Jean-Michel Hufflen
email: hufflen@lifc.univ-fcomte.fr

Implementing Language-Dependent Lexicographic Orders in Scheme

Keywords: Lexicographical order relations, collation algorithm, Unicode, MlBIBT E X, Scheme

The lexicographical order relations used within dictionaries are language-dependent, and we explain how we implemented such orders in Scheme. We show how our sorting orders are derived from the Unicode collation algorithm. Since the result of a Scheme function can be itself a function, we use generators of sorting orders. Specifying a sorting order for a new natural language has been made as easy as possible and can be done by a programmer who just has basic knowledge of Scheme. We also show how Scheme data structures allow our functions to be programmed efficiently.

Introduction

Sorting words belonging to a natural language, like in a dictionary, depends on this language. As part of the MlBIBT E X projectfor 'MultiLingual BIBT E X'-we developed functions implemented collation, that is, determining sorting orders of strings of characters. Let us recall that MlBIBT E X aims to be a 'better' BIBT E X [START_REF] Patashnik | Part of the BIBT E X distribution[END_REF]-the bibliography processor usually associated with the L A T E X word processor [START_REF] Lamport | A Document Preparation System. User's Guide and Reference Manual[END_REF]-especially about multilingual features. When BIBT E X or MlBIBT E X builds a 'References' section for a L A T E X document, a bibliography style is used to rule the layout of this section. Most of BIBT E X styles sort this section's items w.r.t. the alphabetical orders of authors' names. The SORT function used within these styles [Mittelbach et al., 2004, Table 13.7] ignores accents and other diacritical signs, so in practice, it is suitable only for the English language. MlBIBT E X allows bibliographical items of a document written in English (resp. French, German, . . .) to be sorted according to the English (resp. French, German, . . .) order.

MlBIBT E X has been developed in Scheme, we explained the reasons of this choice and outlined its architecture in [START_REF] Hufflen | Implementing a bibliography processor in Scheme[END_REF].

Here we focus on the definitions of sorting orders as part of this framework. MlBIBT E X's first version only deals with the European languages using the Latin alphabet. Our method is derived from an Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Eighth Workshop on Scheme and Functional Programming. September 30, 2007, Freiburg, Germany. Copyright c 2007 Jean-Michel Hufflen. algorithm related to Unicode, an industry standard designed to allow text and symbols from all of the writing systems of the world to be consistently represented [2006]. Our method can be generalised to other alphabets than the Latin one. In addition, let us mention that if a document cites some works written using the Latin alphabet and some written using another alphabet (Arabic, Cyrillic, . . .), they are usually itemised in separate bibliography sections. So this limitation to the Latin alphabet is not too restrictive within MlBIBT E X's purpose.

The next section of this article is devoted to some examples in order to give some idea of this task's complexity. We briefly recall the principles of the Unicode collation algorithm [2006a] in Section 3 and explain how we adapted it in Scheme in Section 4. Section 5 discusses some points, gives some limitations of our implementation, and sketches possible future work.

Lexicographic orders and natural languages

The basic lexicographic order, well-known in Mathematics, can be defined by:

[] ≤ s1 [x0|s0] ≤ [x1|s1] ⇐⇒ x0 < x1 ∨ (x0 = x1 ∧ s0 ≤ s1)
where x0 and x1 are characters, s0 and s1 strings of characters, and the notations '[]' and '[x0|s0]' are for the empty string and a non-empty string whose first character is x0 and rest is s0. This simple order relation may be used for English words, except that the differences in case-between uppercase and lowercase letters-are to be ignored in a first pass. In a next step, if two words differ only be the case of a letter, the uppercase letter comes at first, according to a left-to-right order. In addition, let us notice that this relation can be implemented efficiently for unaccented letters since the ASCII1 codes for letters follow the English alphabetical order.

As shown by some non-limitative examples in Figure 1, this problem may be more complicated for other languages. We can observe some changes in the alphabetical order of unaccented letters: in the Estonian language, 'z' is not the last letter of the alphabet, it is ranked between 's' and 't'. Accented letters may be treated as individual letters, like in Swedish, or interleaved with unaccented letters, like in the most common orders used in Germany. The same for ligatures: 'ae' is viewed as a separate letter in Swedish, alphabeticised like 'ae' in French. If accented letters are interleaved with unaccented ones, the latter take precedence when two words differ only by accents. In most cases, the order is left-to-right-that is true for Italian and Portuguese-but not always: the French language uses a right-to-left order (cf. Fig. 1). In some languages, digraphs may sort as separate letters: for example, 'ch' is ranked between 'h'

