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TOWARD AN OPTIMIZED GLOBAL-IN-TIME SCHWARZ ALGORITHM FOR

DIFFUSION EQUATIONS WITH DISCONTINUOUS AND SPATIALLY VARIABLE

COEFFICIENTS

PART 2 : THE VARIABLE COEFFICIENTS CASE

FLORIAN LEMARIÉ∗, LAURENT DEBREU†, AND ERIC BLAYO‡

Abstract. This paper is the second part of a study dealing with the application of a global-in-time Schwarz

method to a one dimensional diffusion problem defined on two non-overlapping subdomains. In the first part,

we considered that the diffusion coefficients were constant and possibly discontinuous. In the present study, we

address the problem for spatially variable coefficients with a discontinuity at the interface between subdomains.

For this particular case, we derive a new approach to determine analytically the convergence factor of the associated

algorithm. The theoretical results are illustrated by numerical experiments with Dirichlet-Neumann and Robin-Robin

interface conditions. In the Robin-Robin case, thanks to the convergence factor found at the analytical level, we can

optimize the convergence speed of the Schwarz algorithm.
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1. Introduction.

1.1. General context. The overall context of the present work is the coupling between

oceanic and atmospheric numerical models, in particular for representing processes in which

the interactions between both media are of prime importance. The algorithms generally used

to couple this type of numerical models are often not fully correct from a mathematical point

of view. Indeed, they do not ensure a perfect consistency of the fluxes exchanged at the

air-sea interface [8]. In this context, the long-term objective of our work is to derive alterna-

tive numerical techniques ensuring such a consistency, as well as to study their possible im-

pact on the physical results of coupled models. Global-in-time Optimized Schwarz Methods

(also called Schwarz waveform relaxation methods) [4, 5], based on the concept of absorbing

boundary conditions [3], are particularly well suited for such problems. The present study

aims at finding efficient transmission conditions in the case of the coupling between two dif-

fusion equations representing the turbulent vertical mixing in the planetary boundary layers

near the air-sea interface (see section 3.1 for further details on the notion of turbulent vertical

mixing).

In the first part of this paper [9], we derive analytically optimized conditions in the case

of a diffusion coefficient constant in each medium but with a discontinuity through the inter-

face. However, this provides only a simplified view of the true physics. The ocean and the

atmosphere interact through various multi-scale physical processes that are usually hardly

explicitly resolved by the spatio-temporal discretization. Because it is essential to account

for the effect of the subgrid turbulent boundary layers on the resolved part of the flow, pa-

rameterization schemes have been designed [7, 14]. Those schemes usually take the form
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of a turbulent mixing term with a spatially variable diffusion coefficient to account for local

effects. Indeed, a parameterization with a constant diffusion, originally introduced in [2], is

now known to be naive. In this second part of the paper, we intend to study the impact of

this variability of the diffusion coefficients, in particular in the vicinity of the interface, on the

convergence properties of the Schwarz algorithm. To our knowledge, the spatial variability

of the coefficients has never been considered in the framework of Schwarz-like methods, ex-

cept in [10] where absorbing conditions are given for a one-dimensional stationary diffusion

problem.

This paper is organized as follows. In the rest of this section, we briefly recall the aspects

of optimized Schwarz methods necessary to understand the problematic of the present study.

In section 2, we introduce a general methodology to analytically assess the impact of the

spatial variability of diffusion coefficients on the convergence of the Schwarz method. This

method is applied first to a simple Dirichlet-Neumann algorithm and then to a more general

Robin-Robin algorithm. Finally, in section 3, we illustrate the relevancy of our approach with

numerical results.

1.2. Model problem and Schwarz algorithm. The present study focuses on the cou-

pling between two one-dimensional diffusion equations with variable coefficients. Let Ω1 =
] − L1, 0[ and Ω2 =]0, L2[ be two subdomains with a common interface Γ = {x = 0}. The

coupling problem reads

(1.1)



L1u1 = f in Ω1 × [0, T ]
u1(x, 0) = uo(x) x ∈ Ω1

B1u1(−L1, t) = g1 t ∈ [0, T ]
F1u1(0, t) = F2u2(0, t) on Γ× [0, T ]





L2u2 = f in Ω2 × [0, T ]
u2(x, 0) = uo(x) x ∈ Ω2

B2u2(L2, t) = g2 t ∈ [0, T ]
G2u2(0, t) = G1u1(0, t) on Γ× [0, T ]

where Lj = ∂t − ∂x(Dj(x)∂x), Bj corresponds to the boundary conditions on the computa-

tional domain Ω, Fj and Gj are operators defining the interface conditions. Those operators

must be designed to ensure a given consistency of the solution through Γ. In our study we

require the equality of subproblems solutions and of their normal fluxes.

