Jean-Michel Hufflen
email: hufflen@lifc.univ-fcomte.fr

Keywords: XPath 2.0, xslt 2.0, Muenchian aplikacji. Pokażemy przykłady z obszaru zarządzania bibliografiami. Słowa kluczowe XPath 2.0, xslt 2.0 xslt 2.0 versus xslt 1.0. 1 eXtensible Stylesheet Language Transformations. 2 eXtensible Markup Language. Readers

XSLT 2.0 vs. XSLT 1.

Introduction

This article follows [START_REF] Hufflen | Introduction to xslt[END_REF]6], which are introductions to xslt 1 , proposed to the attenders of the 2005 and 2006 BachoT E X conferences. As for these last two demonstrations, reading this article only requires basic knowledge about xml 2 .

The first version (1.0) of xslt [START_REF]W3C: xsl Transformations (xslt). Version 1.0. w3c Recommendation[END_REF], the language of transformations used for xml texts, has succeeded and is now widely used to perform some computations, to convert an xml text into another xml-like format, or to generate html 3 pages. However, some operations are difficult to perform with the basic constructs of Version 1.0 and this led to the design of new versions. The first attempt was Version 1.1 [START_REF]W3C: xsl Transformations (xslt). Version 1.1. w3c Working Draft[END_REF]. The main problem addressed by this proposal is the portability of xslt stylesheets [27, § 3]: some functionalities tedious or impossible to express with xslt's basic constructs can be implemented in xslt 1.0 by means of extensions written using a 'more classical' programming language. But the available programming languages depend on the xslt processor used: if you develop with xsltproc4 [START_REF] Veillard | The xslt C Library for Gnome[END_REF], part of the gnome5 project, you can extend your stylesheets with C functions; if you develop with Xalan [START_REF]The Apache Xalan project[END_REF], part of the Apache project, your extensions may be written using Java [10] or C++ [START_REF] Stroustrup | The C++ Programming Language[END_REF]; if you develop with Microsoft's msxml3, you can use the ecmaScript6 language; . . . Moreover, even if several xslt processors support the same programming language for writing extensions, they may do that in incompatible ways. Let us consider the xml text given in Figure 1, specifying the contents of some omnibus volumes. For each story included into such a book, we make precise its title and the year of its first publication. The xslt program given in Figure 3 includes an example of <?xml version="1.0" encoding="ISO-8859-1"?> <books> <omnibus series="Doc Savage"> <author> <!--The organisation of author elements is the same than in [START_REF] Hufflen | Revisiting Lexicographic Order Relations on Person Names[END_REF]. such an extension: in addition to the standard output, another output file -named 'Doc Savage-years' when this stylesheet is applied to Figure 1's textis created and contains all the years associated with stories, these years being sorted.

The main addition provided by xslt 1.1 is an xsl:script element [29, § 14.4], allowing some additional functions to be directly included in xslt texts. There is a wide choice among available programming languages, an xsl:script element -including a language attribute 7 -is ignored by an xslt processor if it is unable to deal with a particular programming language.

This xsl:script element has been viewed only as a partial solution to the portability problem. In addition, the need for a deeper revision of xslt appeared at this time. As a consequence, xslt 1.1 did not go past the working draft stage, and the new 'official' version of xslt is 2.0; here are the main requirements for it [START_REF]W3C: xslt Requirements Version 2.0. w3c Working Draft[END_REF]:

• authoring extension functions should be allowed [28, § 2.6];

• grouping must be simplified and made more efficient [28, § 14];

7 Several implementations using different programming languages are allowed for a function.

• XML Schema [START_REF]W3C: xml Schema[END_REF] must be supported8 [28, § 3]: in particular, it must be possible to construct XML Schema-typed elements and attributes.

In addition, xslt 2.0 provides:

• multiple output documents for one xslt program;

• datatype binding, allowing processing data according to their datatypes;

• character mapping, improving the error-prone character escaping of xslt 1.0;

• temporary trees, replacing the result tree fragments of Version 1.0 [26, § 11.1], but more operations are permitted on temporary trees, that is, users can address parts by means of XPath expressions 9 .

