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A Poincaré cone condition in the Poincaré group

Tardif Camille ∗

Abstract

In [7], Ben Arous and Gradinaru described the singularity of the Green function of a general
sub-elliptic diffusion. In this article we first adapt their proof to the more general context of
a hypoelliptic diffusion. In a second time, we deduce a Wiener criterion and a Poincaré cone
condition for a relativistic diffusion with values in the Poincaré group (i.e the group of affine
direct isometries of the Minkowski space-time).

Key words: Green function. Wiener test. Poincaré cone condition. Relativistic diffusion.
Hypoelliptic operator.
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1 Introduction

In [12], Dudley introduced a relativistic Brownian motion whose trajectories are time-like and
which is invariant in law under Lorentz transformations. The space of states of this relativistic
Brownian motion is the unitary tangent bundle of the Minkowski space-time, and the diffusion
consists in a Brownian motion in H

d (the hyperboloid model of the hyperbolic space) and its time
integral in the Minkowski space-time R

1,d. By considering the Eells-Elworthy construction of the
Brownian motion on H

d, we obtain Dudley’s diffusion by projecting a diffusion in the Poincaré
group G : SO0(1, d)⋉R

1,d onto H
d×R

1,d. The group G is identified with the orthonormal frame
bundle of the Minkowski space-time and an element (g, ξ) of G is made of a matrix g ∈ SO0(1, d)
seen as an orthonormal frame above a point ξ ∈ R

1,d. The diffusion {(gt, ξt)}t≥0 in G that we
consider in this paper has generator

L =
σ2

2

d∑

i=1

V 2
i +H0,

which satisfies the weak Hörmander hypoellipticity condition. This means, in particular, that the
drift H0 is needed to obtain the full rank of Lie(G).

∗
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Intuitively, {(gt, ξt)}t≥0 describes the time-like trajectory of a small rigid object in the Minkowski
space-time and consists in a stochastic perturbation, at the velocities level, of a geodesic trajec-
tory. This G-valued diffusion, considered as a Lorentzian analogue to the Euclidian Brownian
motion, was studied by Bailleul in [5] where he determined its Poisson boundary by providing a
comprehensive description of the asymptotic behavior which, afterwards, was completed in [26] by
the study of the Lyapunov spectrum. In the present work we are interested in understanding the
infinitesimal small-time behavior and we aim at describing, by means of a (local) Wiener criterion,
the thinness of sets with respect to this diffusion. This kind of result is based on the knowledge
of the geometry of the level sets of the Green function, and more generally on the knowledge of
its behavior near the singularities. Since we dispose (see [5]) of a geometric description of the
Poisson boundary of Dudley’s diffusion, we can expect a Wiener criterion describing the thinness
at the boundary. This question is in the spirit of the works of Ancona who provides, for example
in [1], a answer in the case of a Brownian motion in a Cartan-Hadamard manifold. Unfortunately
the method used in this paper cannot provide such asymptotic result and we look, here, only at
the infinitesimal behavior.

Let us briefly perform a short survey on this subject. In the elliptic case, see for example [6],
the Wiener criterion is classical and the fine topology does not depend on the particular elliptic
operator. For sub-elliptic diffusions one finds analytic proofs in [24] and probabilistic methods
in [10] (for the Heisenberg Laplacian) and in [7] (for a general sub-elliptic diffusion under the
strong Hörmander condition). The proofs rely on either explicit expression of Green functions or
estimates given in [23] or [25].

In the parabolic context the situation is more delicate due to the difficulty to understand the
geometry of level sets of Green functions; moreover the results are less generic. For the heat
operator, a probabilistic proof of Wiener criterion can be found in [27] and an analytic one in
[13]. The result is extended to the case of variable coefficients in [17] and to the case of the heat
operator on the Heisenberg group in [19]. The proofs are based on either explicit expression of
Green functions or strong Gaussian estimates.

Here the diffusion {(gt, ξt)}t≥0 is neither sub-elliptic nor (purely) parabolic and the Green
function is not known explicitly. Nevertheless, considering the Dudley’s diffusion (i.e the projection
of {gt}t≥0 onto H

d ×R
1,d), by means of some time-changes, we are able to recover to a parabolic

situation with a generator of type

d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+ ai(x)

∂

∂xi
+ bi(x)

∂

∂yi
+
∂

∂t
,

at (x, y, t) in a local chart U ⊂ R
d ×R

d ×R of Hd ×R
1,d, where ai,j (definite positive), ai and bi

are given explicitely.
This generator is a kind of generalization of a Kolmogorov parabolic type operators (for which

bi(x) = xi). In the recents works [20], [11] and [22] one can find some local Gaussian estimates for
the Green functions of those operators. But, even in the simplest case where ai,j are constant and
the Green function is explicit, no Wiener criterion is known. However let us mention [18] where
the authors studied level sets of the Green function and prove an Harnack inequality in the case
of Kolmogorov operators with constant coefficients.

Thus, it seems that we are far from reaching a full Wiener criterion for {(gt, ξt)}t≥0, or even for
Dudley’s diffusion. In this article, we nevertheless provide a weakWiener criterion for {(gt, ξt)}t≥0,
which concerns sets into some homogeneous cones and we deduce a Poincaré cone sufficient con-
dition for thinness. We use the same technics as in [7], extracting the information contained in
the infinitesimal homogeneity, by comparing the diffusion to a scale invariant “tangent process”.
In Section 2, using the estimates of [23] and the stochastic Taylor formula of [9], we adapt the
proof of [7] to the context of a general diffusion satisfying the weak Hörmander condition. We
obtain Theorem 1, which provides some information about the singularity of the Green function.
There are not more technical difficulties than in [7], and the drift X0 is hidden in the notation.
Even if this result is far from giving a full description of the behavior of the Green function on the
diagonal for a general hypoelliptic diffusion, it is nevertheless sufficient to obtain, in the Section
3, a weak Wiener criterion and a Poincaré cone condition for {(gt, ξt)}t≥0 in the Poincaré group.
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2 Estimates of the Green function for a general hypoelliptic
diffusion.

This section is written in a general setting and we consider a diffusion in an open set of a smooth
manifold Mn of dimension n, solution of the SDE

dxt =

m∑

i=1

Xi(xt) ◦ dB
i
t +X0(xt)dt, (1)

and generated by

1

2

m∑

i=1

X2
i +X0.

