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Abstract

The phonon spectrum of sodium is studied using ab initio methods and a simple nearly free electron model in the pressure range
where the fcc phase is stable. It is found that the phonon softening previously reported consist of simple Kohn anomalies, the
amplitudes of which are increased under pressure; their relative amplitudes and positions are easily understood in terms of the
nearly free electron model. Furthermore, it is shown that superconductivity should be enhanced by pressure because of the increased
contribution to the Eliashberg function associated to transverse phonon modes.
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1. Introduction

Phonon-induced superconductivity is now well understood,
and it is fairly straightforward, if technical, to obtain good
approximate values of Tc, the superconducting transition
temperature[1]. Calculations are now usually performed us-
ing very elaborate, pre-packaged ab initio computation suites.
They provide great computational power, but sometimes ren-
der the interpretation (indeed, the physics) harder to disentan-
gle from the numerics. In that context, simpler models which
still exhibit some of the interesting physics under study become
valuable aides to comprehension. With this philosophy in mind,
the work presented here provides insight into phonon softening
and enhanced superconductivity in simple metals under high
pressure using the nearly free electron (NFE) model and local
pseudopotentials. These drastic approximations lead to greatly
simplified numerics while still allowing the computation of any
desired quantity. Although the results cannot be trusted to be
quantitatively accurate, the simplified model provides a testing
ground for ideas.

It has been noted that the phonons of the alkali metals de-
velop anomalies in the fcc phase which increase in magni-
tude with pressure[2]. In most of these systems, these anoma-
lies have been linked to the large deformations sustained by
their Fermi surfaces, going from the NFE sphere at low den-
sity to non-spherical surfaces exhibiting nesting in the pressure
range of interest. The wave vectors of the anomalous phonons
have been positively correlated to the nesting wave vectors
of the Fermi surfaces [2, 3], suggesting that the anomalous
phonons are in fact caused by the singularities in the density re-
sponse function of the electron gas induced by the nesting[4, 5].
Sodium is a notable exception: although computations show
that it does exhibit phonon softening like the other alkalies,
its Fermi surface remains exquisitely spherical in the pressure

range of interest[2].
Although sodium is not predicted to be a good superconduc-

tor, it also presents a quite complex structural phase sequence
under pressure. Additionally, the melting curve of sodium
presents a pronounced maximum[6, 7] which can be explained
in terms of a pressure induced decreasing of the Debye tem-
perature associated to a softening of transverse phonon modes
[8].

Thus, in order to make the discussion above more tangi-
ble, the case of sodium in the fcc structure for pressures be-
tween 65 and 105 GPa has been studied. It turns out that the
softening observed in computations pertaining to sodium can
in fact be understood within the NFE approximation, and that
the anomalous features in the phonon spectra are simple Kohn
anomalies[9, 10], enhanced by pressure.

2. The nearly free electron model

The model has been described in great details before and has
been found to be very successful in many situations of physical
interest[11]. Only a brief summary of the relevant expressions
will be presented here. It will be assumed from the outset that
the ion-valence electron pseudopotential is local.

It will be convenient to define the unitless form factor as

W(k) = N(εF)
vps(k)
εe(k)

, (1)

where N(εF) is the free electron density of states per unit vol-
ume at the free electron Fermi energy, namely

N(εF) =
3
2

n0

εF
, (2)

and εe is the electronic dielectric function. This function can
be expressed in terms of the electronic susceptibility of the free
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electron gas,

χ(0)(k) = − kF

π2e2a0
FL

( |k|
2kF

)
, (3)

and has the form

εe(k) = 1 − [1 −G(k)]χ(0)(k)vc(k). (4)

In the above, kF represents the Fermi wave vector, FL is the
Lindhard function,

FL(x) =
1
2
+

1 − x2

4x
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣, (5)

n0 is the average number density, vps(k) is the bare pseudopo-
tential and vc(k) is the Coulomb potential. The local field cor-
rection, G(k), accounts for the electron-electron interaction be-
yond RPA. Of the many forms available in the literature, the
approximation of Ishimaru and Utsumi has been retained[12].