XPath, the language used to address parts of an xml text, has been revised, too [START_REF]W3C: XPath Requirements Version 2.0. w3c Working Draft[END_REF][START_REF]W3C: xml Path Language (XPath) 2.0. w3c Working Draft[END_REF]. More precisely, xslt 1.0 (resp. 2.0) uses expressions of XPath 1.0 [START_REF]W3C: xml Path Language (XPath). Version 1.0. w3c Recommendation[END_REF] (resp. 2.0). In a first section, we briefly show what is new in XPath 2.0. Then Sections 2 to 7 give some illustrations of most features of xslt 2.0. Of course, these following sections do not aim to replace the reference manuals [START_REF]W3C: xml Path Language (XPath) 2.0. w3c Working Draft[END_REF][START_REF]W3C: xsl Transformations (xslt). Version 2.0. w3c Recommendation[END_REF], they just give some representative idea of the improvements provided by XPath 2.0 and xslt 2.0.

1 XPath 2.0's new features
In the XPath 2.0's data model [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 2], every value is a sequence. An atomic value is a special case of a sequence: a one-element sequence. Some syntactic constructs allows all the elements of a sequence to be processed. As an example, let s be a sequence whose elements are the numbers 30, 4, 2008 -in xslt 2.0, such a sequence may be introduced by: <xsl:sequence select="30,4,2008"/> anonymously or by: <xsl:variable name="s" select= "30,4,2008" as="xsd:integer+"/> as a variable's value -:

• for $x in $s return $x + 1 yields the sequence 31,5,2009;

• every $x in $s satisfies $x gt 0 returns true because every number belonging to s is positive;

• some $x in $s satisfies $x eq 0 returns false: zero does not belong to s.

An 'if' expression avoids using an xsl:choose element for simple conditional expressions: if (empty($s)) then 0 else $s[1] yields the first element of the s sequence if it is not empty, zero otherwise. Notice that:

• both branches -'then' and 'else' -must be present within a conditional expression;

• given X and Y two XPath expressions, the two conditional expressions:

if (empty($s)) then X else Y if ($s)
then Y else X have two different meanings: in the first case, the test yields true for an empty sequence -'()'false otherwise [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 10]; in the second case, the test yields false for an empty string, an empty node set, and zero, it returns true for all the other values [20, pp. 77 • atomic values should be compared using the operators eq, ne, lt, le, gt, ge10 -as we do in previous examples -whereas the operators =, !=, <, <=, >, >= are also allowed for sequences [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 6].

Parentheses can be used throughout XPath expressions [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 7]:

(if (author) then author else editor)/name (: If there is an author element, select its name child, otherwise, select the name child of the editor element. :) Notice that XPath 2.0's expressions can embed comments, surrounded by '(:' and ':)'.

XPath 2.0 offers more numerical data types than XPath 1.0. In particular, some numerical types defined in XML Schema -e.g., xsd:integer for the relative integers -are allowed [START_REF]W3C: xml Schema Part 2: Datatypes[END_REF]. Likewise, other data types for dates, times, and durations are provided.

XPath 2.0 also provides functions that allows the contents of strings to be processed w.r.t. regular expressions: matches, replace, tokenize [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 10].

Last, let us mention that XQuery, a query language comparable to the languages used in database management, is an extension of XPath 2.0. A didactic introduction to XQuery is [START_REF] Walmsley | XQuery[END_REF], the official document is [START_REF]W3C: XQuery 1.0: an xml Query Language. w3c Working Draft[END_REF].

