Jean-Michel Hufflen
email: hufflen@lifc.univ-fcomte.fr

Revisiting Lexicographical Order Relations on Person Names *

Keywords: Lexicographical order relations, dictionaries, bibliographies, Unicode, xslt 1.0, xslt 2.0, MlBibT E X, nbst, Scheme. Streszczenie

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Given the bibliographical citations of a document's body, referring to entries of bibliography databases, a bibliography processor 's task consists of extracting the information concerning these entries, and arranging it in order for a word processor to be able to add all the bibliographical references as a 'References' section, usually put at a document's end. Bibliography styles control the layout of bibliographical references: for example, authors' first names are sometimes put in extenso, sometimes abbreviated. A good example of such a cooperation between a word and bibliography processor is given by L A T E X and BibT E X [12, § 12.1.3], this bibliography pro-cessor providing many bibliography styles and various types of bibliographical entries: article, book, booklet, etc. [12, Tables 13. 1 & 13.4].

Most often, references are sorted according to authors' or editors' names, even if there exist unsorted styles, that is, the order of items is the order of first citations of these items throughout the document. Concerning the sort operation w.r.t. 'authors' or editor's names', a document usable within a bibliography is supposed to be attributed to an author, except for some particular cases: an anthology or a conference's proceedings, in which case an editor is given. Some documents may be anonymous -good examples are given by Web pages -in which case a key is used for sorting. BibT E X uses this modus operandi -by means of a KEY field -for the entry types booklet, manual, misc. Moreover, this information often refers to a real person, but is sometimes given by an institution's name, viewed as a last name without a first name. In the following, the 'author' word will denote this kind of information, by language abuse.

The purpose of this article is to show that this sort operation may lead to strange results, so it should be specified precisely. In [7], we explained that sorting words is a language-dependent operation, and how we tackle this problem in MlBibT E X1 , our reimplementation of BibT E X focusing on multilingual features. The problem addressed here is to assemble partial results of this operation. In Section 1, we show how most of BibT E X's standard bibliography styles proceed. Then we mention that MlBibT E X's some new features cause this problem to be more complicated.

Let us recall that the result of parsing a bibliography database (.bib) file by MlBibT E X may be viewed as an xml2 tree, according to the conventions of sxml [START_REF] Hufflen | MlBibT E X's Version 1.3[END_REF] . That allowed us to use a language close to xslt4 nbst5 -for specifying bibliography styles. So we examine which solutions are provided by xslt in Section 3. Finally, Section 4 explains the compromise we have reached in MlBibT E X.

Reading this article requires only a basic knowledge of BibT E X and xml. Some parts related to xslt are more technical -especially some features related to xslt 2.0, the new version -but should be understood after reading [8].

1 BibT E X's standard bibliography styles A comprehensive study of the management of names in BibT E X -that is, values associated with the fields AUTHOR and EDITOR -is given in [6]. Here we just recall that BibT E X recognizes four components inside a name: First (for a first name), von (for a particle), Last (for a last name), Junior [13, § 4]. As suggested by the capitalisation used within this terminology, the words belonging to the von field are supposed to begin with a lowercase character, whereas the words belonging to the First and Last fields are supposed to begin with an uppercase character.

The SORT command used in BibT E X's bibliography styles [12, Table 13.7] is based on sort keys computed for each entry, and stored into entry variables -existing for each entrysort.key$. If we look into standard bibliography styles, we can see that this sort key for an entry is mainly based on concatenating parts of authors' names, followed by the entry's year and the title [START_REF] Hufflen | Names in BibT E X and MlBibT E X[END_REF] . This string is truncated over entry.max$ characters [START_REF] Hufflen | Managing Order Relations in MlBibT E X[END_REF] . Some examples of sort keys are given in Figure 1. Sort keys are based on concatenations of string using only digits and lowercase characters. Non-alphanumeric characters are removed by means of BibT E X's purify$ function [12, Table 13.8]. We can notice that comparison levels are denoted by different numbers of consecutive space characters: one space character may appear inside a part of a name8 , two consecutive space characters separate the Last and First parts of the same name, three (resp. four) consecutive space characters appear before a new name (resp. the year and the title).