• The Czech alphabet is: a < b < c < č < d < . . . < h < ch < i < . . . < r < ř < s < š < t < . . . z < ž.
• In Danish, accented letters are grouped at the end of the alphabet: a < . . . < z < ae < ø < å ∼ aa. • The Estonian language does not use the same order for unaccented letters than usual Latin order; in addition, accented letters are either inserted into the alphabet or alphabeticised like the corresponding unaccented letter:

a < . . . < s ∼ š < z ∼ ž < t < . . . < w < õ < ä < ö < ü < x < y
• Here are the accented letters in the French language: à ∼ â, ç, è ∼ é ∼ ê ∼ ë, î ∼ ï, ô, ù ∼ û ∼ ü, ÿ. When two words differ by an acccent, the unaccented letter takes precedence, but w.r.t. a right-to-left order: cote < côte < coté < côté.

The French language also use two ligatures: 'ae' (resp. 'oe'), alphabeticised like 'ae' (resp. 'oe'). • There are three accented letters in German-'ä', 'ö', 'ü'-and three lexicographic orders:

DIN a -1: a ∼ ä, o ∼ ö, u ∼ ü; DIN-2: ae ∼ ä, oe ∼ ö, ue ∼ ue; Austrian: a < ä < . . . < o < ö < . . . < u < ü < v < . . . < z.
• The Hungarian alphabet is:

a ∼ á < b < c < cs < d < dz < dzs < e ∼ é < f < g < gy < h < i ∼ í < j < k < l < ly < m < n < ny < o ∼ ó < ö ∼ ő < p < . . . < s < sz < t < ty < u ∼ ú < ü ∼ ű < v < . . . < z < zs
• In Swedish, accented letters are grouped at the end of the alphabet: a < . . . < z < å < ä < ö.

'a < b' denotes that the words beginning with a are less than the words beginning with b, whereas 'a ∼ b' expresses that the letters a and b are interleaved, except that a takes precedence over b if two words differ only by these two letters.

a Deutsche Institut für Normung (German institute of normalisation). and 'i' in Czech. The Hungarian language uses a trigraph, 'dzs', as a separate letter. In addition, there are special rules for double digraphs in this language: for example, 'sz+sz' is written 'ssz' in this language, but the two successive digraphs should be restored before sorting: 'depresszió' should be sorted as 'depresz szió'. The same rule holds for the double trigraph 'ddzs', for 'dzs+dzs'. Other equivalences exist: in Danish, 'aa' is equivalent to 'å' 2 .

So it clearly appears that there cannot be a universal order, encompassing all lexicographic orders. In addition, let us recall that we are interested in such order relations in order to sort bibliographical items w.r.t. authors' names. These names may be 'foreign' proper names if we consider the language used for the bibliography, that is, the language of the document. A very simple example is the use of English names within the bibliography of a document written in French. Such foreign names may include characters outside the alphabet of the document's language. As a consequence, an order relation for sorting the items of a bibliography should be able to deal with any letter belonging to a language written using the Latin alphabet, since such letters may appear in foreign names. A good choice is to associate accented foreign letters with the corresponding unaccented letter. If we consider the English language, this means that accented letters are interleaved with unaccented letters, but unaccented letters take precedence over the foreign letter if two words differ only by these two letters. So proceed most of implementations of lexicographic order relations. Let us notice that a 2 The fact that a sequence of several letters may be equivalent to one has been pointed out in an example given in the proposal for the new standard of Scheme [cf. Sperber et al., 2007, § 1.2

]:

(string-ci=? "Straße" "Strasse") =⇒ #t because in German, the uppercase form of the 'ß' letter is 'SS'. On the contrary:

(string=? "Straße" "Strasse") =⇒ #f
As mentioned in [START_REF] Flatt | R6RS Unicode Data[END_REF], the implementation of the functions comparing strings can no longer be defined in terms of character-bycharacter comparisons, as they are in the present standard R 5 RS [1998].

foreign name may include additional letters whose association with a basic letter may be difficult: for example, the Icelandic 'þ' letter.