<?xml version="1.0" encoding="ISO-8859-1"?> <xsl:stylesheet version="1.0" id="grouping" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:redirect="org.apache.xalan.xslt.extensions.Redirect" extension-element-prefixes="redirect"> <!--The extension-element-prefixes attribute gives the prefixes of extension functions or elements. If need be, these external elements (resp. functions) are invoked (resp. called) when the stylesheet is applied [26, § 14]. Xalan includes a Java class, org.apache.xalan.xslt.extensions.Redirect, providing three methods: open(), close(), and write(). --> <xsl:output method="xml" encoding="ISO-8859-1" indent="yes"/> <xsl:key name="by-year" match="story" use="year"/> <xsl:template match="books"> <xsl:variable name="the-stories" select="omnibus/story"/> <items> <xsl:for-each select="$the-stories[generate-id() = generate-id(key('by-year',year)[1])]"> <!--That is, each subtree corresponding to the first occurrence of a year, given by the first position of the node set returned by the key function. --> <xsl:sort select="year" data-type="number"/> <!--Sort them w.r.t. year information. The data-type attribute defaults to text. --> <by-year year="{year}"> <!--Some attributes -e.g., select -are interpreted, but not all. In these last cases, the '{...}' notation forces the value to be evaluated as an XPath expression [26, § 7.6.2]. --> <!--Copy the complete fragments [26, § 11.3] of all the title elements of the stories coming out in the same year: --> <xsl:for-each select="key('by-year',year)"><xsl:copy-of select="title"/></xsl:for-each> </by-year> </xsl:for-each> </items> <xsl:if test="element-available('redirect:write')"> <!--This test allows us to invoke the beginning of this template even if the redirect:write extension element is unavailable. In other words, we can run this stylesheet with another xslt processor than Xalan. If Saxon [START_REF] Michael | Saxon. The xslt and XQuery Processor[END_REF] is used as an xslt 1.0 processor, the equivalent element is saxon:output, the saxon prefix being bound to the namespace http://icl.com/saxon. --> <redirect:write file="{@series}-years"> <xsl:for-each select="$the-stories/year"> <xsl:sort select="." data-type="number"/> <xsl:value-of select="concat(.,' ')"/> </xsl:for-each> </redirect:write> </xsl:if> </xsl:template> </xsl:stylesheet>

Grouping

Given the xml text given at Figure 1, let us try to group the titles of included stories by year. More precisely, we are seeking for the xml text given in Figure 2.

In xslt 1.0, the only way to group elements is to define a key partitioning these elements 11 . Applying it to such an example results in a complex and memory-intensive method, called the Muenchian <?xml version="1.0" encoding="ISO-8859-1"?> <xsl:stylesheet version="2.0" id="grouping-plus" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <xsl:output method="xml" encoding="ISO-8859-1" indent="yes"/> <xsl:output method="text" encoding="ISO-8859-1" name="additional-text"/> <xsl:template match="books"> <xsl:variable name="the-stories" select="omnibus/story" as="element(story)*"/> <items> <xsl:for-each-group select="$the-stories" group-by="year"> <xsl:sort select="xsd:integer(year)"/> <!--Shorthand for 'year cast as xsd:integer'. --> <!--The contents of the year elements are coerced into integers, so they are sorted as numbers. --> <by-year year="{year}"><xsl:copy-of select="current-group()/title"/></by-year> </xsl:for-each-group> </items> <xsl:result-document href="{@series}-years" format="additional-text"> <!--The outputs performed when this element is invoked are stored into the file whose name is given by the href attribute. Let us look at Figure 3: the by-year key allows us to group all the story elements sharing the same year. We retain the story elements corresponding to the first occurrences of each year, given inside a year element. To do that, we label each story element with a unique identifier by means of the generate-id function [26, § 12.4]. Then these story elements are sorted according to the information about years [26, § 10]. Approaching our goal, for each story element corresponding to the first occurrence of a year, we consider all the story elements whose the information about the year is the same, given by the by-year key. At last (!), the title elements of each of these story elements are copied into the result, that is, they are embedded into a by-year element. In analogous applications, several keys may be needed, corresponding to group levels.

The implementation of the same functionality in xslt 2.0 using groups -see Figure 4 -is indisputably easier to understand. . . and much more ef-ficient. The story elements sharing the same year information are grouped. Then the current-group function allows us to obtain the successive itemsstory elements in this example -that are members of the group we are processing [START_REF] Michael | xslt 2.0 Programmer's Reference[END_REF]Ch. 7]. So when XPath 2.0's expression current-group()/title is applied, we get all the successive title elements of each member of this group. Let us remark that we need neither keys, nor generated identifiers associated with nodes of the source text.

The main element processing groups in xslt 2.0 is xsl:for-each-group. More precisely, nodes of the xml text that are selected by an XPath expression given by the select attribute may be grouped since they share the same value, specified by the group-by attribute, as we do in Figure 4. This xsl:for-each-group element may be used with another attribute, group-adajcent, to group only adjacent elements. That is, the first item of adjacent elements starts a new group, and the subsequent item belongs to the same group if it shares the same value w.r.t. the group-adjacent attribute, otherwise, a new group is started. This rule is iterated until the end of adjacent elements. Two other possible attributes of this elementgroup-starting-with and group-ending-with -are also used to group adjacent elements. In the first (resp. second) case, just specify a pattern -as an XPath expression [12, Ch. 6] -matching the first (resp. last) element of each group. More details and many examples are given in [START_REF] Michael | xslt 2.0 Programmer's Reference[END_REF]Ch. 5].