In order to solve the coupling problem (1.1), we propose to implement a Schwarz algo-

rithm with Robin-Robin interface conditions :

(1.2)





L1u
k
1 = f in Ω1 × [0, T ]

uk
1(x, 0) = uo(x), x ∈ Ω1

B1u
k
1(−L1, t) = g1 t ∈ [0, T ]

(D1(0)∂x + Λ1)u
k
1(0, t) = (D2(0)∂x + Λ1)u

k−1
2 (0, t) on Γ× [0, T ]





L2u
k
2 = f in Ω2 × [0, T ]

uk
2(x, 0) = uo(x) x ∈ Ω2

B2u
k
2(L2, t) = g2 t ∈ [0, T ]

(−D2(0)∂x + Λ2)u
k
2(0, t) = (−D1(0)∂x + Λ2)u

k
1(0, t) on Γ× [0, T ]

where k = 1, 2, ... is the iteration number and the initial guess u0
2(0, t) is given. Λ1 and Λ2

are operators to be determined. As mentioned in [10], those operators can be either local or

nonlocal.

1.3. Reminder of the framework in the case of constant (but discontinuous) diffu-

sion coefficients. We recall briefly here some known results useful for the present study and

detailed in [9]. The convergence study of algorithm (1.2) with constant coefficients is per-

formed by introducing the errors ekj = uk
j −u⋆ between the k-th iterate and the exact solution
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u⋆ of the coupled problem. Using a Fourier transform in time (denoted for any function

g ∈ L2(R) by ĝ := Fg), the partial differential equation Ljej = 0 becomes an ordinary

differential equation L̂jej = iωêj − Dj

∂2êj
∂x2

= 0 (Dj is spatially constant here) whose

characteristic roots are :

σ+
j =

√
iω

Dj

, σ−

j = −σ+
j = −

√
iω

Dj

.

It is then usually assumed that Lj → ∞ and that ej tends to zero for x → ∞ which leads to

êk1(x, ω) = αk(ω) eσ
+
1 x êk2(x, ω) = βk(ω) eσ

−

2 x

where α(ω) and β(ω) are determined to satisfy the boundary conditions. Finally the conver-

gence factor ρ corresponding to the ratio between the errors at two successive iterations can

be determined as a function of σ±

j , Dj and λj (the Fourier symbols of the Λj operators):

(1.3) ρ =

∣∣∣∣
(λ1(ω) +D2σ

−

2 )

(λ1(ω) +D1σ
+
1 )

(λ2(ω)−D1σ
+
1 )

(λ2(ω)−D2σ
−

2 )

∣∣∣∣

We remark that in the Fourier space the following symbols

λopt

1 = −D2σ
−

2 λopt

2 = D1σ
+
1

lead to ρ = 0, i.e. ensure a convergence in exactly two iterations. However the corresponding

operators, which are called absorbing conditions, are nonlocal in time, and therefore cannot

be used in practical applications. We thus need to look for a local approximation of these

optimal operators. It has first been suggested in [11] to use a low frequency approximation of

the symbols based on a Taylor expansion about ω = 0. This results in effective transmission

conditions only for ω small. To obtain a more general approximation, efficient also for high

frequencies, the so called Optimized Schwarz Methods (OSM) have been introduced. The

simplest version consists in approximating λopt

1 and λopt

2 by two constant values λ0
1 and λ0

2 :

this corresponds to Robin interface conditions (also called zeroth order two-sided transmis-

sion conditions). The values for λ0
1 and λ0

2 are then determined by solving the optimization

problem

(1.4) min
λ0
1,λ

0
2∈R

(
max

ω∈[ωmin,ωmax]
ρ(λ1, λ2, ω)

)

In [9] this optimization problem is solved analytically for constant (and possibly discontin-

uous across Γ) diffusion coefficients. In this second part of our study, we complement the

preceding work [9] and discuss the effect of the spatial variability of the diffusion coefficients

on the convergence speed and on the determination of optimized conditions.

When the diffusion coefficient is spatially variable the usual approach in determining the con-

vergence factor is no longer straightforward. To circumvent this problem, we develop in the

next section a methodology to find analytically a way to derive a convergence factor, similar

to (1.3), but including the spatial variability of the diffusion coefficients. Thanks to this new

convergence factor, it will then be possible to solve numerically the min-max problem (1.4)

to find optimal λ0
j values. We expect a non-trivial effect of this variability on the convergence

properties of the associated Schwarz algorithm. Indeed, in [10] it is shown, for the stationary
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diffusion equation −∂x (D(x)∂xu) = f , that the absorbing conditions are given by Robin

conditions with λopt

1 =

(∫ 0

−L1

D−1
1 (s) ds

)−1

and λopt

2 =

(∫ L2

0

D−1
2 (s) ds

)−1

. This result

strongly suggests that this is not only the local values of the diffusion coefficient near the

interface that have an impact on the λj parameters but the whole profile D(x) all over Ω.

2. OSM for diffusion problems with spatially variable coefficients. As mentioned

previously, the diffusion coefficient may be spatially variable to account for local effects

(e.g., in the turbulent boundary layers) within subdomains. In practical applications (like in

oceanography or meteorology) diffusion coefficients are likely to vary by several orders of

magnitude in the vertical direction (this point is further discussed in section 3.1). That is

the primary motivation to look for a methodology to determine analytically the convergence

factor for non constant diffusion coefficients defined on two non-overlapping subdomains.

Throughout this study we make the assumption that the diffusion profile does not vary with

time.