It is straightforward to obtain the dynamical matrix within
the approximations above[13]:

Dαβ(q) = n0

∑
k

kαkβφ2(k)
∑

K

(
δk,K+q − δk,K

)
; (6)

assuming the bare ion-ion interaction is Coulombic, the effec-
tive ionic pair potential is given by[11]

φ2(k) = vc(k) + χ(k)|vps(k)|2. (7)

The phonon dispersion relation is then given by

Mω2
ν(q)êν(q) = D(q) · êν(q). (8)

The phonon linewidth can be approximated by[14]

γν(q) = πων(q)
1
Ω

∑
k′,kσ

|gν(q, k)|2δ(ξk′−k)δ(ξk′ ), (9)

with

gν(q, k) =
W(k)
N(εF)

√
n0meεF

M�ων(q)

∑
K

δk,K+q
k · êν(q)

kF

. (10)

For a spherical Fermi surface, which is appropriate in the NFE
approximation, it is easy to show that

1
Ω

∑
k′
δ(ξk′ )δ(ξk′−k) =

N(εF)2

12n0

kF

k
θ(2kF − k). (11)

The Eliashberg function can now be expressed as [14, 15, 16]

α2Fν(ω) =
1

πN(εF)
1
Ω

∑
q

γν(q)
�ω
δ
(
ω − ων(q)

)
. (12)

3. Phonon spectra and Kohn Anomalies

In order to demonstrate that the features observed in the
phonon spectra of sodium are simple Kohn anomalies, the
phonons of fcc sodium were computed in the ΓX and ΓK
directions at 65, 85 and 105 GPa using ab initio methods
based on density functional perturbation theory (DFPT)[17]
as implemented in the Quantum-ESPRESSO [18] package.

The calculations were performed with the choice of the lo-
cal density approximation (LDA) for the exchange-correlation
functional, which was parametrized according to the Perdew-
Zunger description[19]. It should be noted that the use of the
generalized gradient approximation (GGA) did not lead to sig-
nificant differences neither in the band nor the phonon spectra.
A Vanderbilt ultrasoft pseudopotential[20], which included 2s

and 2p core electrons in the valence, was used throughout this
work. Computations were also performed with a pseudopoten-
tial that included only the 3s electron in the valence: the results
exhibited much stronger Kohn anomalies, but they were dis-
carded as the bands only poorly agreed with those produced us-
ing the above mentioned valence 9 pseudopotential in the pres-
sure range of interest. Indeed, the valence 1 pseudopotentials
substantially overlapped at the volumes considered, which sug-
gest that their use is inappropriate. This technical detail should
be kept in mind when computing phonons at high pressures.
Convergence tests suggested the use of a 50 Ry cutoff for the
plane-wave basis and 450 for the density, and a 32 × 32 × 32
Monkhorst-Pack mesh[21] for the electronic first Brillouin zone
(1BZ) integration. Such a fine mesh was required to converge
phonons close to Γ point to within 0.03 THz. Finally, converg-
ing the double delta needed to calculate ab initio the phonon
linewidths required a finer 80 × 80 × 80 grid.

The phonons of sodium were then computed using perturba-
tion theory and a weak pseudopotential. This will henceforth
be referred to as the linear response method (as opposed to
the ab initio method) because the electronic density was com-
puted to linear order in the weak perturbing pseudopotential.
An Ashcroft empty-core pseudopotential[22] was used to de-
scribe the effective valence electron-ion bare interaction. The
pseudopotential is described with a single parameter and has
the form

vps(r) =

⎧⎪⎪⎨⎪⎪⎩0 r < r0

−e2/r r > r0
, (13)

vps(k) = −4πe2

k2 cos(kr0). (14)

It is then straightforward to compute the phonons using the
methods described in the last section.