Multiple outputs

As mentioned in the introduction, we can implement this functionality in xslt 1.0 by using some extension functions. Figure 3 shows how to proceed if you use Xalan. If another xslt processor is used, this feature is protected by an xsl:if element, so no error occurs. However, a complete implementation should take each xslt processor into account, and let us recall that xslt processors do not have to provide it. Finally, let us notice that in this implementation provided by Xalan, the output mode is supposed to be the same than the main stream'shere, xml -which may be unsuitable in some applications.

On the contrary, the program given in Figure 4 runs under any processor of xslt 2.0. There is a main output stream, and additional ones can be managed by means of the xsl:result-document element [START_REF] Michael | xslt 2.0 Programmer's Reference[END_REF]Ch. 5]. Additional output methods can be specified, in which case they must have been given a name attribute. If the format attribute of the xsl:result-document is given, it must be such a name, otherwise the corresponding output stream refers to the default xsl:output element. About possible formats, let us mention that you may set the method attribute to xhtml for generating xhtml 12outputs, in addition to the methods already known in xslt 1.0: html, text, xml.

4 Functions xslt 2.0 allows the definitions of functions that may be used inside XPath expressions. These functions use xslt's constructs, so they are more portable than xslt 1.1's xsl:script elements. They must belong to a namespace. As shown by Figure 5, the as attribute allows us to make precise the type of the function's result, as well as the type of a parameter or a variable. Let us recall that such values are sequences, the '?' marker used inside as attributes denotes a zero-or-one-length sequence.

<xsl:function name="add:month-position" as="xsd:integer"> <!--The add namespace prefix is supposed to be defined [19, pp. 41-45]. xsd is the prefix used for XML Schema's types. --> <xsl:param name="the-month" as="element(month)?"/> <xsl:variable name="the-index" select="index-of(('jan','feb',...,'dec'), name($the-month/*[1]))" as="xsd:integer?"/> <!--If the item does not belong to the sequence, the index-of function returns an empty sequence [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 10]. --> <xsl:value-of select="if (empty($the-index)) then 13 else $the-index"/> </xsl:function> If we assume that the XPath expression month gives access to an element defined as follows 13 :

<!ELEMENT month (jan | feb | ... | dec)> <!ELEMENT jan EMPTY> <!ELEMENT feb EMPTY> ... <!ELEMENT dec
EMPTY> by using a dtd14 , the function given in Figure 5 returns the number of a month and can be used throughout an XPath expression, as follows: <xsl:sort select="add:month-position(month)"/> Since this function returns 13 when the optional element month is not found, items without month information are ranked at the end. When such a function is called, formal parameters -given by successive xsl:param elements -are bound to actual values regarding positions: the first parameter is bound to the first actual value, and so on. An actual value is required for each parameter of a function, so default values are not allowed for such parameters 15 . The override attribute controls what happens if a userwritten function and a vendor-supplied one have the same name. If it is set to yes (resp. no), the former (resp. latter) wins. It defaults to no.

Datatype binding

A complete description of this feature would be too long and outside the scope of this article, because it requires good knwoledge of the way used in XML Schema to define types. However, we can mention some simple cases showing that the type information is widely used in xslt 2.0.

When a node set is to be sorted in xslt 1.0, the data-type attribute defaults to text, that is, for a lexicographical sort [26, § 14]. So you have to set it to number for a numerical sort. When the key sort has been recognised as a number in xslt 2.0, the sort is numerical by default [35, § 13.1]: an example is given in Figure 4. Another example is provided by the function given at Figure 5. If this function is used as a sort key, as shown in Section 4, we do not have to make precise the data-type attribute of the xsl:sort element, either, since our function includes the declaration as="xsd:integer". The as attribute provides type information and can be associated with the elements xsl:function, xsl:param, xsl:variable, and xsl:with-param. Even if as attributes are not always needed, we recommend to use them as far as possible, as we do in our examples. Besides, this choice allows us to show the expressive power of the language of types: e.g., the use of '?', '*', '+', related to regular expressions 16 . If there is no as attribute, any value of any type is acceptable, that is equivalent to specifying ' as="item()*" '. Of course, type-checking may result in significant loss of efficiency, but it can help develop a stylesheet; it allows you to control what happens when data are passed by functions, variables or parameters. In addition, the specification of some operations may be made easier, as abovementioned about sorting.