A first remark: within most of BibT E X's standard bibliography styles, the von and Last part are separated only by a single space character within sort.key$'s values. That causes a name to be alphabeticised w.r.t. the particle, if it exists. In particular, Figure 1 shows that the names 'du Bois, Paul' and 'Du Bois, Paul' are viewed equivalent. That is probably American usage, but according to European background, 'du Bois, Paul' should be alphabeticised under 'B-', as 'Bois (Paul du)'. However, this behaviour could be fixed easily in this case by changing the order of parts within the concatenations performed for a name.

The 'others' keyword is replaced by 'et al' inside a sort key. As a consequence, the AUTHOR information 'Kenneth Robeson and others' comes before 'Kenneth Robeson and Will Murray'. We think that is incorrect: an ellipsis about additional names should be ranked after specified additional names. In this case, too, that could be fixed by another replacement value for 'others'. Another point is that years are compared lexicographically, so 2 comes after 1964! Of course, this point is not very important in practice because years coming from 'actual' bibliography database files are often close each to others; it is rare to include entries for documents written in the 1st and 20th centuries, but in such a case, the sort operation fails [START_REF] Michael | xslt 2.0 Programmer's Reference[END_REF] .

Besides, let us notice that sorting w.r.t. month information must be explicitly programmed in bibliography styles, it does not appear within sort keys for most standard styles. In fact, nothing is specified about entries sharing the same sort key: according to such styles, the only way to influence the order of items sharing the same author and year information is to add dummy commands at the beginning of the value associated with a TITLE field: TITLE = {\before The Man of Bronze} TITLE = {\last Brand of the Werewolf} Since these dummy commands -equivalent to the \relax command [11, Ch. 24] -must be defined when L A T E X processes the generated references, such a workaround complicates the sharing of such entries among several people.

To sum up, the sorting operation performed by BibT E X works in most practical cases, but not always. Some points are quite easy to customise, some are more difficult to fix, and some are unfortunately hard-wired.

Improving BibT E X

MlBibT E X's syntactical improvements about specifying names are described in [6]. Here we just recall that co-authors are introduced by the 'and' keyword, like in BibT E X, and possibly followed by collaborators [START_REF] Kiselyov | xml and Scheme[END_REF] , introduced by the 'with' keyword. A good example is given by the co-authors and collaborators of The L A T E X Companion's second edition [12]: Mittelbach and Michel Goossens with Johannes Braams with David Carlisle with Chris A. Rowley with Christine Detig with Joachim Schrod} Like in BibT E X, the 'others' keyword can be used: 'and others' (resp. 'with others') for additional co-authors (resp. collaborators) left unspecified.

AUTHOR = {Frank
The specification of author and editor elements within the representation of bibliographical entries in xml used internally by MlBibT E X is given in Figure 2. Initially, this dtd 11 was derived from [2, § B.4.4.3] and has been extended to all the elements and attributes used throughout MlBibT E X. However, for sake of simplicity, we have dropped out some possible children of the name element [START_REF] Mittelbach | The L A T E X Companion[END_REF] .

In [4], we give a simple example of sorting bibliographical items, provided that there is only an author. In fact, the actual template uses an external function written in Scheme [START_REF] Patashnik | Part of the BibT E X distribution[END_REF] . The problem is more complicated because the maximum number of possible authors is not bound a priori, and because there are two connectors: and, with. Moreover, we cannot mix co-authors and collaborators; the latter should be used as additional sort keys, for bibliographical items sharing the same sequences of co-authors.

Using xslt

Now let us examine how sorting person names can be put into action using xslt. If we consider xslt 1.0 [17, § 10], an acceptable solution is probably the concatenation of all the parts of a name, as did in BibT E X, since the only way to get a sort key is the 11 Document Type Definition. Such a file defines a document markup model, see [14, pp. 148-155] for more details. Now schemas are more and more used for such a definition, but we would not take any actual advantage of them for our present purpose.