In order to make contact with the ab initio results, the value
of the pseudopotential parameter, r0, was chosen such that the
longitudinal phonon frequency at X agreed between the linear
response and the ab initio computations, for each value of rs

considered. The results of the fit can be seen in Table 1. The
phonon branches at 85 GPa are shown in Figure 1 (results at 65
and 105 GPa were not significantly different), along with the
hypothetical dispersion of a zero pressure fcc phase. There, it
can be seen that despite the extreme simplicity of the model,
the ab initio phonons are qualitatively reproduced by the lin-
ear response calculations. In particular, the sound velocities are
in good agreement and the phonon softening occurs at sensi-
bly the same wave vectors and the same branches. The results
strongly suggest that such a simple approach still captures the
basic physics underlying the increasing softening under pres-
sure.
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P (GPa) rs(a0) r0(a0)
65 2.69 1.70
85 2.61 1.69
105 2.54 1.67

Table 1: Values of the pseudopotential parameter r0 as a function of pressure
for a longitudinal phonon fit at X. The pressures are obtained from the ab initio

calculated equation of state.
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Figure 1: (a) Phonons obtained within linear response for parameters corre-
sponding to zero pressure in an hypothetical fcc phase. No Kohn anomalies
appear. (b) Phonons obtained within linear response (full lines) and ab initio

(points) for a fit to the longitudinal X phonon at roughly 85 GPa. The longi-
tudinal branch is represented by L, and the transverse branches by T1 and T2.
The vertical lines indicate the positions of the Kohn anomalies (except at Γ).
Some ab initio data points are removed near Γ because their values could not
be properly converged.
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Figure 2: Form factor for rs = 2.58, r0 = 1.68, which roughly corresponds
to sodium at 90 GPa, and rs = 3.9, r0 = 1.66, which roughly corresponds to
sodium at zero pressure. The form factor is largely enhanced close to k = 2kF

at high pressure.
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Figure 3: Plot ofωS , as defined in the text, for various values of r0. In principle,
r0 should be state dependent (although Table 1 indicates that it is weakly so in
the range of interest), so many values of r0 are considered to show that the
strength function generically increases as the volume is decreased to the range
of interest.

The Kohn anomalies can be analyzed further within the sim-
ple model. Since the response function of the electron gas is
singular at 2kF (the Lindhard function has infinite slope there),
features in the phonon spectrum can be expected whenever[9]

|K + q| � 2kF . (15)

In order to study the amplitude of the anomalies, it is assumed
that they are mostly due to the singular behavior of the Lindhard
function appearing in χ(0). The anomalous part of the dynamical
matrix in the vicinity of a wave vector which satisfies equation
(15) can thus be defined as

D
(an)
αβ (q) =

N

Ω
(2kF)2 kF

2π2e2a0

|vps(2kF)|2
εe(2kF)∑

k

k̂αk̂β
[∑

Ki

δk,Ki+q
](

1 − k

2kF

)
ln

∣∣∣∣1 − k

2kF

∣∣∣∣, (16)

where the sum on the reciprocal lattice vectors is restricted to
the set {Ki} which comply with the Kohn condition for a given
q, and it is assumed that it is acceptable to set k = 2kF in all but
the singular term. The prefactor is given by

S =
N

Ω
(2kF)2 kF

2π2e2a0

|vps(2kF)|2
εe(2kF)

, (17)

= Mω2
S , (18)

with

�ωS =
kFa0

π
| cos(2kFr0)|

√
2me

3Mεe(2kF)
e2

a0
. (19)

The function ωS is plotted in Figure 3. There, it can be seen
that it increases dramatically as rs is reduced from its zero pres-
sure value (rs � 4) to the range of interest. Thus, the prefactor
S , which is proportional to the square of ωS , must increase by
more than an order of magnitude over the same range of rs; this
dramatic increase in the prefactor of the anomalous dynamical
matrix explains why the Kohn anomalies become more promi-
nent under pressure, as can be observed in Figure 1. The anal-
ysis can be specialized further to particular branches, and the
exact positions of the anomalies can be deduced.
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First, consider the ΓK direction, with the choice

K =
2π
a

(3
4
,

3
4
, 0

)
, (20)

where a is the side length of the unit cell, and define q = (η+ δ)
K, where η K satisfies the Kohn condition and δ is small. The
polarizations are given by

êL =
x̂ + ŷ√

2
, êT1 =

x̂ − ŷ√
2
, and êT2 = ẑ. (21)

It is straightforward to show that the Kohn condition, given by
equation (15), is only satisfied for the following cases:

set 1: η =
4
3
− 2

√
2

3

√(akF

π

)2 − 1 � 0.2, (22)

K ∈
{2π

a

(
− 1,−1, 1

)
,

2π
a

(
− 1,−1,−1

)}
,

set 2: η =
4
3
− 4

3

√
1
2

(akF

π

)2 − 1 � 0.7, (23)

K ∈
{2π

a

(
− 2, 0, 0

)
,

2π
a

(
0,−2, 0

)}
.