Let X be an XPath expression and T be a type expression, the following operators, described in [11, Ch. 9], are usable inside XPath expressions:

X cast as T coerces X into an expression being type T (see Figure 4), if this operation fails, an error is signalled;

X treat as T returns X if it is of type T , otherwise an error is signalled.

Character maps

Another new feature introduced by xslt 2.0 is given by character maps, especially interesting if you derive source texts for the L A T E X word processor [START_REF] Lamport | A Document Preparation System. User's Guide and Reference Manual[END_REF] from xml texts.

In xslt 1.0, all the characters belonging to a constant string or the contents of an xsl:text element are copied verbatim into the result, except if the disable-output-escaping attribute -which defaults to no -is set to yes, in which case the entities specifying special characters used throughout xml texts [19, pp. 48-49] are replaced by the characters themselves [26, § 16.4]. For example:

<xsl:text disable-output-escaping="yes"> ... Mickey & Mallory... </xsl:text> will generate '... Mickey & Mallory...'. If we are interested in deriving texts suitable for L A T E X, we have to pay attention to L A T E X's special characters, that is, we have to produce '... Mickey \& Mallory...' for this example. The translate function [25, § 4.2] allows us to replace a character by another, or to remove a character 17 . But it cannot be used to replace a single character by a sequence of several characters. So processing L A T E X's special characters by means of XPath 1.0's functions is tedious 18 .

As shown by Figure 6, the character maps of xslt 2.0 allows the replacement of a single character by a string, by means of xsl:output-character elements. You can use several character maps for an output stream, given by the use-character-maps attribute 19 . We think that the best method consists of putting characters down as they must appear within the result. Control characters -e.g., '{' and '}' in L A T E X -are represented by positions belonging to a private use area of Unicode encoding [START_REF]The Unicode Consortium: The Unicode Standard Version 5.0[END_REF]. Then the character map is used for characters that must be escaped or belong to the private use area. The xslt stylesheet given in Figure 6 generates an output suitable for Plain T E X [START_REF] Ervin | Computers & Typesetting[END_REF]: applying it to the xml text given in Figure 1 yields Figure 7's text. We use the first positions of the range U+E000-U+F8FF -which is a private use area of Unicode's basic multilingual plane -for the character opening a command name, for the beginning and end of an argument of a T E X command, and for on-off switch to the mathematical mode. We define some character entities by using a 'trick' already described in [START_REF] Hufflen | Introducing L A T E X users to xsl-fo[END_REF]. Such technique is used in the example given in [12, pp. 234-235], although additional characters belonging to the private area could also be defined as global variables, i.e., by means of xsl:variable elements that are children of the xsl:stylesheet root element. The character codes given in the TeX-map character map have been established according to the tables of [14, App. F].

As another example, Figure 8 shows how the Polish letters that do not belong to the Latin 1 encoding20 can be replaced by the L A T E X commands producing them21 .

Other features

Let us consider the month element defined in Section 4, Figure 9 shows a function returning the English name corresponding to such an element. When this element is absent, an empty string is returned. As shown in this figure, a temporary tree is created by using an xsl:variable element with no as attribute. Parts of such a tree can be accessed by means of XPath expressions.

In addition to the XPath functions mentioned in Section 1 about analysing a string w.r.t. regular expressions, let us notice the elements:

xsl:analyze-string xsl:matching-substring xsl:non-matching-substring and the regex-group function [START_REF] Michael | xslt 2.0 Programmer's Reference[END_REF]Ch. 5 & 7], which also serve this purpose.

Going further

A more didatic introduction to the differences between Versions 1.0 and 2.0 is [START_REF] Mangano | [END_REF]. More details about the xsl:sort element are given in [START_REF] Hufflen | Revisiting Lexicographic Order Relations on Person Names[END_REF]. Stylesheets using xslt 1.0 are roughly compatible if they are run by an xslt 2.0 processor, except for the points signalled in [11, App. C] and [12, pp. 123-128]. Here is a short overview.