2.1. Analytical determination of the shape of the errors. The first part of this section

does not require any distinction between subdomains, so the j subscripts are temporarily

dropped. We denote by g(t) the function containing the information given by the neighboring

subdomain, the problem under investigation is

(2.1)





∂te− ∂x (D(x) ∂xe) = 0 x ∈]0, L[, t > 0
e(x, 0) = 0 x ∈]0, L[
−D(0) ∂xe(0, t) + λ e(0, t) = g(t) t > 0
e(L, t) = 0 t > 0

with λ the Robin parameter we wish to determine to optimize the convergence speed. A

Dirichlet condition is imposed at x = L, this corresponds in having B1 = B2 = I in (1.2),

with I the identity map.

First, we notice that the method based on a Fourier analysis, commonly used to analytically

determine the convergence factor, is less convenient for our model problem with variable

coefficients. Indeed, in Fourier space, we would obtain the ODE iωê − ∂x(D(x)∂xê) = 0
for ê. The study of this ODE appears to be at least as complicated as the original problem in

physical space. That is why we propose to study directly the system (2.1). We transform this

original problem with a homogeneous equation and nonhomogeneous boundary conditions

into a problem with nonzero right-hand side but with homogeneous boundary conditions, by

searching for a solution under the form e(x, t) = ϕ(x, t) + U(x, t) with ϕ a lifting function

satisfying the boundary conditions. The transformed problem reads

(2.2)





∂tU − ∂x (D(x) ∂xU) = f(x, t) = −∂tϕ+ ∂x (D(x) ∂xϕ) x ∈]0, L[, t > 0
U(x, 0) = −ϕ(x, 0) x ∈]0, L[
−D(0) ∂xU(0, t) + λU(0, t) = 0 t > 0
U(L, t) = 0 t > 0

The choice of ϕ is not unique. We choose this function as the solution of problem (2.1) with

a constant diffusion coefficient whose value is the value at x = 0; i.e., ϕ is solution of

(2.3)





∂tϕ−D(0) ∂xxϕ = 0 x ∈]0, L[, t > 0
−D(0) ∂xϕ(0, t) + λϕ(0, t) = g(t) t > 0
ϕ(L, t) = 0 t > 0
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We then search for U(x, t) using a separation of variables U(x, t) =
∑

n

Φn(x)Tn(t). Sub-

stitution in (2.2) leads to

∑

n

T ′
n(t)Φn(x)−

∑

n

Tn(t) ∂x (D(x) ∂xΦn(x)) = f(x, t),

where the right hand side is also expanded with respect to the functions Φn(x)

f(x, t) = −∂tϕ+ ∂x (D(x)∂xϕ) =
∑

n

fn(t)Φn(x)

The next step is to properly choose the Φns. An adequate choice would enable us to transform

the PDE into ODEs for unknown functions Φn(x) and Tn(t). The natural choice is therefore

to look for Φn(x) as a solution of the following regular Sturm-Liouville (SL) problem

(2.4)





∂x (D(x) ∂xΦn) + c2nΦn = 0 x ∈]0, L[
−D(0) ∂xΦn(0) + λΦn(0) = 0
Φn(L) = 0

with cn the eigenvalues of the SL operator. Such a choice leads to a family of functions

Φn(x) which are orthonormal for the Euclidian scalar product < u, v >=
∫ L

0
u(x)v(x)dx.

The properties of regular SL problems are fully described in [1] or [6] . After some simple

algebra we find that a general solution of problem (2.1) is given by

(2.5) e(x, t) = ϕ(x, t) + U(x, t)

with U(x, t) =
∑

n

Φn(x)

∫ t

0

exp
(
−c2n(t− τ)

)
fn(τ)dτ . In (2.5), ϕ satisfies (2.3), Φn

satisfies (2.4) and fn(t) satisfies

fn(t) =

∫ L

0

∂x(D̃(x)∂xϕ)Φn(x)dx with D̃(x) = D(x)−D(0)

By formulating the solution of our problem under this form we can properly separate the error

into two parts corresponding to two different contributions: ϕ(x, t) corresponds to the error

for a constant coefficient D(0), and U(x, t) represents the error coming from the perturba-

tions around D(0), namely D̃(x).

We must now determine explicitly the function ϕ. A straightforward way consists in using

the continuous Fourier transform in time. By introducing the function Eω(x) = e

√

iω
D(0)

x
and

by taking into account the boundary conditions at x = 0 and x = L, we get

ϕ̂(x, ω) =
Eω(x)− Eω(2L− x)

λ (1− Eω(2L))−
√
iωD(0) (1 + Eω(2L))

ĝ(ω)

It is now possible to express the error (2.5) in the Fourier space. The fn functions are extended

by zero for t < 0 and by the convolution theorem we have

F
{∫ t

0

exp
(
−c2n(t− τ)

)
fn(τ)dτ

}
= ŝn(ω)f̂n(ω) with ŝn(ω) = F

(
e−c2ntH(t)

)
=

1

c2n + iω
5



where H(t) is the Heaviside unit step function. The general form for ê(x, ω) is

ê(x, ω) = ϕ̂(x, ω) +
∑

n

Φn(x)ŝn(ω)f̂n(ω)

In practice it is usually assumed that the subdomains are unbounded (L → ∞) to simplify

the expression of the convergence factor and thus to simplify the optimization problem (1.4).