The Unicode collation algorithm

Unicode provides a default algorithm [2006a] to sort all the strings build over its characters. It consists of a multilevel algorithm: each step sorts the elements left unsorted by the preceding step. Here are these levels [see 2006a, § 1.1]: L1 Base characters role < roles < rule L2 Accents role < rôle < roles L3 Case role < Role < rôle L4 Punctuation role < "role" < Role Ln Tie-breaker role < ro le < "role"

The differences indicated by the underlined characters are swamped at stronger-level steps, for example, the difference between 'o' and 'ô' at Level 1. In the last example, ' ' represents a format character, which is otherwise ignorable. The first two steps are based on a decomposition property for composite characters of Unicode [2006b]. For example, the 'ô' letter, whose name and code pointgiven using hexadecimal numbers-are:

LATIN SMALL LETTER O WITH CIRCUMFLEX, U+00F4 can be decomposed into these two 'simpler' characters put together when a text is to be written:

LATIN SMALL LETTER O, U+006F COMBINING CIRCUMFLEX ACCENT, U+0302
The sort keys used for each level are extracted from a Unicode collation element table, which defaults to the DUCET3 , given by the file allkeys.txt, available at the Web site of Unicode4 . These keys are weight values. For example, these values for the letters 'c', 'o', and the combining circumflex accent, given using hexadecimal values, are: The first pass uses the first column's values as primary sort key, the second pass uses the second column's values as secondary sort key, and so on. '.0000' values are to being ignored. In our example, this means that a combining circumflex accent is ignored by the algorithm's first pass. In fact, this algorithm now consists of a binary comparison between double bytes, until the two strings can be distinguished. If a right-to-left order is to be used for the second step, like in the French language, the lists of double bytes belonging to the second column should be reversed before applying comparisons. For example, these values are '[0020;0020;003C;0020;0020]' for the 'côte' word, '[0020;0020;0020;0020;0032]' for the 'coté' word. Doing a double-byte-to-double-byte comparison allows us to conclude that côte > coté, which is the case if the default collation algorithm is applied. If we consider the right-to-left order (e.g., for French), these lists of double-bytes are to be reversed, so the comparison between '[0020;0020;003C;0020;0020]' and '[0032;0020;0020;0020;0020]' implies that côte < coté, which is correct for this language.

Weight values used as sort keys may be different from the code points ranking all the characters of Unicode and may be languagedependent. If a letter should be viewed as synonym of consecutive letters, for example, the 'ae' ligature in English, the Given a particular language, some characters are given variable weight values for the Unicode collation algorithm [see 2006a, § 3.2.2]: they may be ignorable, non-ignorable, shifted, or shifttrimmed. 'Shifted' (resp. 'shift-trimmed') means that the variableweighted characters are ranked before (resp. after) the others at the fourth step.

Our implementation

As part of MlBIBT E X, our implementation of the collation algorithm aims to serve two purposes:

• end-users should be able to add a new order for a new language 5easily, provided that they can express how this order is built in an abstract way; • resulting sorting orders for strings should be efficient, because they are used to sort list of bibliographical items, these lists being possibly big: such an operation requires many comparisons among strings. Of course, efficient sort algorithms are known for a long time, but the more efficient the comparisons among strings, the more efficient the list sort.

In addition, the general collation algorithm can be simplified in our case. Let us recall that we deal with natural languages written using the Latin alphabet.

• Only letters and whitespace characters are of interest for us: the punctuation signs can be dropped out, so the last two steps of the general algorithm are not needed. According to languages, some additional characters can be recognised-for example, the hyphen '-' character-they are either ignored or ranked between the space character and all the letters. • As far as we know, the third step is the same for all the languages we deal with: an uppercase letter takes precedence over a downcase one, if two words differ only by the case of a letter, and the order is left-to-right.

So, to derive a sorting order for strings from a generator, we have to provide four arguments.

• A list whose elements are separator characters, viewed less than any letter. It should begin by the space character and often this list contains only this character, in which case the <space-only variable can be used. This is not universal: for example, space characters are ignored when words are sorted in Hungarian (cf. the definition of the <hungarian? variable in Figure 2). • An alphabet, given w.r.t. the increasing order, as a list of strings.

If the 'classical' alphabet is used-unaccented letters of the Latin alphabet, sorted according to the usual order-just put the 'false' value (cf. the definition of the <english? variable). • An association list for additional sequences of characters, each sequence being followed by a replacement and a weight value. That means that a decomposition is to be applied to these sequences.

• A function related to the sense of the second step: when the first is finished, weight values prepared for the second step appear in reverse order, so put reverse!6 if this second step's order is left-to-right, put identity-the identity function7) for a rightto-left order. Cf. the use of these two functions for <french? and <english?.

Let us notice that only lowercase letters have to be specified, the equivalent relations among uppercase letters will be deduced.