The vector fields (X0, X1, · · · , Xm) will satisfy the weak Hörmander conditions for hypoellip-
ticity:

∀x ∈ Mn, Lie(X1, . . . , Xm, X0)|x = TxM
n, (H)

This insures the local existence of a smooth Green function, denoted by G(x, y).
We shall show the following result, which is the theorem (1.9) of [7] written for a general

hypoelliptic diffusion (non necessarily sub-Riemanian):

Theorem 1. Let x be fixed. We have

lim
ε→0

sup
|y|x<ε

∣
∣
∣
∣
G(x, y)|y|Q(x)−2

x −
1

Jx(0)
g(x)

(
0, θx(y)

)
∣
∣
∣
∣
= 0.

Here Q(x) is some homogeneous dimension and | · |x some homogeneous norm associated to
(X0, X1, · · · , Xm) at x. The angular variable θx(y) is the projection of y onto the unit homogenous
sphere centered at x and the non null Jacobian Jx(0) appears with a change of variable. The
function gx(0, ·) is the Green function of some “tangent process” associated to the diffusion.
When the diffusion satisfies the strong Hörmander condition, as in [7], this function is strictly
positive but in the general case it can vanish on a part of the unit homogeneous sphere. This is
the case for the diffusion in the Poincaré group.

Let us briefly sketch an idea of the proof. The way how the {Xi}i=0···m generate TxM
n yields

a family of dilatations of TxM
n, denoted by Tλ for λ > 0. Then we consider some rescaled

diffusions in TxM
n ≃ R

n defined by v
(x,ε)
t := T1/ε(xε2t). This amounts to zooming xt more and

more as ε → 0. Then, using the stochastic Taylor formula of Castell ([9]), a “tangent process”

u
(x)
t appears in the first term of the Taylor expansion at x; we have indeed v

(x,ε)
t = u

(x)
t + εR(ε, t)

where the term R(ε, t) is bounded in probability when ε → 0. We finish by using the estimates
obtained by Nagel, Stein and Wainger in [23] (Corollary p 114), to show that the Green functions
G(x,ε) of the rescaled diffusions v(x,ε) converge uniformly on compact set, when ε → 0, towards

the Green function gx of u
(x)
t :

Proposition 1. For all compact set K ⊂ R
n \ {0} we have:

sup
u∈K

∣
∣
∣G(x,ε)(0, u)− g(x)(0, u)

∣
∣
∣ −→
ε→0

0.

In fine, Theorem 1 is obtained by taking ε = |y|x and expressing G(x,ε)(0, u) in terms of
G(x, y).

2.1 Notation and hypothesis.

We fix the notation and provide assumptions on the geometry induced by the {Xi}i=0···m.
For every multi-index J ∈ {0, . . . ,m}l, we denote by:

• |J | the length l of J .

• ‖J‖ the weight of J :
‖J‖ := |J |+Number of zeros in J.
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• XJ := [Xj1 , [Xj2 , [. . . , [Xjl−1
, Xjl ]] . . . ] et X

(j) = Xj (for |J | = 1) .

• For Bt = (B1
t , . . . , B

l
t) a R

l-Brownian motion, we set B0
t = t and denote by BJt the

Stratonovich iterated integral:

BJt :=

∫

∆l
t

◦dBj1t1 · · · ◦ dB
jl
tl ,

where ∆l
t = {(t1, . . . , tl); 0 < t1 < · · · < tl < t}.

• For σ a permutation of {1, · · · , l}, we set J ◦ σ = (jσ(1), . . . , jσ(l)) and denote by e(σ) =
Card{j ∈ {1, . . . , l − 1};σ(j) > σ(j + 1)} the number of errors in ordering σ.

• We denote by cJt the linear combination of Stratonovich iterated integrals:

cJt :=
∑

σ∈S|J|

(−1)e(σ)

|J |2C
e(σ)
|J|−1

BJ◦σ
−1

t .

• For some smooth vector field X , we denote by exp(sX)(x0) the solution at time s of the
ordinary differential equation : 





du

ds
= X(u(s))

u(0) = x0.

We need to consider:
Ci(x) = vect

{
XJ(x); ‖J‖ ≤ i

}
.

Since the {Xi}i=0···m satisfy the Hörmander condition (H), we denote by r(x) the smaller integer
such that Cr(x)(x) = TxM

n.
Denote by B = (J1, . . . , Jn) a family of multi-indexes such that (XJ)J∈B is a trian-

gular basis of TxM
n. This means that for j ≤ r, {XJ ; J ∈ B, ‖J‖ ≤ j} is a basis of Cj and

thus dimCj = Card{k, ‖Jk‖ ≤ j}.
For any multi-index L there exist smooth functions aLJ (x) such that:

XL =
∑

J∈B

aLJX
J .

We denote by Q(x) the graded dimension at x:

Q(x) =

r(x)
∑

i=1

i× (dimCi(x) − dimCi−1(x))

=

r(x)
∑

i=1

i× Card{k, ‖Jk‖ = i}.

We will make the following assumptions on the family {Xi}:

i ) We assume that the geometry of the Lie brackets is constant, this means that the dimCi(x)
are locally constant for i ∈ N

∗. Thus r et Q are locally constant too.

ii ) r ≥ 2

iii ) dimCi − dimCi−1(= Card{k; ‖Jk‖ = i}) ≥ 1, ∀i = 2, · · · , r

iv ) dimC1(= Card{k; ‖Jk‖ = 1}) ≥ 2.

Hypothesis ii) iii) and iv) are technical and ensure that the dimensions are large enough so that
xt leaves any bounded domain within an almost surely finite time. This is needed to justify the
finiteness of integrals which appear in the proof of Proposition 1. Moreover, it is easy to check
that this is satisfied for the relativistic diffusion in the Poincaré group.

There exists a neighborhood W of 0 in R
n such that the map:

ϕx : u 7→ exp

(
n∑

i=1

uiX
Ji

)

(x)
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is a smooth diffeomorphism from W onto ϕx(W ).
Let be U ⊂ V ∩ ϕx(W ) a neighborhood of x. For y ∈ U we define by

|y|x :=






r∑

k=1




∑

i,‖Ji‖=k

u2i





Q
2k






1
Q

,

the homogeneous norm at x of y = ϕx(u). For (ui)i=1···n ∈ R
n, we set |u|n := |ϕx(u)|x, and

denote by ‖u‖ is the euclidian norm.
During the proof we will use homogenous norm at different points near of the reference point

x. For this, we use that ϕx depends continuously on x, and we can take U small enough so that
every ϕ−1

y : U → ϕ−1
y (U), where y ∈ U , be a diffeomorphism.