Using this assumption, ϕ̂ becomes

ϕ̂(x, ω) ≃ Eω(−x)

λ+
√

iωD(0)
ĝ(ω),

which implies

f̂n(ω) ≃
ĝ(ω)

λ+
√
iωD(0)

∫ L

0

∂

∂x′

(
D̃(x′)

∂

∂x′
Eω(−x′)

)
Φn(x

′)dx′

As a result of our study we come up with an expression for the error function in Fourier space

that takes into account the spatial variability of the diffusion coefficient:

(2.6)

ê(x, ω) ≃ ĝ(ω)

λ+
√
iωD(0)


Eω(−x) +

∑

n

√
iω

D(0)Φn(x)

iω + c2n

∫ L

0

D̃(x′)Eω(−x′)
dΦn

dx′
dx′


 x ≥ 0

This error has been constructed for positive values of x which can be identified to subdomain

Ω2, following the notations introduced in section 1.2. For x negative (i.e., on Ω1), we obtain

a very similar form:

(2.7)

ê(x, ω) ≃ ĥ(ω)

λ+
√
iωD(0)


Eω(x)−

∑

n

√
iω

D(0)Φn(x)

iω + c2n

∫ 0

−L

D̃(x′)Eω(x
′)
dΦn

dx′
dx′


 x ≤ 0

where the function h is the analogous of function g previously introduced.

The form (2.6) of the error suggests that the impact of the spatial variability of the diffusion

coefficients will be primarily seen for low temporal frequencies. Indeed, the term D̃(x)

arising from the variability of the coefficient is weighted by |Eω(−x)| = e
−
√

ω
2D(0)

x
, making

the effect of the variability negligible for large values of ω but potentially significant for low

frequencies. Moreover we can draw the same remark for the variations with x: when x is

small (near the interface) D̃(x) is weighted by a non negligible number while for x large

enough Eω(−x) is very small.

2.2. Convergence factor of the Dirichlet-Neumann algorithm with spatially variable

coefficients. We have established so far a general form for the errors propagating in each

subdomain. We are now able to propose a formulation of the convergence speed for the

global-in-time Schwarz algorithm with spatially variable coefficients. Before dealing with

the general Robin-Robin case we intend to determine the convergence speed in a simpler

Dirichlet-Neumann case; i.e., with the notations introduced in (1.1), Gj = I and Fj =

Dj(0)
∂

∂x
. Moreover, for sake of practical convenience, we also try to find the expression of

an ”effective” value Deff
j corresponding to a constant value that would have the same effect

on the convergence speed than the whole non constant diffusion profile Dj(x). Hereafter
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we use again the subscripts j to characterize both subdomains and we introduce the function

Eω,j(x) = e

√

iω
Dj(0)

x
that plays the same role than the Eω function previously defined.

A derivation very similar to what has been done in section 2.1, but with a Dirichlet

boundary condition instead of a Robin boundary condition leads to:

(2.8)

ê2(x, ω) =


Eω,2(−x) +

∑

n

Φn,2(x)
√

iω
D2(0)

iω + c2n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
(x′)dx′


 ĝ(ω)

where ĝ(ω) = ê1(0, ω) and where the Φn,2 are defined by a SL problem similar to (2.4), but

again with a Dirichlet condition instead of a Robin condition. On Ω1, we have (by simply

making λ = 0 in the derivation of section 2.1):

(2.9)

ê1(x, ω) =


Eω,1(x)−

∑

n

Φn,1(x)
√

iω
D1(0)

iω + c2n,1

∫ 0

−L1

D̃1(x
′)Eω,1(x)

dΦn,1

dx′
(x′)dx′


 ĥ(ω)√

iωD1(0)

where ĥ(ω) = D2(0)
∂ê2
∂x

(0, ω) and where the Φn,1 are defined by a SL problem similar

to (2.4) with a homogeneous Neumann condition at x = 0. The multiplicative Schwarz

algorithm with Dirichlet-Neumann conditions is obtained by replacing ê2 (resp. ĝ) by êk2

(resp. êk1(0, ω)) in (2.8), and ê1 (resp. ĥ) by êk1 (resp. ĥk−1(ω) = D2(0)
∂êk−1

2

∂x
(0, ω)) in

(2.9). Therefore we have:

ĝk(ω) =


1−

∑

n

Φn,1(0)
√

iω
D1(0)

iω + λ2
n,1

∫ 0

−L1

D̃1(x
′)Eω,1(x

′)
dΦn,1

dx′
(x′)dx′


 ĥk−1(ω)√

iωD1(0)

ĥk(ω) =

(
−1 +

∑

n

dΦn,2

dx
(0)

iω + λ2
n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
(x′)dx′

)
√
iωD2(0)ĝ

k(ω)

Then, if we define a convergence factor by

ρvar

DN
(ω) =

∣∣∣∣
êk1(0, ω)

êk−1
1 (0, ω)

∣∣∣∣

the previous relations lead to

(2.10) ρvar

DN
(ω) =

∣∣∣∣
ĝk

ĝk−1

∣∣∣∣ =
∣∣∣∣∣
ĝk

ĥk−1

ĥk−1

ĝk−1

∣∣∣∣∣ = ρcst

DN
· ρ̃DN

where ρcst

DN
=

√
D2(0)

D1(0)
is the convergence factor obtained in the case of constant diffusion

coefficients (see [12]) and

ρ̃DN =

∣∣∣∣∣∣


1−

∑

n

√
iω

D1(0)
Φn,1(0)

iω + c2n,1

∫ 0

−L1

D̃1(x
′)Eω,1(x

′)
dΦn,1

dx′
(x′)dx′


 .