• The main incompatibility between XPath 1.0 and 2.0 concerns numbers: as an example, let us consider the test "10" > "2". In XPath 1.0, the two strings are dynamically converted into numbers and this test yields false. In Version 2.0, if the two operands have not been recognised as numbers by means of a type annotation, they are considered as strings, so the test uses the lexicographical order and yields true. Likewise, comparisons with a boolean value may yield different values.

• In xslt 1.0, if a single item is expected and the supplied value contains more than one item, the first item is returned and the rest is ignored. This rule concerns the parameters of a function, and the values of the select attribute of the elements xsl:sort, xsl:value-of. In xslt 2.0, the xsl:sort element signals an error; in the other cases, all the items are processed: the results are separated by space characters, except if the separator attribute is set when the xsl:value-of element is used.

• If an xsl:call-template element supplies a parameter undefined in the called template, it is ignored in xslt 1.0. In xslt 2.0, an error is signalled.

• Most of other incompatibilities are related to datatype management, more dynamic in Version 1.0: see above about XPath's two versions. At the present time, there are only a few processors for xslt 2.0. The most known, Saxon, exists in two versions [START_REF] Michael | Saxon. The xslt and XQuery Processor[END_REF]: an open-source version implementing the basic conformance to xslt 2.0, and a full commercial product, schema-aware. Another choice is AltovaXML <xsl:character-map name="polish-letters-nlatin1"> <xsl:output-character character="Ą" string="{\Aob}"/> <!--'Ą' --> <xsl:output-character character="ą" string="{\aob}"/> <!--'ą' --> <xsl:output-character character="Ć" string="\'{C}"/> <!--'Ć' --> <xsl:output-character character="ć" string="\'{c}"/> <!--'ć' --> <xsl:output-character character="Ę" string="{\Eob}"/> <!--'Ę' --> <xsl:output-character character="ę" string="{\eob}"/> <!--'ę' --> <xsl:output-character character="Ł" string="{\L}"/> <!--'Ł' --> <xsl:output-character character="ł" string="{\l}"/> <!--'ł' --> <xsl:output-character character="Ń" string="\'{N}"/> <!--'Ń' --> <xsl:output-character character="ń" string="\'{n}"/> <!--'ń' --> <xsl:output-character character="Ś" string="\'{S}"/> <!--'Ś' --> <xsl:output-character character="ś" string="\'{s}"/> <!--'ś' --> <xsl:output-character character="Ż" string="\.{Z}"/> <!--'Ż' --> <xsl:output-character character="ż" string="\.{z}"/> <!--'ż' --> </xsl:character-map> <xsl:variable name="months"> <!--This declaration is allowed in xslt 1.0, but the contents of this variable, containing xml elements that do not come from the source text, would be viewed as a whole, that is, an XPath expression such as $months/month-abbr[. = "feb"] would result in an error. --> <month-abbr english-name="January">jan</month-abbr> <month-abbr english-name="February">feb</month-abbr> ... <month-abbr english-name="December">dec</month-abbr> </xsl:variable> <xsl:function name="add:english-month-name" as="xsd:string"> <xsl:param name="the-month" as="element(month)?"/> <xsl:variable name="the-position" select="index-of(for $node in $months return $node/month-abbr,name($the-month/*[1]))" as="xsd:integer?"/> <xsl:value-of select="if (empty($the-position)) then " else $months/*[$the-position]/@english-name"/> </xsl:function>

Figure 1 :

 1 Figure1: Specification of some stories collected in omnibus volumes.

Figure 2 :

 2 Figure 2: Grouping elements of Fig. 1's text.

Figure 3 :

 3 Figure 3: Muenchian method of grouping elements in xslt 1.0.

Figure 4 :

 4 Figure 4: Grouping elements by values in xslt 2.0.

Figure 5 :

 5 Figure 5: xslt function returning a month's number.

Figure 7 :

 7 Figure 7: Applying Fig. 6's stylesheet to Fig. 1's text.

 TM 2008 [1]. All the examples given throughout this article have been tested with Saxon's open-source version.