Thus, |z|y is well defined for z, y ∈ U .
This norm is homogenous with respect to the dilatations Tε : u 7→ (ε‖Ji‖ui)i=1...n; this means

that:
|ϕx ◦ Tε(u)|x = ε|ϕx(u)|x.

2.2 Homogeneous norm and estimations of [23]

We briefly recall the results obtained by Nagel, Stein and Wainger in [23] relating to the estimation
of the Green function, in terms of the pseudo-metric ρ associated to the Xi defined by:

ρ(y, z) := inf{δ > 0; ∃ϕ ∈ C(δ) tq ϕ(0) = y et ϕ(1) = z}, (2)

where C(δ) is the set of absolutely continous functions such that almost everywhere:

ϕ′(t) =

d∑

i=1

ai(t)X
Ji(ϕ(t)),

with |ai(t)| < δ‖Ji‖. The Corollary p 114 of [23] provides that, when n ≥ 2, for any K compact
set in U × U , there exists C > 0 such that :

∀y, z ∈ K, |G(y, z)| ≤ C
ρ2(y, z)

Vol (B(y, ρ(y, z)))
(3)

and for J = (j1, · · · , jk):

∀y, z ∈ K, |Xj1 · · ·XjkG(x, y)| ≤
ρ2−‖J‖(y, z)

Vol (B(y, ρ(y, z)))
. (4)

We have the following property:

Proposition 2 (Equivalence between homogenous norm and pseudo-metric). There exists a
neighborhood Ũ ⊂ U of x such that for every compact set K ⊂ Ũ , we can find C1, C2 > 0
such that:

∀y, z ∈ K, C1ρ(y, z) ≤ |z|y ≤ C2ρ(y, z). (5)

Proof. Set:

ρ2(x, y) = inf{δ > 0; ∃ϕ ∈ C2(δ) tq ϕ(0) = x etϕ(1) = y}, (6)

where C2(δ) is the set of smooth functions ϕ such that:

ϕ′(t) =

n∑

i=1

aiX
Ji(ϕ(t)), (7)

with constants ai such that |ai| ≤ δ‖Ji‖.
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Let z ∈ U ; there exists a unique vector (ui)i=1···n such that:

z = exp

(
n∑

i=1

uiX
Ji

)

(y),

and, if ϕ(t) = exp
(∑n

i=1 tuiX
Ji
)
(y) we have:

ϕ′(t) =

n∑

i=1

uiX
Ji(ϕ(t))

and |ui| ≤ |z|
‖Ji‖
y . So ρ2(y, z) ≤ |z|y.

Moreover, for some z, y ∈ U , there is a unique function ϕ such that ϕ′(t) =
∑n
i=1 aiX

Ji(ϕ(t))
with ϕ(0) = y and ϕ(1) = z: this is t 7→ exp(

∑n
i=1 tuiX

Ji)(y).
Thus, if δ < |z|y, then δ

‖Ji‖ < |ui| and C2(δ) is empty and we have ρ2(y, z) = |z|y . To finish
the proof, we use Theorem 2 of [23] which shows that ρ and ρ2 are locally equivalent.

Using (3) and the previous proposition we obtain:

Proposition 3 (a priori estimates). For any small enough compact set U , we can find C > 0
such that:

∀y 6= z ∈ U, |G(y, z)| ≤
C

|z|Q−2
y

.

Moreover for J = (j1, · · · , jk) we have:

∀y 6= z ∈ U, |Xj1 · · ·XjkG(y, z)| ≤
C

|z|
Q−2+‖J‖
y

Proof. This is immediate, remarking that:

Vol(B(y, |z|y)) =

∫

|u|d<|z|y

du = |z|Qy

∫

|u|d<1

du.

Proposition 4 (Triangular inequality and comparaison with a euclidian norm). For any small
enough compact set U , we can find c0 > 0 such that for any t, y, z ∈ U :

|y|t ≤ c0 (|z|t + |z|y) . (8)

Moreover, there exist constant c′, c′′ > 0 such that for any y, z ∈ U :

c′‖ϕ−1
y (z)‖ ≤ |z|y ≤ c′′‖ϕ−1

y (z)‖1/r. (9)

Proof. This is a consequence of the local equivalence between ρ and | · |x , and of the proposition
(1.1) p 107 and of (iii’) p 109 in [23].

2.3 Rescaled diffusions and tangent process

Zooming on the trajectory xt in a neighborhood U of x we introduce the rescaled diffusions

v
(x,ε)
t := T1/ε ◦ ϕ

−1
x (xε2t). It is a R

n-diffusion which lies in a neighborhood Ũε := T1/ε ◦ ϕ
−1
x (U)

of 0 and is defined up to the time τε := τ/ε, τ being the exit time for xt from U . We denote by

G(x,ε)(u, v) the Green function of v
(x,ε)
t , defined for u 6= v ∈ Ũε. We denote by Jx := |Jac(ϕx)|

the Jacobian of ϕx on Ũε. A direct computation shows that:

G(x,ε)(u, v) = εQ−2Jx(Tε(v))G(ϕx ◦ Tε(u), ϕx ◦ Tε(v)). (10)
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This can be rewriten for y ∈ U as:

G(x, y) =
1

Jx(ϕ
−1
x (y))εQ−2

G(x,ε)(0, T1/ε ◦ ϕ
−1
x (y)). (11)

We can take U small enough so that it be a chart of Mn and we consider, via some choice
of coordinates, xt and Xi as vectors in R

n. We can use Theorem 4.1 of [9] and write the Taylor
expansion:

xε2t = exp





r∑

k=1

∑

L,‖L‖=k

εkcLt X
L



+ εr+1R̃(ε, t)

= exp





r∑

k=1

∑

L,‖L‖=k

εkcLt

d∑

i=1

aLJi
XJi



+ εr+1R̃(ε, t)

= exp





n∑

i=1




∑

L,‖Ji‖≤‖L‖≤r

ε‖L‖aLJi
cLt



XJi



+ εr+1R̃(ε, t), 1 (12)

where the remainder term R̃(ε, t) is bounded in probability. Then, composing by T1/ε ◦ ϕ
−1
x we

obtain:

v
(x,ε)
t = T1/ε ◦ ϕ

−1
x (xε2t) (13)

=




∑

L,r≥‖L‖≥‖Ji‖

ε‖L‖−‖Ji‖aLJi
cLt





i=1···n

+ εR̄(ε, t) (14)

= u
(x)
t + ε








∑

L,r≥‖L‖>‖Ji‖

ε‖L‖−‖Ji‖−1aLJi
cLt





i=1···n

+ R̄(ε, t)



 , (15)

where u
(x)
t is a R

d-valued process, called tangent process, defined by:

u
(x)
t :=




∑

L,‖L‖=‖Ji‖

aLJi
cLt





i=1···n

.