(
1−

∑

n

dΦn,2

dx
(0)

iω + c2n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
(x′)dx′

)∣∣∣∣∣
7



This result shows that the convergence factor ρvar

DN
naturally appears as the product of the

convergence factor with constant coefficients (the surface values) by a term coming from the

spatial variability of the diffusion coefficient on Ω1 and Ω2.

Starting from equation (2.10) we can suggest two ”effective” constant values for D1 and D2.

Those (spatially constant) values would have a similar effect on the convergence speed than

the non constant vertical profiles D1(x) and D2(x), they would satisfy ρvar

DN
=

√
Deff

2 (ω)

Deff
1 (ω)

with

Deff

1 (ω) =
D1(0)∣∣∣∣∣1−

∑
n

√

iω
D1(0)

Φn,1(0)

iω+c2n,1

∫ 0

−L1
D̃1(x′)Eω,1(x′)

dΦn,1

dx′
(x′)dx′

∣∣∣∣∣

2

and respectively

Deff

2 (ω) = D2(0)

∣∣∣∣∣1−
∑

n

dΦn,2

dx
(0)

iω + c2n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
(x′)dx′

∣∣∣∣∣

2

It is worth mentioning that, due to the variability of the coefficients, the convergence factor

is a function of the time frequency ω whereas this dependency does not exist with constant

coefficients. Some examples of convergence factors ρvar

DN
are given in section 3.2. Note that in

the case ω → 0 we get Deff

1 → D1(0) while

Deff

2 (ω → 0) = D2(0)

∣∣∣∣∣1−
∑

n

c−2
n,2

dΦn,2

dx
(0)

∫ L2

0

D̃2(x
′)
dΦn,2

dx′
(x′)dx′

∣∣∣∣∣

2

The effect of the variability of the coefficient in the subdomain with a Neumann condition

asymptotically vanishes. This is however not the case for the subdomain Ω2 with Dirichlet

conditions. This suggests that depending on D̃2(x), and associated cn,2 and Φn,2, nothing

ensures that ρcst

DN
< 1 implies ρvar

DN
< 1 when a Dirichlet-Neumann algorithm is used. Indeed

(2.11) ρvar

DN
(ω → 0) →

√
D2(0)

D1(0)

(
1−

∑

n

c−2
n,2

dΦn,2

dx
(0)

∫ L2

0

D̃2(x
′)
dΦn,2

dx′
(x′)dx′

)

whereas ρvar

DN
(ω → ∞) → ρcst

DN
.

2.3. Convergence factor of the Robin-Robin algorithm with spatially variable coef-

ficients. In this section we determine the convergence factor ρvar

RR
in the more general case of

Robin-Robin interface conditions. Thanks to (2.6) and (2.7), we can express ê1 and ê2 in a

compact form for iterate k :

(2.12)





êk1(ω, 0) = K1(ω,D1(0),Φn,1, cn,1, λ1) ĥ
k−1

êk2(ω, 0) = K2(ω,D2(0),Φn,2, cn,2, λ2) ĝ
k

where ĝ = −D1(0)∂xê1(0, ω) + λ2ê1(0, ω), ĥ = D2(0)∂xê2(0, ω) + λ1ê2(0, ω), and




K1 =


1−

∑

n

√
iω

D1(0)
Φn,1(0)

iω + c2n,1

∫ 0

−L1

D̃1(x
′)Eω,1(x

′)
dΦn,1

dx′
dx′


 1

λ1 +
√
iωD1(0)

K2 =


1 +

∑

n

√
iω

D2(0)
Φn,2(0)

iω + c2n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
dx′


 1

λ2 +
√
iωD2(0)

.
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The problem on the interface x = 0 is given by the relations

(2.13)

{
( D1(0)∂x + λ1) ê

k
1(0, ω) = ( D2(0)∂x + λ1) ê

k−1
2 (0, ω) = ĥk−1

(−D2(0)∂x + λ2) ê
k
2(0, ω) = (−D1(0)∂x + λ2) ê

k
1(0, ω) = ĝk

and by combining (2.12) and (2.13) we get

{
D1(0)∂xê

k
1(0, ω) = ĥk−1 − λ1ê

k
1(0, ω) = (1− λ1K1) ĥ

k−1

−D2(0)∂xê
k
2(0, ω) = ĝk − λ2ê

k
2(0, ω) = (1− λ2K2) ĝ

k

By substituting those expressions in (2.13) we finally get a relation linking ĝ and ĥ