Figure 8 :

 8 Figure 8: Character map for the Polish letters not included in the Latin 1 encoding.

Figure 9 :

 9 Figure 9: Using a temporary tree.

 -80]; use the node-set function provided by the common module of exslt (Extensions to xslt) [20, App. A].

	<items>
	<by-year year="1941">
	<title>The Invisible-Box Murders</title>
	<title>Birds of Death</title>
	</by-year>
	<by-year year="1942">
	<title>The Devil's Black Rock</title>
	<title>The Too-Wise Owl</title>
	</by-year>
	<by-year year="1943">
	<title>Waves of Death</title>
	</by-year>
	<by-year year="1945">
	<title>The Wee Ones</title>
	<title>Terror Takes 7</title>
	<title>Terror and the Lonely Widow</title>
	</by-year>
	</items>

We used this xslt processor for the examples demonstrated in[START_REF] Hufflen | Introduction to xslt[END_REF] 6].

[START_REF] Hufflen | Introduction to xslt[END_REF] gnu Network Object Model

Environment.6 This script language comes from JavaScript[START_REF] Flanagan | The Definitive Guide[END_REF] and has been standardised by the ecma (European Computer Manufacturers Association).TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Schemas allow users to define types precisely, which makes more precise the validation of a xml text. A short comparative study of some schema languages, including XML Schema, is[START_REF] Van Der | Comparing xml Schema Languages[END_REF].

In fact, this operation is permitted by most of xslt 1.0 processors, after a conversion of the result tree fragments into a node set -which is the type used by XPath to handle parts of an xml document -but this functionality does not belong to standard xslt 1.0. If you use Xalan, this can by done by the xalan:nodeset, the xalan namespace prefix being http://xml.apache.org/xalan. Another way is to

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Resp.: 'EQuals', 'Not Equals', 'Less Than', 'Less than or Equal to', 'Greater Than', 'Greater than or Equal to'. TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

We already showed how to use keys in[6].

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

eXtensible HyperText Markup Language. This a reformulation of html using xml conventions. See[START_REF] Musciano | html & xhtml: The Definitive Guide[END_REF] for more details.

xml trees generated by MlBibT E X -our reimplementation of the BibT E X bibliography processor[START_REF] Patashnik | Part of the BibT E X distribution[END_REF] -are conformant to this definition[START_REF] Hufflen | Revisiting Lexicographic Order Relations on Person Names[END_REF]

].[START_REF] Ervin | Computers & Typesetting[END_REF] Document Type Definition. A dtd defines a document markup model, see[19, pp. 148-155] for more

details.[START_REF] Lamport | A Document Preparation System. User's Guide and Reference Manual[END_REF] Concerning a parameter of a xsl:template element, a required attribute set to yes forces it to be passed explicitly when the template is invoked. In this case, default values are not allowed, either. This required attribute did not exist in xslt 1.1 and defaults to no.

X castable as T returns true if the corresponding coercion operation would succeed, false otherwise;X instance of T returns true if X is of type T , false otherwise;[START_REF] Mangano | [END_REF] A complete specification of this language is given in[12, pp. 74-79].

To remove a character, call the translate function with a source character with no corresponding position within the third argument. For example, translate(s0,"$&","£") returns a string in which all the occurrences of the '$' character (resp. the '&' character) in the s0 string are replaced by the '£' character (resp. removed).

[START_REF] Patashnik | Part of the BibT E X distribution[END_REF] This problem is solved in MlBibT E X, which uses the nbst language, close to xslt 1.0, for specifying bibliography styles. We have added the value LaTeX to the possible values for the mode attribute of the nbst:output element [4, App. A], analogous to the xsl:output

element.[START_REF] Ray | Learning xml[END_REF] What to do if several xsl:output-character declarations conflict is unspecified: an xslt processor may report an error, or use the one that occurs last in the stylesheet.TUGboat, Volume 0 (2060), No. 0 -

Proceedings of the 2060 Annual Meeting

The encoding encompassing all the Polish letters is Latin 2.

As we explain in[START_REF] Hufflen | Managing Order Relations in MlBibT E X[END_REF], MlBibT E X is presently based on the Latin 1 encoding, and letters belonging to other encodings are replaced by L A T E X commands. In fact, tables analogous to this character map are used internally.

Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has written the Polish translation of the abstract. Tomasz Przechlewski has helped translate keywords, thanks to him, too.