In the vicinity of η � 0.2, the anomalous dynamical matrix is
given by

D(an)(δ) =
3αMω2

S

(2α2 + 1)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
α2 α2 0
α2 α2 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ δ ln |δ|, (24)

α =
(
1 − 3

4
η
)
� 0.85. (25)

In this last expression only the term proportional to δ ln |δ| has
been retained, and α has been defined in order to make the equa-
tion more legible. Equation (24) implies

D(an)êT1 = 0, (26)

and there thus can be no anomaly in the T1 branch. Further-
more,

êL · D(an)(δ) · êL = 2α2êT2 · D(an)(δ) · êT2 ; (27)

since 2α2 � 1.5, the longitudinal anomalous contribution to
the dynamical matrix is of similar magnitude in the T1 and L

branches. A similar analysis can be performed for other points
where the Kohn condition is satisfied. Results are summarized
in Table 2.

On the face of it, however, it is surprising that the longitudi-
nal branches do not exhibit strongly anomalous behavior. Con-
sider a phonon branch near a singularity with polarization ê;
then,

Mω(δ)2 = ê · D(δ) · ê (28)
� MωR(δ)2 + ΛMω2

S δ ln |δ|, (29)

where ωR(δ) is the non-anomalous part of the spectrum and the
last term is equal to ê · D(an)(δ) · ê. The phonon frequency can
be expanded as

ω(δ) �
√
ω2

R + 2ωRω
′
Rδ + ω

2
SΛδ ln |δ|, (30)

Direction set η (approx.) polarization Λ (approx.)
ΓK 1 0.2 T2 0.4

L 0.6
2 0.7 T1 0.5

L 0.1
ΓX 1 0.3 T1, T2 0.2

L 0.5
2 0.4 L 0.6

Table 2: Summary of the various results describing the strength of the Kohn
anomalies along ΓX and ΓK. η is defined such that q = ηK or q = ηX. Λ is de-
fined in equation (28). Only the branches with Kohn anomalies are mentioned.
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Figure 4: Frequency in the vicinity of a Kohn anomaly, in the approximations
of equation (32), for various reasonable values of ωR and ωS = 6 THz. The
graph makes it clear that the ”kink” is quickly ironed away as ωR increases, for
equal ωS .

where ωR ≡ ωR(δ = 0) and

ω′R =
d

dδ
ωR(δ)|δ=0. (31)

In the above, Λ is a numerical factor which depends on the
branch considered (the values of Λ for each anomaly consid-
ered are given in Table 2). For the sake of simplicity, let’s con-
sider a Debye model for the regular part of the spectrum. Then,
ωR(q) = c|q|, and ω

′
R � ωD � 2ωR, where ωD is the Debye

frequency, and it is assumed that the anomaly occurs roughly in
mid-branch (i.e. η � 0.5). Also, according to Table 2, Λ is at
most roughly equal to 0.5. Then, in the vicinity of an anomaly
in a longitudinal branch,

ω(δ) �
√
ω2

R + 4ω2
Rδ +

1
2
ω2

S δ ln |δ|. (32)

This function is plotted in Figure 4 in the vicinity of δ = 0 for
the choiceωS � 6 THz (roughly the largest value attained in the
model, in the range of interest; see Figure 3) for various values
of ωR. The graph makes it clear that, for everything else being
equal, the ”kink” due to the Kohn anomaly will appear much
weaker in a high branch (typically longitudinal) than in a low
branch (transverse).