{
ĝk = [(λ1 + λ2)K1 − 1] ĥk−1

ĥk−1 = [(λ1 + λ2)K2 − 1] ĝk−1

which leads to an expression for the convergence factor

(2.14) ρvar

RR
=

∣∣∣∣
ĝk

ĝk−1

∣∣∣∣ = |[(λ1 + λ2)K1 − 1] · [(λ1 + λ2)K2 − 1] |

We can note that this expression of the convergence factor is consistent with the expres-

sion (1.3) obtained in the case of constant (but discontinuous) coefficients. Indeed, if we

set D̃1(x) = D̃2(x) = 0 in (2.14), we have then Kj = 1/
√
iωDj(0) which leads to (1.3)

because Djσ
±

j = ±
√
iωDj(0). A convenient formulation of ρvar

RR
dropping the imaginary

notations can be found in appendix A. To conclude this section we look at the asymptotic

behavior of ρvar

RR
, and we can easily find that

ρvar

RR
(ω → 0) = ρvar

RR
(ω → ∞) → 1

which shows that the effect of the variability of the diffusion coefficients asymptotically van-

ishes when a Robin-Robin algorithm is used.

3. Numerical results. In this section we check numerically the validity of the theoret-

ical results presented in section 2. To do this, we first briefly describe the rationale for the

spatial variability of the diffusion coefficient and provide a typical profile we will use for the

numerical tests. Then we design a few experiments to illustrate the relevancy of our approach.

3.1. Planetary boundary layer turbulence. Unlike boundary layers in many engineer-

ing flows, the atmospheric and oceanic planetary boundary layers are almost always turbulent

and cannot be explicitly resolved due to the insufficient vertical resolution in computational

models. The numerical representation of those layers thus relies on the Reynolds decom-

position: the flow is split into a mean (resolved) part 〈u〉 and a fluctuating (subgrid) part

u′ (where u can either represent a velocity component or an active tracer). When this de-

composition is applied to nonlinear (advective) terms this gives rise to additional terms and

hence to a closure problem. The dominant term in the turbulent boundary layers arising from

the Reynolds decomposition is the divergence of the vertical 〈u′w′〉 term (where w denotes

the vertical component of the velocity). Typically, this turbulent vertical flux is expressed as

a function of the mean (resolved) part of the flow by using the down-gradient assumption,

〈u′w′〉 = −D(x)∂x 〈u〉 where D(x) is the so-called eddy diffusivity, or eddy-viscosity if u
represents a velocity. This assumption explains why a one-dimensional diffusion equation,

like the one studied in the present paper, is generally sufficient to locally represent the turbu-

lent mixing in the boundary layers. The eddy diffusivity D(x) is defined to allow the flow

9



0 100 200 300 400 500

x [m]

0

2

4

6

8

10

12

D
(x

) 
[m

^
2

/s
]

0 100 200 300 400 500

x [m]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

P
h

i_
n

(x
)

x

Φ
n

D

FIG. 3.1. Typical diffusion profile D(x) obtained for A = 0.5 m s−1 and hbl = 150 m in (3.1) with respect to

x (top), and two associated eigenfunctions Φn(x) (bottom) of the Sturm-Liouville problem (2.4) with homogeneous

Dirichlet condition at x = 0.

to make the transition between its surface (the air-sea interface) and its interior (below the

boundary layer) properties. This is the reason why D(x) exhibits a strong spatial variability.

In this context, several ways to specify the coefficient D(x) have been proposed. The most

commonly used formulation in the state-of-the-art numerical models can be found in [7] and

[14]. Those formulations define the eddy diffusivity as

(3.1) D(x) =





A x

(
1− x

hbl

)2

+ ν x ∈]0, hbl]

ν x > hbl

with hbl the thickness of the boundary layer (depending on the state of the flow) and A a

parameter setting the intensity of the mixing (note that D(x) is continuous and differentiable

at x = hbl). Throughout this section we consider that D(x) is given by (3.1), and a typical

profile for A = 0.5 m s−1 and hbl = 150 m is given in Fig. 3.1.

In the remainder of this section we study first a Dirichlet-Neumann algorithm and then a

Robin-Robin algorithm. We define spatially variable coefficients with A1 = 0.1 m s−1

(resp. A2 = 0.5 m s−1) and hbl,1 = 50 m (resp. hbl,2 = 150 m) on Ω1 (resp. Ω2).

The values of ν1 and ν2 (corresponding to the surface values D1(0) and D2(0)) are chosen

to be the same than the values used in [9] in the constant coefficient case. If we introduce

γ =

√
ν2
ν1

, we investigate the two cases γ = 10 and γ =
√√

10 with ν2 = 0.5 m2 s−1 (ν1

is adjusted depending on the value of γ). Those various parameter values lead to diffusion

profiles that can be found in the atmospheric and oceanic boundary layers. The discretization

of the problem, the computational grid, as well as the initial conditions are described in [9]

10



(section 5). We use ∆t = 100 s, and a random initial guess on the interface so that it contains

a wide range of the temporal frequencies that can be resolved by the computational grid .
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FIG. 3.2. Evolution of the L∞-norm of the error of the Dirichlet-Neumann algorithm as a function of the

iterates for γ =
√√

10 (top,left) and γ = 10 (top,right). Those results are obtained for constant diffusion coeffi-

cients (gray dashed line) and for spatially variable coefficients (black line) as defined in Sec. 3.1. The corresponding

convergence factors ρvar
DN(ω) (black line) and ρcst

DN(ω) (gray dashed line) determined at the analytical level are given

for γ =
√√

10 (bottom,left) and γ = 10 (bottom,right).