Figure 2 shows how the order relations for the European languages described in Figure 1 are put into action. The result of our generator of order relations, <mk-order-relation, is a 2argument function. Such a function takes two strings, s0 and s1, and returns #t if s0 is strictly less than s1 according to the order relation for the corresponding language, #f otherwise. Such an order relation is able to deal with strings containing 'foreign' letters, since there are default associations for the accented letters of all the European languages. For example, the Polish letter 'ł' is associated with the 'l' letter by default, the weight value allowing 'l' to take precedence over 'ł' at the second step of the sorting order if need be. Let us give two examples:

(<english? "coté" "côte") =⇒ #t (<french? "coté" "côte") =⇒ #f

In the first example, 'é' and 'ô' are foreign letters for the English language, and the order for the second step is left-to-right. In the second example, this order is right-to-left, as in French.

Our generator proceeds as follows.

(define g0

; Definition of a zero-argument function that will section the Hungarian word 'szőlő' ('grape'). This function (mk-hungarian-word-sectioner "szőlő")) ; mk-hungarian-word-sectioner is built when the <mk-order-relation has ; been used to specify the <hungarian? order, see Fig. 2. (g0) =⇒ ("sz" . 1) ; The successive equivalent letters, digraphs, etc. of this word are returned in turn, with the corresponding (g0) =⇒ ("ö" . 2) ; weight value. (g0) =⇒ ("l" . 1) (g0) =⇒ ("ö" . 2) (g0) =⇒ #f ; The word is finished, so all the calls of this function will return the 'false' value, from now on.

(define g1 (mk-hungarian-word-sectioner "depresszió"))

; Another example. (g1) =⇒ ("d" . 1) (g1)

=⇒ ("e" . 1) (g1) =⇒ ("p" . 1) (g1) =⇒ ("r" . 1) (g1)

=⇒ ("e" . 1) (g1) =⇒ ("sz" . 2) ; Although the double digraph is written as 'ssz', it is replaced by two occurrences of the 'sz' digraph. point, the resulting trie allows us to efficiently implement word sectioning into letters, digraphs, etc.

(g1) =⇒ ("sz" . 2) (g1) =⇒ ("i" . 1) (g1) =⇒ ("o" . 2) (g1) =⇒ #f
The weight value associated with each string belonging to the alphabet is 1. So you can use weight values greater than or equal to 2 for accented letters belonging to the language. In comparison with the Unicode collation algorithm, we skip combining characters resulting from the decomposition procedure and only give their weight value. For example, the accents allowed in French over the 'a' letter are the grave and circumflex accents ('à' and 'â'), but not the acute one ('á'). The allowed accents are given 2 and 3 as weight values, they come before the default value for the acute accent over this letter. On the contrary, we do not specify that the 'ae' ligature is alphabeticised like 'ae' because it is the default definition for this character.

We show how strings are sectioned into letter groups in Figure 3. Let us consider an order relation generated by our function <mk-order-relation: when this order relation is applied to two strings, we build such sectioner functions for these two strings. We section a string as few times as possible and stop as soon as we can conclude. The example given is a sectioner for Hungarian words, let us recall that this language uses digraphs and double digraphs (cf. § 2). This example also includes words containing accented letters interleaved with unaccented ones ('ő' and 'ó', interleaved with 'ö' and 'o').

Discussion

As explained in [START_REF] Hufflen | Implementing a bibliography processor in Scheme[END_REF], we decided that MlBIBT E X should be used with several Scheme interpreters, in order to enforce this program's portability. There is a proposal to make Scheme Unicode-compliant [START_REF] Flatt | R6RS Unicode Data[END_REF]; that is planned for the future standard [Sperber et al., 2007, § § 1.1 & 1.2]; but only a little support for Unicode is provided now, rudimentary about possible encodings [Serrano, 2006, p. 35], MIT Scheme [Hanson et al., 2002, § 5.7], PLT Scheme [Flatt, 2007, § 1.2.1]. In fact, MlBIBT E X's basic encoding is Latin 1, and European characters outside it are obtained by means of a workaround: the L A T E X commands to produce them [see Mittelbach et al., 2004, Table 7.33]. For example, the Hungarian word 'szőlő' (cf. Figure 3) should be typed by ' "sz\\H{o}l\\H{o}" '. As part of MlBIBT E X, this is not a real drawback since end-users get used to type accented letters by means of L A T E X commands within their bibliography database files 9 . In addition, it will easy to adapt our functions when Scheme becomes Unicode-compliant.