Considering the free r-nilpotent Lie algebra with m-generators we can show, as in Proposition

(3.2) of [7], that u
(x)
t is a linear projection of an hypoelliptic diffusion in the associated nilpotent

Lie group. In [7] the authors deduce (corollary (3.6)) that u
(x)
t admits a smooth density with

respect to the Lebesgue measure, but this does not necessarily hold in our context. Nevertheless

we can prove, using the linear projection, that u
(x)
t admits a smooth Green function, denoted by

g(x)(0, u). This means that we have, for every φ ∈ C0
b (R

n):

E0

[∫ +∞

0

φ(u
(x)
t )dt

]

=

∫

u∈Rd

φ(u)g(x)(0, u)du.

Moreover since u
(x)
ε2t has the same law as Tε(u

(x)
t ) we deduce that (since v = Tε(u) ⇒ dv = εQdu):

g(x)
(
0, T1/ε(u)

)
= εQ−2g(x)(0, u). (16)

For ε = 1/|y|x we obtain:

g(x)(0, ϕ−1
x (y)) =

1

|y|Q−2
x

g(x)(0, θx(y)). (17)

Here θx(y) := T1/|y|x(ϕ
−1
x (y)) is an angular variable in the unit sphere Sx of TxM

n for
the homogenous norm | · |n.

1Recall that (XJ )J∈B is a triangular basis and that we have a
L

J = 0 when ‖L‖ < ‖J‖.
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2.4 Proof of Theorem 1

Considering (17) and (11) and taking K = Sx and ε = |y|x, Theorem 1 follows easily from
Proposition 1.

Now we present the proof of Proposition 1. As in [7] we begin by showing a weak convergence
of G(x,ε)(0, ·) to gx(0, ·):

Proposition 5. Let K be a compact set in R
n \ {0} and f be a smooth function supported on K.

We have:

lim
ε→0

∣
∣
∣
∣

∫

f(u)G(x,ε)(0, u)du−

∫

f(u)g(x)(0, u)du

∣
∣
∣
∣
= 0.

Proof. By definition of the Green functions we have:

∣
∣
∣
∣

∫

f(u)G(x,ε)(0, u)du−

∫

f(u)g(x)(0, u)du

∣
∣
∣
∣
=

∣
∣
∣
∣
E

[∫ τε

0

f(v
(x,ε)
t )dt−

∫ +∞

0

f(u
(x)
t )dt

]∣
∣
∣
∣
.

Now fixing T > 0, we can decompose the term
∫ τε
0
f(v

(x,ε)
t )dt−

∫ +∞

0
f(u

(x)
t )dt to:

1T≤τε

∫ T

0

(

f(v
(x,ε)
t )− f(u

(x)
t )
)

dt+ 1T≤τε

∫ τε

T

f(v
(x,ε)
t )dt−

∫ +∞

T

f(u
(x)
t )dt

+ 1T>τε

∫ τε

0

f(v
(x,ε)
t )dt− 1T>τε

∫ T

0

f(u
(x)
t )dt.

Thus we have the inequality:

∣
∣
∣
∣
E

[∫ τε

0

f(v
(x,ε)
t )dt−

∫ +∞

0

f(u
(x)
t )dt

]∣
∣
∣
∣
≤ E

[

1T≤τε

∫ T

0

|f(v
(x,ε)
t )− f(u

(x)
t )|dt

]

+ E

[

1T≤τε

∫ τε

T

|f(v
(x,ε)
t )|dt

]

+ E

[∫ +∞

T

|f(u
(x)
t )|dt

]

+ 2‖f‖∞TP(T ≥ τε).

Now, taking first the lim supε→0 and secondly the lim supT→∞, Proposition 5 follows from the
following facts:

Fact 1. For T > 0 fixed,

lim
ε→0

E

[

1T≤τε

∫ T

0

|f(v
(x,ε)
t )− f(u

(x)
t )|dt

]

= 0.

Fact 2.

lim
T→+∞

E

[∫ +∞

T

|f(u
(x)
t )|dt

]

= 0.

Fact 3.

lim inf
T→+∞

lim sup
ε→0

E

[

1T≤τε

∫ τε

T

|f(v
(x,ε)
t )|dt

]

= 0.

• The proof of the fact 1 is very similar to the proof of Proposition (2.12) in [7].

We use the Taylor expansion (15) which can be written v
(x,ε)
t = u

(x)
t + εR(x)(ε, t), where:

R(x)(ε, t) :=




∑

L,r≥‖L‖>‖Ji‖

ε‖L‖−‖Ji‖−1aLJi
cLt





i=1···n

+ R̄(ε, t).

Theorem 4.1 and Proposition P1 and P2 in [9] ensure that there exist α > 0 and c > 0 such
that for all R > c:

lim
ε→0

P

(

sup
0≤s≤T

‖R(x)(ε, s)‖ > R, T < τε

)

≤ exp

(

−
Rα

cT

)

.
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Hence for η > 0 we can find ε0 > 0 and R > 0 such that for all ε < ε0

P

(

sup
0≤s≤T

‖R(x)(ε, s)‖ > R, T < τε

)

≤
η

2T ‖f‖
.

So, decomposing the expectation on the event

{

sup
0≤s≤T

‖R(x)(ε, s)‖ > R, T ≤ τε

}

we obtain

that:

E

[

1T≤τε

∫ T

0

|f(v
(x,ε)
t )− f(u

(x)
t )|dt

]

≤ η + εTR‖Df‖∞.

Hence for all η > 0 we have:

lim sup
ε→0

E

[

1T≤τε

∫ T

0

|f(v
(x,ε)
t )− f(u

(x)
t )|dt

]

≤ η,

and Fact 1 is proved.