3.2. Testcase #1 : Dirichlet-Neumann. The analytical convergence factor ρvar

DN
(ω) (2.10)

is shown for different values of γ in Fig. 3.2. The eigenvalues cn and eigenfunctions Φn are

computed numerically on the same computational grid than the model problem. We remark

that depending on the jump in the coefficients through the interface the spatial variability of

the diffusivities either tend to accelerate the convergence speed (for γ =
√√

10) or to slow

it down (for γ = 10) compared to the convergence speed obtained with constant coefficients.

As expected, the convergence factor for spatially variable coefficients is no longer indepen-

dent of ω, and for low-frequencies we get a significant departure from the convergence rate

of the algorithm with constant coefficients. The trend seen in the convergence factor ρvar

DN
(ω)

determined at a continuous level is confirmed by numerical results (Fig. 3.2, top panels).

Those results, as well as the asymptotic expression (2.11), call for caution when we use a

Dirichlet-Neumann algorithm with spatially variable coefficients because it can lead to per-
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formances significantly different compared to the one obtained with constant coefficients. We

can expect a Robin-Robin type algorithm to provide a more robust alternative thanks to the

tuning of the λj parameters.
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FIG. 3.3. Evolution of the L∞-norm of the error of the Robin-Robin algorithm as a function of the iterates for

γ =
√√

10 (top,left) and γ = 10 (top,right). Those results are obtained for spatially variable diffusion coefficients

and the Robin parameters optimized by assuming constant coefficients (gray dashed line) or the full convergence

factor ρvar
RR (black line). The corresponding convergence factors ρvar

RR (λ
⋆
j ) (black line) and ρvar

RR (λ
cst
j ) (gray dashed

line) are given for γ =
√√

10 (bottom,left) and γ = 10 (bottom,right).

3.3. Testcase #2 : Robin-Robin. In this paragraph, we note λcst

j the optimal Robin pa-

rameters obtained using the analytical results found in [9] for constant coefficients. We con-

sider that those constant coefficients are the interface values Dj(0). Moreover we note λvar

j the

Robin parameters optimized by solving numerically the problem (1.4) with the convergence

factor ρvar

RR
as given in (2.14). This optimization is done using the Rosenbrock method [13]

and by taking the λcst

j parameters to initialize the algorithm. We see from Fig. 3.3 that the

use of the λvar

j parameters provide slightly better convergence properties compared to the λcst

j

parameters, whatever the value of γ. As for the Dirichlet-Neumann algorithm, we can check

that our analytical study at the continuous level provides a convergence factor ρvar

RR
representa-

tive of the behavior of the algorithm at a discrete level (Fig. 3.3, bottom panels). From Fig.

3.3 (bottom left panel), we also see that the way we initialize the algorithm (with a random
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initial guess for u0
2(0, t), t ∈ [0, T ]) leads to the generation of a large range of temporal fre-

quencies and more particularly low frequencies slowing down the convergence speed of the

simulation using the λcst

j parameters although the latter provide a faster convergence than the

λvar

j parameters for most of the frequency spectrum. For our model problem, the use of the
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FIG. 3.4. Evolution of the L∞-norm of the error (left) of the Robin-Robin algorithm as a function of the

iterates for γ =
√√

10 for hbl,2 = 10 m (instead of hbl,2 = 150 m as in Fig. 3.3). Those results are obtained

for Robin parameters optimized by assuming constant coefficients (gray dashed line) or the full convergence factor

ρvar
RR (black line). The corresponding convergence factors ρvar

RR (λ
⋆
j ) (black line) and ρvar

RR (λ
cst
j ) (gray dashed line) are

on the right panel.

λvar

j parameters provides a relatively modest improvement over the λcst

j parameters. However,

in general, this statement has to be mitigated because if we consider hbl,2 = 10 m instead of

hbl,2 = 150 m we see in Fig. 3.4 that the parameters obtained through an optimization of ρvar

RR

are clearly superior to the λcst

j parameters. In the case we also show in Fig. 3.5 the asymptotic

behaviour of the optimized convergence rate and associated Robin parameters λvar

j . Provided

some adjustments of the Robin parameters (those parameters can vary by several orders of

magnitude with respect to ∆t), our algorithm asymptotically maintains a good efficiency.

4. Conclusion. We present and analyze in this paper a new approach to study the con-

vergence properties of a global-in-time Schwarz algorithm in the case of a one-dimensional

diffusion problem with spatially variable diffusion coefficients. We analytically derive an

expression for the evolution of the errors of such an algorithm with respect to the iterates.