Another limitation is given by exceptions. For example, let us consider the Hungarian language and the following Hungarian person names: Kótz < Kótyi. They follow the Hungarian rules for sorting names (cf. Figure 1). But we have Kót y < Kótz, because of etymological reasons, superseding the usual decomposition of words. Probably a dictionary of exceptions would be the best way to solve this problem, but we have not implemented it yet.

In MlBIBT E X, we chose to allow the introduction of a new sorting order by means of only one definition. This allows a global view of this new order relation and makes easier some coherence tests among the information about this relation. A different approach has been followed by x

• ındy [START_REF] Kehr | x • ındy Manual[END_REF], a multilingual index processor associated with L A T E X, and written using COMMON LISP [START_REF] Lewis Steele | COMMON LISP. The Language. Second Edition[END_REF]. The specification of an order relation is different because it is done step by step. There are forms: define-alphabet define-letter-group merge-rule sort-rule to specify an alphabet, a letter group (digraph, trigraph, etc.), and the replacement of a pattern. If a sort procedure is quite close to the standard way used in English, it is probably easier to use x • ındy's forms, because only small changes have to be expressed. On the contrary, MlBIBT E X allows users to define a new order relation by applying only one function, encompassing all the aspects of this new order relation.

Even if we have adapted the Unicode collation algorithm to our requirements for MlBIBT E X, we think that we could easily implement an efficient version of the whole algorithm-not limited to languages written using the Latin alphabet-by means of the same structures: tries and hash tables. A possible improvement could be the extraction of sort keys from the files available at the Web site of Unicode: it would just require an ad hoc parser.

Finally, let us remark that we used continuation-based functions to put into action the sectionning of a string into letters, including the case of digraphs. A more concise specification could have been given by using a lazy functional programming language based on the call by need-e.g., Haskell [Peyton Jones, 2003]-getting the next letter is done only if need be.

Conclusion

The availability of sorting orders depending on natural languages is planned in XSLT 10 [1999], the language of transformations used for XML 11 documents. XSLT provides an xsl:sort element that can sort strings according to the rules of a natural language [see W3C, 1999, § 10]. But in practice, most of XSLT processors implement this feature only partially, and the way to design new order relations, if need be, is unspecified by the W3C 12 recommendation as well as the documentation of these processors. Designers of bibliography styles for MlBIBT E X can use order relations by means of an element analogous to XSLT's [see [START_REF] Hufflen | Bibliography styles easier with MlBIBT E X[END_REF]. But as shown in § 4, only basic knowledge of Scheme is needed for people interested in enlarging MlBIBT E X by new relations.

When MlBIBT E X's first experimental versions were launched, there was only an order relation implementing the default collation algorithm roughly 13 . In parallel, we developed our order relation generator. That aimed to ask some people for tests about their own language. We do not forget that natural languages are an open domain, that is, it is difficult to establish general rules that may fail on particular cases since the features of natural languages are very diverse. So we consider our present work as a first version subject to changes when we explore other languages or get criticisms from end-users. But until now, feedback has been good, and as a consequence, our order relation generator has been integrated into MlBIBT E X's first public version.

Figure 1 .

 1 Figure1. Some order relations used in European languages.

Figure 3 .

 3 Figure 3. Sectioning Hungarian words.

American Standard Code for Information Interchange.

Default Unicode Collation Element Table.

http://www.unicode.org/Public/UCA/latest/allkeys.txt

By 'new language', we mean 'the specification of a natural language not yet recognised by MlBIBT E X'.

Some Schemers could observe that this function does not belong to pure functional style, because it is potentially destructive[Shivers, 1999, see]. But it is more efficient than the reverse function and the weight information list is not shared with other lists.

 7 The values function could be suitable, too. But some Scheme interpreters do not identify the result of the values function with one argument and this argument itself. That is why we have introduced an ad hoc identity function.

This word originates from the central letters of the word 'retrieval'[START_REF] Fredkin | Trie memory[END_REF]. A digital tree is a tree for storing strings in which nodes are is recognised, this trie gets access to either the corresponding value of an association, or the #t value, in which case the recognised sequence belongs to the alphabet. The other characters are ignored.• Our tries are implemented by balanced ternary search trees.'Balanced' means that for each non-empty subtree, the numbers of elements of the left, middle, and right branches do not differ from more than 1. To get this trie, we sort the alphabet according to the Latin 1 encoding, so our hash table is used to retain information about precedence within this alphabet. On another organised by substrings common to two or more strings, a trie is a particular case of a digital tree: there is only one node for every common prefix.

