂xu2(0, t), t ∈ [0,T ]. (5)
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To obtain such a consistency we use mixed boundary conditions of Robin type

F j =−κ j∂x + p1, G j = κ j∂x + p2, ( j = 1,2),

where p1 and p2 are two parameters that can be optimally chosen to improve the

convergence speed of the Schwarz method. Algorithm (4) with two-sided Robin

conditions (i.e. for p1 �= p2) is well-posed for any choice of p1 and p2 such that

p1 + p2 > 0. This result can be shown using a priori energy estimates, as described

in [4].

2.2 Optimization of the convergence factor

To demonstrate the convergence of algorithm (4) a classical approach [e.g. 6] is to

define the error ek
j between the exact solution u� and the iterates uk

j. A Fourier anal-

ysis enables the transformation of the original PDEs into ODEs that can be solved

analytically. The analytical solution on each subdomain is then used to define a con-

vergence factor ρ of the corresponding Schwarz algorithm. For a diffusion problem,

defined on subdomains of infinite size (i.e. assuming L1,L2 → ∞), we get

ρ(p1, p2,ω) =

����
(p2 −

√
iωκ2)

(p2 +
√

iωκ1)

(p1 −
√

iωκ1)

(p1 +
√

iωκ2)

���� , (6)

where p1 and p2 are two degrees of freedom which can be tuned to accelerate the

convergence speed. In (6), i=
√
−1, and ω ∈R is the angular frequency arising from

a Fourier transform in time on ek
j. A general approach to choose the Robin parameters

p1 and p2 is to solve a minimax problem [2]

min
p1,p2∈R

�
max

ω∈[ωmin,ωmax]
ρ(p1, p2,ω)

�
. (7)

Because we work in practice on a discrete problem the frequencies allowed by the

temporal grid range from ωmin = π/T to ωmax = π/∆ t, where ∆ t is the time step

of the temporal discretization. For the diffusion problem under consideration here,

the analytical solution of the optimization problem (7) has been derived in [8] in a

general two-sided case (i.e. with p1 �= p2) with discontinuous coefficients κ1 �= κ2.

For the sake of simplicity, we consider in the present study the continuous case (κ1 =
κ2 = κ) and we recall the result found in [8] in this case.

Theorem 1. Under the assumption κ1 = κ2 = κ , the optimal parameters p�1 and p�2
of the minmax problem (7) are given by

p�1 =
α
√

2κ

4

��
8+ v2 − v

�
, p�2 =

α
√

2κ

4

��
8+ v2 + v

�
,

where α = (ωminωmax)
1/4, β = α−1(

√
ωmin +

√
ωmax) and

v =





2
�

β −1 if β ≥ 1+
√

5,�
2β 2 −12 if

√
6 ≤ β < 1+

√
5,

0 if 2 < β <
√

6.
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It is worth mentioning that even if the diffusion coefficients are continuous the two-

sided case provides a faster convergence than the one-sided case studied in [4] (Fig.

1).

General remarks :

• The usual methodology to optimize the convergence at the continuous level

comes with a few assumptions that may lead to inaccuracies once the prob-

lem is discretized. For example, as discussed in [7] (Sec. 5), the infinite domain

assumption used to determine the convergence factor (6) may lead to apprecia-

ble differences in the optimized parameters compared to an approach taking the

finiteness of the subdomains into account. We numerically found that the infi-

nite domain assumption is valid as long as the dimensionless Fourier number

Fo = κ j/(L
2
jω) (with L j the size of subdomain Ω j) of the problem does not

exceed a critical value Foc = 0.02.

• The optimization problem (7) aims at minimizing the maximum value of ρ(p1, p2,ω)
over the entire interval [ωmin,ωmax]. This provides a very robust method general

enough to deal with the worst case scenario when all the temporal frequencies

are present in the error. An even more efficient way to proceed would be to adjust

the values of p1 and p2 at each iteration so that those parameters are efficiently

chosen to “fight” the remaining frequencies in the error.

1�10�4 5�10�4 0.001 0.005 0.010 0.050 0.100
Ω

0.2

0.4

0.6

0.8

1.0

Ρ
opt
�Ω�

Fig. 1. Convergence factor optimized at the PDE level in the one-sided case (black line) [4] and

in the two-sided case (dashed black line) [8], for κ = 10−2 m s−1, ∆ t = 10 s, and T = 213∆ t.

3 Optimal control of the Robin parameters

To investigate the robustness of the optimized parameters once the problem is dis-

cretized, the use of the optimal control theory appears as a natural choice. We aim at
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controlling the Robin parameter in order to get the best possible convergence speed

in the sense of a given cost function J . Moreover, following the approach of [3]

and the previous discussion, we consider the possibility to use different parameters

p j for different steps of the iterative process. It is easy to check that by choosing

different parameters at each iteration we still converge to the solution of the global

problem. A first way to choose the parameters is to look, at each iteration k, for pk
1

and pk
2 minimizing the error at the interface. In this case the cost function that we

intend to minimize at each iteration would be

J (pk
1, pk

2) =
w

2

� T

0

�
uk

1(0, t)−uk
2(0, t)

�2

dt

+
�w
2

� T

0

�
κ1∂xuk

1(0, t)−κ2∂xuk
2(0, t)

�2

dt.
(8)

The constants w and �w must be chosen to balance both terms, depending on the char-

acteristics of the problem (see Sec. 4). The cost function (8) is designed in agreement

with the consistency (5) we want to impose at the interface between subdomains. J
provides a measure of the "inconsistency" of the solution at each iteration k, and is,

thus, directly related to the order of magnitude of the errors ek
j of the algorithm (as

shown in Fig. 2). An other strategy could be to minimize the error at a given iteration