• To prove Fact 2, it suffices to show that:

E

[∫ +∞

0

1B(0,ρ)(u
(x)
t )dt

]

<∞, (18)

where B(0, ρ) is the ball of radius ρ for the homogenous norm |·|n. The proof of (18) is similar
to the proof of Proposition (3.11) of [7] and it remains to show that

∫

p−1
x (B(0,ρ))

1

|ũ|Q̃−2

N

dũ <∞

where N is the dimension of the free r-nilpotent Lie algebra with m-generators G(m, r) , and
px the linear projection which maps the diffusion in G(m, r) to the tangent process and Q̃
the homogenous dimension of the diffusion in G(m, r). The hypotheses i), ii) and iii) on the
dimension ensure the finiteness of the integral, using Lemma (A.7) of [7].

• The proof of Fact 3 is very similar to the proof of Proposition (4.1) of [7], and we prove two

lemmas to conclude. Denote by µ
(x,ε)
T the measure whose density is 1T<τε with respect to

the law of v
(x,ε)
T . By the Markov property we have:

E0

[

1T<τε

∫ τε

T

|f(v
(x,ε)
t )|dt

]

=

∫

T1/ε◦ϕ
−1
x (U)

dµ
(x,ε)
T (u)

∫

T1/ε◦ϕ
−1
x (U)

G(x,ε)(u, v)|f(v)|dv.

For u, v ∈ T1/ε ◦ ϕ
−1
x (U), we set uxε := ϕx ◦ Tε(u) and v

x
ε := ϕx ◦ Tε(v).

2

By (10) we have:

G(x,ε)(u, v) = εQ−2Jx(Tε(v))G(u
x
ε , v

x
ε ),

and using Proposition 3 we can find C > 0 such that for all ε > 0:
∫

T1/ε◦ϕ
−1
x (U)

G(x,ε)(u, v)|f(v)|dv ≤

∫

B(0,ρ)

CεQ−2

|vxε |
Q−2
ux
ε

dv,

where ρ is large enough, so that the support of f be included in B(0, ρ).

As in [7] we show:

Lemma 1. For all R > 0 there exist ε0 > 0 and c > 0 such that for all ε < ε0 and u ∈ R
n

such that ‖u‖ ≥ R we have:
∫

B(0,ρ)

εQ−2

|vxε |
Q−2
ux
ε

dv ≤ c.

Moreover,

lim
‖u‖→∞

∫

B(0,ρ)

εQ−2

|vxε |
Q−2
ux
ε

dv = 0,

uniformly with respect to ε.

2Be carefull: u
x

ε is a vector of Rn and u
(x)
ε denotes the tangent process at time ε.
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Proof of Lemma 1. For u = 0, this means uxε = x, εQ−2

|vxε |
Q−2

ux
ε

= 1

|ϕx(v)|
Q−2
x

= 1

|v|Q−2
n

. Lemma

(A-1) of [7] ensures that
∫

B(0,ρ)
dv

|v|Q−2

d

is bounded by a constant depending only on ρ. The

family of diffeomorphisms ϕ−1
y depends smoothly on y ∈ U . So we can find a neighborhood

Ux of x, a constant C > 0 and some ε0 > 0 such that for all y ∈ Ux and for all ε < ε0,
B(0, ερ) ⊂ ϕ−1

x (U) ∩ ϕ−1
y (U) and for all w ∈ B(0, ερ), |ϕ−1

y ◦ ϕx(w)|n ≥ C|w|n.

So we have:

sup
y∈Ux

∫

B(0,ρ)

εQ−2

|vxε |
Q−2
y

dv = sup
y∈Ux

∫

B(0,ρ)

εQ−2

|ϕ−1
y (vxε )|

Q−2
n

dv = sup
y∈Ux

∫

B(0,ρ)

εQ−2

|ϕ−1
y ◦ ϕx ◦ Tε(v)|

Q−2
n

dv

≤ C̃

∫

B(0,ρ)

εQ−2

|Tε(v)|
Q−2
n

dv ≤ C̃

∫

B(0,ρ)

dv

|v|Q−2
n

. (19)

Now choose ε1 > 0 such that for all ε < ε1 and for all u ∈ R
n such that ‖u‖ ≤ R we have

uxε ∈ Ux. Using (19), there is a constant c such that for all ε < min(ε0, ε1) and for all u ∈ R
n

with ‖u‖ ≤ R:
∫

B(0,ρ)

εQ−2

|vxε |
Q−2
ux
ε

dv ≤ c.

This is the first point of the lemma. The second point will follow from (8) and (9) of
Proposition 4. For ‖u‖ large enough such that 1

c0
|uxε |x − |vxε |x > 0 we have:

∫

B(0,ρ)

εQ−2

|vxε |
Q−2
ux
ε

dv ≤

∫

B(0,ρ)

εQ−2

(
1
c0
|uxε |x − |vxε |x

)Q−2
dv ≤

∫

B(0,ρ)

1
(

1
c0
|ϕ−1(u)|x − |ϕ−1(v)|x

)Q−2
dv

≤

∫

B(0,ρ)

1
(
c′

c0
‖u‖ − ρ

)Q−2
dv.

This inequality ensures that the convergence is uniform in ε.

Let return to the proof of Fact 3.

By the previous lemma we obtain:

E0

[

1T<τε

∫ τε

T

|f(v
(x,ε)
t )|dt

]

≤ cµ
(x,ε)
T (B(0, R)) + sup

u,‖u‖≥R

∫

B(0,ρ)

CεQ−2

|vxε |
Q−2
ux
ε

dv

︸ ︷︷ ︸

−→
R→+∞

0

.

To end the proof of Fact 3 it remains to prove:

Lemma 2. For all R > 0,

lim inf
T→+∞

lim sup
ε→0

µ
(x,ε)
T (B(0, R)) = 0.

Proof of Lemma 2. By definition of µ
(x,ε)
T we have,

µ
(x,ε)
T (B(0, R)) = E0

[

1T<τε1B(0,R)(v
(x,ε)
T )

]

.

Let χ be a smooth function which is equals to 1 on B(0, R) and which is supported on
B(0, R+ 1). We have

µ
(x,ε)
T (B(0, R)) ≤ E0

[

1T<τεχ(v
(x,ε)
T )

]

.

Using the Taylor expansion of v
(x,ε)
T , as in the proof of the fact 1, we obtain:

E0

[

1T<τεχ(v
(x,ε)
T )

]

−→
ε→0

E0

[

χ(u
(x)
T )
]

.
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Moreover E0

[

χ(u
(x)
T )
]

≤ E0

[

1B(0,R+1)(u
(x)
T )
]

and t 7→ E0

[

1B(0,R+1)(u
(x)
t )
]

is a positive

bounded function which is integrable according to (18). Thus we obtain

lim inf
T→+∞

E0

[

1B(0,R+1)(u
(x)
T )
]

= 0.