4. Linewidths and electron-phonon coupling

The linewidths were computed in the NFE model using the
values of the parameters r0 = 1.68 and rs = 2.58, which accord-
ing to Table 1 roughly correspond to sodium at 90 GPa. The

4
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results can be seen in Figure 5. The main features displayed by
the linewidths are that large discontinuous contributions for the
transverse branches appear where the Kohn condition is satis-
fied. These features are trivially explained by the definition of
the linewidths, equation (9). Indeed, the linewidths have the
form

γν(q) ∼
∑

K

θ(2kF − |K + q|)
(
(K + q) · êν(q)

)2
; (33)

thus there can only be non-longitudinal coupling for Umklapp
processes (namely, K � 0: in high symmetry directions such
as ΓX or ΓK, the polarization of the longitudinal branch truly
is longitudinal). Furthermore, it is clear that the onset of the
contribution of the Umklapp processes will coincide with the
Kohn condition. It is clear from Figure 5 that this also holds
true for the ab initio results. Finally, as can be seen in Figure 2,
the form factor is largely enhanced at higher pressure, leading
to substantial Umklapp contribution to the linewidths.

As can be seen in Figure 6, the large Umklapp transverse
contributions to the linewidths are reflected in an Eliashberg
function which is largest at low frequencies. This leads to a
fairly large electron-phonon coupling (λ � 0.5) with a domi-
nating contribution coming from the low frequency region of
the spectrum. This value is in rough agreement with that ob-
tained by an ab initio calculation under similar conditions[23]
(it is noteworthy that the ab initio computations presented
here do not reproduce the imaginary transverse phonon fre-
quencies along the (110) direction mentioned by Christensen
and Novikov). A simple calculation using the McMillan
equation[24] with the standard μ∗ = 0.1 yielded Tc � 2.5 K,
with ωlog � 167 K, again in rough agreement with published
results[23].

The global picture is now very clear. Within the model de-
scribed above, pressure (namely, the value of rs) can be tuned
such that the maximum of the form factor occurs close to
2kF . This leads to strong Kohn anomalies in the transverse
phonon spectrum and large contributions to the Umklapp trans-
verse linewidths at exactly the same positions in the 1BZ. This
leads to a transverse mode dominated Eliashberg function and
a large enhancement of the electron-phonon coupling because
the phonon frequencies are reduced around the Kohn anomalies
and the linewidths are increased.

5. Conclusion

The work presented here suggests that the anomalous phonon
spectrum of sodium in the 65-105 GPa range can be understood
in terms of a NFE model. The ”kinks” in the phonon branches
correspond to Kohn anomalies and their dramatic increase in
amplitude with pressure in the transverse branches is due to the
sharp increase in the prefactor of the anomalous dynamical ma-
trix, which in turn is caused by the interplay of the two impor-
tant length scales in the problem, namely rs (which appears in
kF), and r0, which describes roughly the size of the sodium ion.

The increase of the form factor under pressure also leads to a
sharp increase of the linewidths right where the Kohn condition
is satisfied because of Umklapp contributions. In conjunction
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(a) Linear response
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Figure 5: (a) Linewidths in the NFE approximation and (b) computed ab initio

for sodium in the fcc lattice, along the special directions ΓX and ΓK. The pa-
rameters are r0 = 1.68 and rs = 2.58, which correspond roughly to a pressure
of 90 GPa . The vertical lines away from Γ indicate the positions where the
Kohn condition is satisfied.

with the softening of the phonon modes, this leads to an Eliash-
berg function which is dominated by the transverse frequency
contributions and an unexpectedly large electron-phonon cou-
pling.

Although the model used was very simple, it is expected that
the trends observed should be quite general. Pressure can be
used to maximize the pseudopotential form factor where the
response function of the electron gas has a very large derivative
(roughly 2kF for a roughly spherical Fermi surface); this should
lead to both a softening of the transverse phonon modes (Kohn
anomalies) and large Umklapp contributions to the linewidths,
thus enhancing superconductivity.
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Figure 6: Eliashberg function computed in the NFE model for (a) an hypothet-
ical fcc phase of sodium at zero pressure (r0 = 1.66 and rs = 3.9), and (b) at a
pressure of about 90 GPa (r0 = 1.68 and rs = 2.58). The transverse contribution
increases dramatically with pressure.
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