Thanks to our formulation, we are able to gain a better understanding of the behavior of the

associated convergence factor. We exhibit some interesting features that were not shown by

usual convergence studies with constant diffusion coefficients. We put particular emphasis on

the fact that for low temporal frequencies it can be a strong assumption to assimilate a variable

diffusion coefficient to its constant interface value. Moreover we also show that depending on

the type of algorithm under consideration (Dirichlet-Neumann or Robin-Robin) the variabil-

ity of the coefficients may have more or less impact on the asymptotic convergence properties.

To be more attractive for practical applications our approach requires further developments

by performing an accurate study of the eigenvalues problem to improve our knowledge of the

behavior of those eigenvalues with respect to the perturbations of the diffusion profiles.
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Appendix A. Determination of the convergence factor in the case of variable coeffi-

cients. We recall (2.14):

(A.1) ρ = |[(λ1 + λ2)K1 − 1] [(λ1 + λ2)K2 − 1] |

with





K1 =


1−

∑

n

√
iω

D1(0)
Φn,1(0)

iω + λ2
n,1

∫ 0

−L1

D̃1(x) exp

(√
iω

D1(0)
x

)
dΦn,1

dx
dx


 1

λ1 +
√
iωD1(0)

K2 =


1 +

∑

n

√
iω

D2(0)
Φn,2(0)

iω + λ2
n,2

∫ L2

0

D̃2(x) exp

(
−
√

iω

D2(0)
x

)
dΦn,2

dx
dx


 1

λ2 +
√
iωD2(0)

(A.1) can be rewritten as:

(A.2)

ρ =

√(
Im(K1)2(λ1 + λ2)2 + [(λ1 + λ2)Re(K1)− 1]

2
)(

Im(K2)2(λ1 + λ2)2 + [(λ1 + λ2)Re(K2)− 1]
2
)

In order to determine the real and imaginary parts of K1 and K2, we can decompose each

term appearing in the preceding expressions:

• aj = Re




√
iω

Dj(0)

iω + λ2
n,j


 =

√
ω

2Dj(0)

(
λ2
n,j + ω

ω2 + λ4
n,j

)

• bj = Im




√
iω

Dj(0)

iω + λ2
n,j


 =

√
ω

2Dj(0)

(
λ2
n,j − ω

ω2 + λ4
n,j

)

• c1 = Re

(
exp

(√
iω

D1(0)
x

))
= cos

(√
ω

2D1(0)
x

)
exp

(√
ω

2D1(0)
x

)

• d1 = Im
(
exp

(√
iω

D1(0)
x

))
= sin

(√
ω

2D1(0)
x

)
exp

(√
ω

2D1(0)
x

)

• c2 = Re

(
exp

(
−
√

iω

D2(0)
x

))
= cos

(√
ω

2D2(0)
x

)
exp

(
−
√

ω

2D2(0)
x

)

• d2 = Im
(
exp

(
−
√

iω

D2(0)
x

))
= − sin

(√
ω

2D2(0)
x

)
exp

(
−
√

ω

2D1(0)
x

)

• ej = Re

(
1

λj +
√
iωDj(0)

)
=

λj +
√

Dj(0)ω
2

λ2
j +Dj(0)ω + λj

√
2Dj(0)ω

• fj = Im
(

1

λj +
√
iωDj(0)

)
= −

√
Dj(0)ω

2

λ2
j +Dj(0)ω + λj

√
2Dj(0)ω
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Thanks to these equalities we can recast Kj in the following form:

K1 = (e1 + if1)

(
1−

∑

n

(a1 + ib1)Φn,1(0)

∫ 0

−L1

D̃1(x)
dΦn,1

dx
(c1(x) + id1(x))dx

)

K2 = (e2 + if2)

(
1 +

∑

n

(a2 + ib2)Φn,2(0)

∫ L2

0

D̃2(x)
dΦn,2

dx
(c2(x) + id2(x))dx

)

and by noting

g1 =
∑

n

[
a1

∫ 0

−L1

D̃1(x)
dΦn,1

dx
c1(x)dx− b1

∫ 0

−L1

D̃1(x)
dΦn,1

dx
d1(x)dx

]
Φn,1(0)

h1 =
∑

n

[
b1

∫ 0

−L1

D̃1(x)
dΦn,1

dx
c1(x)dx+ a1

∫ 0

−L1

D̃1(x)
dΦn,1

dx
d1(x)dx

]
Φn,1(0)

g2 =
∑

n

[
a2

∫ L2

0

D̃2(x)
dΦn,2

dx
c2(x)dx− b2

∫ L2

0

D̃2(x)
dΦn,2

dx
d2(x)dx

]
Φn,2(0)

h2 =
∑

n

[
b2

∫ L2

0

D̃2(x)
dΦn,2

dx
c2(x)dx+ a2

∫ L2

0

D̃2(x)
dΦn,2

dx
d2(x)dx

]
Φn,2(0)

we obtain

K1 = (e1(1− g1) + f1h1) + i(f1(1− g1)− e1h1)
K2 = (e2(1 + g2)− f2h2) + i(f2(1 + g2) + e2h2)

Hence the convergence factor ρ thanks to (A.2).
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