As for the proof of (5.4) in [7], we deduce easily from (10) and Proposition 3 the following
estimates:

Proposition 6.

lim sup
ε>0

sup
u∈K

|G(x,ε)(0, u)| < +∞.

For i = 1 · · ·n we have:

lim sup
ε>0

sup
u∈K

|
∂

∂ui
G(x,ε)(0, u)| < +∞;

By the previous proposition and Ascoli’s Theorem, the family {G(x,ε)(0, ·)}ε>0 is relatively
compact for the uniform norm on K. Proposition 5 ensures that there is only one limit point,
thus Proposition 1 is proved.

3 A Wiener criterion and a Poincaré cone condition in the

Poincaré group.

3.1 Geometric framework.

We denote by R
1,d the space R

d+1 endowed with the Minkowski’s quadratic form q:

q(ξ) =
(
ξ0
)2

−
d∑

i=1

(
ξi
)2
.

We denote by SO(1, d) the sub-group of SL(Rd+1) made of direct q-isometries, and by SO0(1, d)
the connected component of identity in SO(1, d). The Poincaré group is the affine group G :=
SO0(1, d)⋉R

1,d where the law is defined by:

(g, ξ)(g′, ξ′) = (gg′, ξ + gξ′).

G is seen as the following matrix sub-group of SL(d+ 2):

G =

{(
g ξ
0 1

)

; g ∈ SO0(1, d), ξ ∈ R
(1,d)

}

.

The Lie algebra of SO(1, d) is:

so(1, d) =

{(
0 t(ui)

(ui) (uij)

)

; (ui) ∈ R
d, (uij) ∈ R

d×d; (uji) = −(uij)

}

.

Thus, SO0(1, d) = exp(so(1,d)) and G = exp(g) where:

g =











0 t(ui) u0
(ui) (uij) (ui0)
0 0 0



 ; (ui)i=1···d ∈ R
d, (uji) = −(uij), (u0, (ui0)i=1···d) ∈ R

1,d






.

Denote by H
d the half-unit sphere of R1,d:

H
d :=

{
ξ ∈ R

1,d| q(ξ) = 1 and ξ0 > 0
}
.

Endowing THd with the metric q|THd , Hd is a Riemaniann manifold of constant negative curvature.
This is the hyperboloid model of the hyperbolic space.
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3.2 Relativistic diffusion.

We introduce a left invariant diffusion on G which is the lift of the relativistic diffusion on H
d×R

1,d

introduced by Dudley in [12]. The asymptotic behavior of G-valued diffusion was studied in [5].
Relativistic diffusion can be seen as a stochastic perturbation of the geodesic flow on a Lorentzian
manifold. For more informations on this subject see [4].

For i = 1 · · · d, we denote by Xi the left invariant vector field on G defined by:

Xi(g, ξ) = (g, ξ)





0 tei 0
ei 0 0
0 0 0





︸ ︷︷ ︸

:=Ei∈g

.

We denote by X0 the left invariant vector field on G defined by:

X0(g, ξ) = (g, ξ)





0 0 1
0 0 0
0 0 0





︸ ︷︷ ︸

:=E0∈g

.

We denote by {(gs, ξs)}s≥0 the diffusion on G solution of:

d(gs, ξs) =

d∑

i=1

Xi(gs, ξs) ◦ dB
i
s +X0(gs, ξs)ds.

Let L denote the generator associated to (gs)s:

L =
1

2

d∑

i=1

X2
i +X0.

Denote by (e0, · · · , ed) the canonical basis of R1,d. We have the following proposition (cf [4],
[5], [14])

Proposition 7. The process (gt(e0), ξt) in H
d × R

1,d is the relativistic Dudley diffusion and is
generated by

1

2
∆Hd +H0

where the vector field H0 is the geodesic flow in T 1
R

1,d ≡ H
d × R

1,d. In other words gt(e0) is a

Brownian motion in H
d and ξt its time integral: ξt =

∫ t

0
gs(e0)ds.

A simple computation shows that, for i, j = 1 · · · d :

[Xi, Xj ](g, ξ) = (g, ξ)





0 0 0
0 ei ⊗ ej − ej ⊗ ei 0
0 0 0





︸ ︷︷ ︸

:=Eij∈g

[Xi, X0](g, ξ) = (g, ξ)





0 0 0
0 0 ei
0 0 0





︸ ︷︷ ︸

:=Ei0∈g

Thus at every point (g, ξ) of G we have

vect{X0, Xi, [Xi, Xj ], [Xi, X0], i, j = 1 · · · d} = T(g,ξ)G,

and, by Hörmander’s Theorem, L is hypoelliptic.

12



Moreover we have

[Xi, [Xi, X0]] = X0, (20)

and then,
vect{Xi, [Xi, Xj], [Xi, X0], [Xi, [Xi, X0]] i, j = 1 · · · d} = T(g,ξ)G.

By Hörmander’s Theorem gt has a smooth density with respect to the Haar measure of G. With
the notation of Section 2 the vectors fields Xi induce the following graduation of g:

C1(g, ξ) =






(g, ξ)





0 t(ui) 0
(ui) 0 0
0 0 0



 ; (ui) ∈ R
d






(21)

C2(g, ξ) =






(g, ξ)





0 t(ui) u0
(ui) (uij) 0
0 0 0



 ;u0 ∈ R, (ui) ∈ R
d, uji = −uji






(22)

C3(g, ξ) = T(g,ξ)G. (23)

Thus we have r(g, ξ) = 3. We choose a triangular basis β := (Xi, X0, [Xi, Xj], [Xi, X0])i<j=1···d

for T(g,ξ)G = (g, ξ)g. The graded dimension Q is constant on G and is computed explicitly by:

Q(g, ξ) = d+ 2(d(d− 1)/2 + 1) + 3d = d2 + 3d+ 2.