K. The cost function would thus be

J
�
(pk

1, pk
2)k=1,K

�
=

w

2

� T

0

�
uK

1 (0, t)−uK
2 (0, t)

�2
dt

+
�w
2

� T

0

�
κ1∂xuK

1 (0, t)−κ2∂xuK
2 (0, t)

�2
dt,

(9)

leading to an optimization on 2K parameters. This latter approach is particularly

interesting when we intend to obtain the best possible approximation of the exact

solution after a number of iterations set in advance. We propose here to lead our

study with this kind of approach with K = 5. The optimal control approach does not

per se reduce the computational cost of the algorithm because many evaluations of

the cost function are required during the minimization process (see algorithm 1). We

use this approach as a tool to improve our understanding of the behavior of the Robin

parameters in order to find new directions to further accelerate the convergence speed

when Robin-type interface conditions are used. We denote by p
�,num
1 and p

�,num
2

the parameters found numerically by solving the optimal control problem. Those

parameters correspond to two vectors of size K. Similarly we will denote by p
�,ana
1

and p
�,ana
2 the parameters found analytically (cf Theorem 1).

We used Matlab for the computation (algorithm 1). Note that the well-posedness

of the coupling problem (4) is not sufficient to ensure a well-posed optimal control

problem. Some additional requirements on the convexity and regularity of the cost

function are necessary. We do not provide here such a proof, however we empirically

checked that the same solution of the optimal problem is obtained for a wide range

of parameter values for the initial guess.
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Algorithm 1 Optimal control
%== Robin parameters found analytically : p1ana, p2ana

%== Solution of the optimal control problem : p1opt, p2opt

%== Initial guess ==%

x0(1:2:2*K-1)=p1ana;

x0(2:2:2*K )=p2ana;

%== Solve the optimal control problem ==%

%== the CalcJ function proceeds to K iterations of the

%== Schwarz algorithm using 2K Robin parameters,

%== and computes the associated cost function (9)

x = fminsearch( @CalcJ, x0 );

%== Retrieve the optimized parameters

p1opt(1:K)=x(1:2:2*K-1);

p2opt(1:K)=x(2:2:2*K );

4 Numerical experiments

We discretized problem (4) using a backward Euler scheme in time and a second

order scheme defined on a staggered grid in space (see [8] for more details). We

decompose the domain Ω into two non-overlapping subdomains Ω1 = [−H,0] and

Ω2 = [0,H] with H = 500 m. The diffusion coefficient is κ = 10−2 m2 s−1 and the

total simulation time is T = 213∆ t with ∆ t = 10 s. The parameter values lead to a

dimensionless Fourier number smaller than 0.02 so that the infinite domain assump-

tion is valid. We simulate directly the error equations, i.e. f1 = f2 = 0 in (4) and

u0(x) = 0. We start the iteration with a random initial guess u0
2(0, t) (t ∈ [0,T ]) so

that it contains a wide range of the temporal frequencies that can be resolved by

the computational grid. This is done to allow a fair comparison as the parameters

optimized at the PDE level are optimized assuming that the full range [ωmin,ωmax]
is present in the error. We first perform the Optimized non-overlapping Schwarz

Method (referred as to OSM case) using p
�,ana
1 and p

�,ana
2 and then using an optimal

control of the Robin parameters with K = 5 (referred as to OptCon case). We first

check that the minimization of cost function J consistently implies the reduction

of the errors �e j�∞ of the associated algorithm (Fig. 2). For our experiments, we

chose w = 1 and �w = H/κ in (9). We notice that in the OptCon case the convergence

speed is significantly improved compared to the OSM case. Indeed, 9 iterations of

the OSM are required to obtain the same accuracy than the OptCon case after only 5

iterations. In order to have more insight on the way the parameters p
�,num
1 and p

�,num
2

evolve throughout the iterations we plot, in Fig. 3, the corresponding convergence

factor (6) at each iteration. It is striking to realize that the optimal convergence is

obtained through a combination of 2-point (equivalent to the one-sided case) and 3-

point (equivalent to the two-sided case) equioscillations sometimes shifted along the

ω-axis to adapt to the temporal frequencies still present in the error. The first two

iterations aim at working mainly on the high-frequency components while the last

three iterations are optimized to work on the low-frequency component. The adap-
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tivity of the Robin parameters from one iteration to the other brings more flexibility

to the method enabling more scale selectivity.

0 1 2 3 4 5 6 7 8 9

iterations

1x10
-4

1x10
-3

1x10
-2

1x10
-1

1

(OptCon)

(OSM, two sided)

0 1 2 3 4 5 6 7 8 9

iterations

1x10
-4

1x10
-3

1x10
-2

1x10
-1

1

1x10
1

1x10
2

1x10
3

1x10
4

(OptCon)

(OSM, two sided)

iterationsiterations

�ek�∞ J

Fig. 2. Evolution of the L ∞-norm of the error (left) and of the cost function J (right) with

respect to the iterates k in the OSM and OptCon cases.

Fig. 3. Sequence of convergence factors ρ(ω) resulting from the optimal control of the Robin

parameters determined to get the best possible convergence after K = 5 iterations.

5 Conclusion

Due to its simplicity, the use of Robin-type transmission conditions is very attractive

when one wants to couple unsteady problems defined on non-overlapping subdo-

mains. Once the Robin parameters are properly chosen one can achieve a fast con-

vergence [2]. In the present study we showed that there is still room for improvement



14 Florian Lemarié, Laurent Debreu, and Eric Blayo

in the design of the Robin conditions. If the Robin parameters are adjusted from one

iteration to the other we showed, thanks to an optimal control approach, that we can

significantly improve the convergence speed. It is important to emphasize that the

optimal control paradigm proposed in this study is general enough to be used with

any type of PDE and an arbitrary number of subdomains.
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