When a bibliography data base file is parsed by MlBIBT E X, the L A T E X commands that result in characters belonging to the Latin 1 encoding are expanded, the others are left unchanged. So parsing 'c\^{o}t\'{e}' within the value associated with a BIBT E X field results in 'côté', whereas parsing 'sz\H{o}l\H{o}' results in the Scheme string 'sz\\H{o}l\\H{o}'.

Acknowledgements

Many testers of MlBIBT E X helped me fix some errors concerning various languages: thank to them. I am also grateful to the referees, who suggested me some improvements.

(define <english (<mk-order-relation <space-only #f '() reverse!)) (define <austrian?

(<mk-order-relation <space-only '("a" "ä" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "ö" "p" "q" "r" "s" "t" "u" "ü" "v" "w" "x" "y" "z") '() reverse!)) (define <czech?

(<mk-order-relation <space-only '("a" "b" "c" "č" "d" "e" "f" "g" "h" "ch" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "ř" "s" "š" "t" "u" "v" "w" "x" "y" "z" "ž") '() reverse!)) (define <danish?

(<mk-order-relation <space-only (<push-default-alphabet '("ae" "ø" "å"))

; Put these three letters at the end of '(("aa" ("å" . 2))) reverse!))

; the standard alphabet.

(define <estonian? (<mk-order-relation <space-only '("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "z" "t" "u" "v" "w" "õ" "ä" "ö" "ü" "x" "y") '(("š" ("s" . 2)) ("ž" ("z" . 2))) reverse!)) (define <french?

(<mk-order-relation <space-only #f '(("à" ("a" . 2)) ("â" ("a" . 3)) ("è" ("e" . 2)) ("é" ("e" . 3)) ("ê" ("e" . 4)) ("ë" ("e" . 5)) ("î" ("i" . 2)) ("ï" ("i" . 3)) ("ö" ("o" . 2)) ("ù" ("u" . 2)) ("ü" ("u" . 3)) ("ÿ" ("y" . 2))) identity)) (define <german-din-1?

(<mk-order-relation <space-only #f '(("ä" ("a" . 2)) ("ö" ("o" . 2)) ("ü" ("u" . 2))) reverse!))

(define <german-din-2? (<mk-order-relation <space-only #f '(("ä" ("a" . 2) ("e" . 2)) ("ö" ("o" . 2) ("e" . 2)) ("ü" ("u" . 2) ("e" . 2))) reverse!))

(define <hungarian? (<mk-order-relation '() ; In Hungarian, a whitespace character is irrelevant when words are sorted. '("a" "b" "c" "cs" "d" "dz" "dzs" "e" "f" "g" "gy" "h" "i" "j" "k" "l" "ly" "m" "n" "ny" "o" "ö" "p" "q" "r" "s" "sz" "t" "ty" "u" "ü" "v" "w" "x" "y" "z" "zs") '(("á" ("a" . 2)) ("é" ("e" . 2)) ("ccs" ("cs" . 2) ("cs" . 2)) ("ddz" ("dz" . 2) ("dz" . 2)) ("ddzs" ("dzs" . 2) ("dzs" . 2)) ("ggy" ("gy" . 2) ("gy" . 2)) ("í" ("i" . 2)) ("lly" ("ly" . 2) ("ly" . 2)) ("nny" ("ny" . 2) ("ny" . 2)) ("ó" ("o" . 2)) ("ő" ("ö" . 2)) ("ssz" ("sz" . 2) ("sz" . 2)) ("tty" ("ty" . 2) ("ty" . 2)) ("ú" ("u" . 2)) ("ű" ("ü" . 2))) reverse!)) (define <swedish? (<mk-order-relation <space-only (<push-default-alphabet '("ae" "ä" "ö")) '() reverse!))

Figure 2. Building order relations for some European languages.

• All the letters of the alphabet-the second argument of the <mk-order-relation function-and all the members-its third argument-supersede the default definitions. • All the separator characters and letters of the alphabet are numbered and used as entries of a hash table, getting access to corresponding numbers. Such hash tables have been put into action by means of the functions of SRFI 69 [see [START_REF] Kalliokoski | Basic Hash Tables[END_REF]]. • All the separator characters, all the letters of the alphabet, all the associations' keys, and all the default definitions are used to build a trie 8 . If a single letter-or a digraph or trigraph-