The family of dilations on g is:

Tε





0 t(ui) u0
(ui) (uij) (ui0)
0 0 0



 =





0 ε t(ui) ε2u0
ε(ui) ε2(uij) ε3(ui0)
0 0 0



 (24)

The homogeneous norm is given by (at e = (id, 0) ):

∣
∣
∣
∣
∣
∣

exp









0 t(ui) u0
(ui) (uij) (ui0)
0 0 0









∣
∣
∣
∣
∣
∣
e

=



(

d∑

i=1

u2i )
Q/2 + (u20 +

∑

1=i<j=d

u2ij)
Q/4 + (

d∑

i=1

u2i0)
Q/6





1/Q

(25)

The tangent process, which lies in g, is given by:

uet =












0 B1
t · · · Bdt t

B1
t

1
2

(∫ t

0
B1
sds−

∫ t

0
s ◦ dB1

s

)

...
(

1
2

(∫ t

0
Bis ◦ dB

j
s −

∫ t

0
Bjs ◦ dB

i
s

))j=1···d

i=1···d

...

Bdt
1
2

(∫ t

0 B
d
sds−

∫ t

0 s ◦ dB
d
s

)

0 0 0 0












(26)

Proposition 8 of [3] establishes that the support of {(gt, ξt)}t≥0 coincides with the future half
cone at (g0, ξ0). Thus the Green function is strictly positive on this domain:

G(e, (g, ξ)) > 0 ⇐⇒ q(ξ) > 0 and ξ0 > 0.

By scaling, the support of T1/ε ◦ exp
−1(gε2s, ξε2s) is the half cone

{(g, ξ); (ε2ξ0)2 − ‖ε3~ξ‖2 > 0, ξ0 > 0}.

When ε goes to 0 this half cone becomes eventually the half space {(g, ξ) ∈ G|ξ0 > 0}. From
Proposition 1 we deduce that the support of the tangent process coincides with this half space.
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We call a homogeneous cone with vertex (g0, ξ0), a subset Ch(g0, ξ0) of G which is invariant
under the dilatations Tε at (g0, ξ0) such that the “sole”

{
(g, ξ) ∈ Ch(g0, ξ0); |(g, ξ)|(g0,ξ0) = 1

}

be a compact subset of the half space:
{
(g, ξ) ∈ G; (ξ − ξ0)

0 > 0
}
.

By Theorem 1 we can find a neighborhood of (g0, ξ0) such that for every set B in a homogeneous
cone Ch(g0, ξ0), there exists α > 0, β > 0 such that:

∀(g, ξ) ∈ B,
α

|(g, ξ)|Q−2
(g0,ξ0)

≤ G ((g0, ξ0), (g, ξ)) ≤
β

|(g, ξ)|Q−2
(g0,ξ0)

. (27)

Recall: Q = d(d+ 3)− 2.

Remark 1. The right inequality in (27) remains true even if the sole is not compact.

3.3 A Wiener criterion for thinness.

We say that a point (g, ξ) is regular with respect to a set B when P(g,ξ)(TB = 0) = 1, where
TB = inf{s > 0; (gs, ξs) ∈ B} is the entrance time in B.

We denote by Br the set of regular points for B. By continuity of trajectories we have
B̊ ⊂ Br ⊂ B̄.

Proposition 8. There exists only one measure µB supported by Br such that:

P(g,ξ)[TB < +∞] =

∫

G ((g, ξ), (g′, ξ′))µB(d(g
′, ξ′)).

Proof. It is shown in [3] that L admits an adjoint (with respect to the Haar measure of G)
without zero-order term. Dual processes theory developped in [8] can be applied and ensures the
existence and unicity of µB .

We call capacity of B, and denote by C(B), the total mass of µB. We also have

C(B) = sup{µ(B);µ ∈ M(B), Gµ ≤ 1}. (28)

Here M(B) is the set of finite positive measures supported in B. Let fix λ < 1. We denote by

Bn :=
{
(g, ξ) ∈ B; λn+1 ≤ |(g, ξ)|(g0,ξ0) < λn

}

the homogeneous slices of B. We obtain the following Wiener criterion:

Proposition 9 (Wiener criterion). Let B a subset of G which is included in a homogeneous cone
Ch(g0, ξ0). Then (g0, ξ0) is regular for B if and only if

∑

n λ
d(d+3)nC(Bn) = ∞.

Proof. The sketch of the proof is classical and can be found in [6] for the Brownian motion in R
n

and in [16] in the case of a nilpotent group. Let us just recall that the key point is the double
inequality (27), which allows to use a Borel-Cantelli lemma due to J. Lamperti in [21].

3.4 Capacities of small compact sets and Poincaré’s cone condition.

Let H be the closure of a domain of g included in










0 t(ui) u0
(ui) (uij) (ui0)
0 0 0



 ∈ g; u0 > 0






.

We denote by Hε := exp(Tε(H)) a “small” compacts set in the future of e. To study the behavior
of C(Hε) when ε → 0 we need the following lemma, where uε and vε are two points of Hε and
θuε(vε) := T1/|vε|uε

(exp−1
uε

(vε)) is the solid angle, with respect to the homogeneous norm of vε
(seen from uε).
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Lemma 3. The following limits exist:

lim
ε→0

|vε|uε

ε
:= α(u, v) > 0.

lim
ε→0

θuε(vε) := β(u, v) ∈ g− {0}.

Proof. Let u, v ∈ g be such that uε = exp(Tε(u)) and vε = exp(Tε(v)). We want to find w ∈ g

such that vε = uε × exp(w), i.e, exp(w) = exp(−Tε(u)) exp(Tε(v)).
By the Campell-Hausdorff formula we obtain:

w = Tε(v)− Tε(u)−
1

2
[Tε(u), Tε(v)] (29)

+
1

12
([−Tε(u), [−Tε(u), Tε(v)]] + [Tε(v), [Tε(v),−Tε(u)]]) + · · ·

A simple computation gives:

[Tε(v), Tε(u)] =

d∑

i=1

o(ε)Xi +
∑

1≤i<j≤d

(
ε2(uivj − ujvi) + o(ε2)

)
[Xi, Xj]+

d∑

i=1

(
ε3(viuo − v0ui) + o(ε3)

)
[Xi, X0] + o(ε2)X0.

With (29) we get:
wi = ε(vi − ui) + o(ε), w0 = ε2(v0 − u0) + o(ε2),

wij = ε2(vij − uij −
1

2
(viuj − uivj)) + o(ε2),

wi0 = ε3(vi0 − ui0 −
1

2
(uiv0 − u0vi)) + o(ε3).

By the definition of the homogeneous norm we have
|vε|uε

ε = |w|e
ε and this quantity converges,

when ε goes to 0, to the homogeneous norm α(u, v) 6= 0 of:





0 t(vi − ui) (v0 − u0)
(vi − ui) (vij − uij −

1
2 (viuj − uivj)) (vi0 − ui0 −

1
2 (uiv0 − u0vi))

0 0 0



 ∈ g.

Moreover, since by definition θuε(vε) = T1/|w|e(w) we have

lim
ε→0

θuε(vε) = β(u, v),

where

β(u, v) :=
1

α(u, v)





0 t(vi − ui) (v0 − u0)
(vi − ui) (vij − uij −

1
2 (viuj − uivj)) (vi0 − ui0 −

1
2 (uiv0 − u0vi))

0 0 0



 ∈ g

Set

q(H) :=
m(H)

maxu∈∂H
∫

H
ψe(β(u,v))
α(u,v)Q−2m(dv)

.

Recall: ψx(·) :=
1

Jx(0)
g(x)(0, ·) and g(x) is the Green function of the tangent process at x and

we denote by m the image measure of Haar, on g, under exp−1.

Proposition 10 (Capacities of small compact sets).

lim inf
ε→0

C(Hε)

εQ−2
≥ q(H).
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Proof. Denote by νε := 1HεHaar the image of the measure ν := 1Hm under exp ◦Tε.
By (28), to obtain a lower bound of C(Hε) it is sufficient to get an upper bound for Gνε. If τ

denotes the entrance time in Hε, we have, for (g, ξ) ∈ G:

Gνε(g, ξ) =

∫

Hε

G((g, ξ), (g′, ξ′))Haar(d(g′, ξ′))

= E(g,ξ)

[∫ +∞

τ

1Hε(gt, ξt)dt

]

= E(g,ξ)

[

E(gτ ,ξτ )

[∫ +∞

0

1Hε(gt, ξt)dt

]]

,

hence

Gνε(g, ξ) = E(g,ξ) [Gνε(gτ , ξτ )] . (30)

Thus it is sufficient to find an upper bound for Gνε on ∂Hε. For some uε ∈ ∂Hε, by definition
of νε, we have:

Gνε(uε) =

∫

H

G(uε, vε)m(dv),

where vε := exp(Tε(v)).
For any η > 0, Theorem 1 provides some ε0 > 0 such that for all ε < ε0 :

∀uε, vε ∈ Hε G(uε, vε) ≤
η + ψuε(θuε(vε))

|vε|
Q−2
uε

.

Moreover, by Lemma 3, we can find ε1 > 0 such that for all ε < ε1:

∀uε, vε ∈ Hε εQ−2 η + ψuε(θuε(vε))

|vε|
Q−2
uε

≤
η + ψe(β(u, v))

α(u, v)Q−2
+ η

Thus,

∀uε ∈ ∂Hε εQ−2Gνε(uε) ≤

∫

H

(
η + ψe(β(u, v))

α(u, v)Q−2
+ η

)

m(dv).

≤ η ×m(H) + max
u∈∂H

∫

H

η + ψe(β(u, v))

α(u, v)Q−2
m(dv).

By (30) we have

‖Gνε‖∞ ≤
1

εQ−2

(

η ×m(H) + max
u∈∂H

∫

H

η + ψe(β(u, v))

α(u, v)Q−2
m(dv)

)

.

By (28), the previous upper bound provides the following lower bound for the capacity:

C(Hε) ≥
εQ−2νε(Hε)

η ×m(H) + maxu∈∂H
∫

H
η+ψe(β(u,v))
α(u,v)Q−2 m(dv)

.

Since νε(Hε) = m(H),letting η go to 0 we finally obtain

lim inf
ε→0

C(Hε)

εQ−2
≥ q(H) :=

m(H)

maxu∈∂H
∫

H
ψe(β(u,v))
α(u,v)Q−2m(dv)

.

Proposition 9 and 10 above provide a Poincaré’s cone condition of regularity:

Corollary 1 (Poincaré’s cone condition of regularity). If a subset B contains a homogeneous
cone based at (g0, ξ0) then this point is regular for B.
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Proof. It suffices to remark that the vertex of an homogeneous cone is regular for it. Indeed,

the slices Bn are such that Bn = T
(g0,ξ0)
λn (B0) and the capacities C(Bn) are, by Proposition 10,

of order λn(2−Q). Thus
∑

n λ
(Q−2)nC(Bn) diverges and we conclude by the Wiener criterion of

Proposition 9.

Remark 2. In [15] Franchi and Le Jan defined relativistic diffusions with value in the unitary
tangent bundle, T 1Md+1, over some generic Lorentz manifold Md+1. Roughly speaking, their
diffusions are obtained by “rolling without slipping” the space H

d×R
1,d over T 1Md+1 along some

trajectory of Dudley’s diffusion. The asymptotic behavior of such diffusions in Robertson-Walker
space-times was studied in [2]. These diffusions are projections of diffusions rt in the orthonormal
frame bundle OMd+1 which are solution of the SDE

drt = σ

d∑

i=1

Vi(rt) ◦ dB
i
t +H0(rt)dt,

where the Vi are vertical vector fields on OMd+1 corresponding to the infinitesimal action on the
fibre of the infinitesimal boost ei ⊗ e0 + e0 ⊗ ei ∈ so(1, d). The horizontal vector field H0 denotes
the infinitesimal parallel displacement of the frame along the geodesic started in the direction of
the timelike vector of the frame.

The tangent process associated to rt is the same that the one associated to gt and we obtain a
Wiener criterion and a Poincaré cone condition for rt as well.
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[21] Lamperti. Wiener test and Markov chains. Journal Math . Anal. Appl., 1963.

[22] S Menozzi. Parametrix techniques and martingale problems for some degenerate Kolmogorov
equations. Electronic communications in probability, 2011.

[23] A Nagel, E.M Stein, and S Wainger. Balls and metrics defined by vector fields I: Basics
properties. Acta Mathematica, 1985.

[24] P Negrini and V Scornazzani. Wiener criterion for a class of degenerate elliptic operators.
Journal of differential equations, 1987.

[25] A Sánchez-Calle. Fundamental solutions and geometry of the sum of square of vector fields.
Invent. math, 1984.

[26] C Tardif. Asymptotic behavior of the stochastic flow associated to a relativistic diffusion.
Submitted, 2011.

[27] K Uchiyama. A probabilistic proof and applications of Wiener’s test for the heat operator.
Mathematiche Annalen, 1989.

18