12 Such elements are used for multilingual purposes. For example, when an author is expressed using another language than the current entry's, e.g.:

AUTHOR = {[Robert Silverberg] : english}
whereas the language's entry is french. Another use concerns possible transliteration of names originating from languages using non-Latin alphabets:

AUTHOR = {[Александр Константинович Глазунов] * russian [Alexander Konstantinovich Glazunov]}
See [6] for more details. [START_REF] Patashnik | Part of the BibT E X distribution[END_REF] MlBibT E X is written using Scheme. Readers interested in an introductory book to this functional programming language can refer to [15]. <!--Using entity parameters for repeated specifications. --> <!ENTITY % author-or-editor "(name,(and,name)*,and-others?,(with,name)*,with-others?)"> <!ENTITY % language-possibly "language NMTOKEN #IMPLIED"> <!--Authors and editors. use of the select attribute of the xsl:sort element. If there are several authors, there cannot be as many xsl:sort elements -giving primary sort key, secondary sort key, etc. -as authors, since authors' number is not known statically. For the same reason, a complete concatenation of parts of all the names can only be implemented by means of an extension function, using another programming language than xslt.

The situation is better in xslt 2.0 [18, § 13], since a sort key given by means of the select attribute can be computed using an XPath 2.0's expression [8]. Let us consider person names expressed using the dtd given in Figure 2, then Figure 3 shows what to do if there is only one author or editor.

Unfortunately, this modus operandi cannot be generalised to multiple authors. Successive sort keys must be expressed using successive xsl:sort elements, so there is no way to insert some tests in order to check whether elements and, and-others, with, with-others elements are remaining. In fact, we experienced a solution, but it consists of a complete re-programming of the sort operation, using sequence constructors of xslt 2.0 [18].

A solution working with the xsl:sort element is to build a concatenation of all the names, the elements and, and-others, with, with-others being replaced by markers belonging to the private use area of Unicode's basic multilingual plane [16]. To do that, we use characters entities like in [8, § 6 /othername) then $the-people/name [1]/othername/(if (@sortingkey) then @sortingkey else .) else " (: Some other cases are dropped out (cf. Fig. 2). :)"/> <xsl:sort select="(if (author) then author else editor)/name [1]/personname/first"/> <xsl:sort select="(if (author) then author else editor)/name [1]/personname/von"/> <xsl:sort select="(if (author) then author else editor)/name [1]/personname/junior"/> <xsl:sort select="xsd:integer(year)"/> <!--Secondary sort key (numerical sort). --> <xsl:sort select="add:month-position(month)"/> <!--The add:month-position function is given in [8, Fig. 5]. --> </xsl:apply-templates> </xsl:template> ... The result is given in Figure 4. We intentionally put as many 'as' attributes as possible, these attributes specifying type information (cf. [8, § 5]), in order for readers to see more easily which type is used by each variable, which type is returned by each template computing a part of the primary sort key. We use a mode [18, § 6.5] for computing sort keys, templates without modes are reserved for putting down the contents of generated references, that is, the result of this stylesheet.

</xsl:stylesheet>

Michael Kay [9, p. 429] mentions that such an implementation, based on concatenations, is preferable. As an example, it sorts the name 'Macarthur, John' before 'MacArthur, Philip'. Using different sort keys for the last and first names would revert this order, because a tertiary difference -the case -in the last name is considered more significant that a primary difference -the characters -in the first name [START_REF] Ray | Learning xml[END_REF] . From our viewpoint, this point is debatable and should anyway be decided by bibliography style designers. In addition, if we consider efficiency, building concatenations causes much space to be allocated, and many character sequences to be copied, whereas examining the first letters of the last name occurring at first often makes a difference.

14 See [7] for a more complete explanation about these successive steps of a lexicographic order among strings.

Of course, the same remark holds good about the string concatenations performed by BibT E X's standard bibliography styles (cf. § 1).

MlBibT E X's solutions

The revisions we propose hereafter should be viewed as compromises: MlBibT E X can be used as it is, and work 'as well as BibT E X'. That is, users can accept the results of the default sorting operation [START_REF] Springer | Scheme and the Art of Programming[END_REF] . But these revisions should maintain a 'classical' use of the nbst:sort element, and allow users to perform a better customisation about sorting bibliographical items w.r.t. authors' names.

A new field, so-called LASTSORTKEY, has been added to the fields recognised by MlBibT E X. This field is optional, and must be set to an integer (possibly negative). It is modelled as an attribute in our xml representation: <article lastsortkey="...">...</article> <book lastsortkey="...">...</book> ... and can be used in the last step of a sort operation, as did in 'new' standard bibliography styles --> <xsl:variable name="sort-people-subkey-s" as="xsd:string+"> <xsl:apply-templates select="(if (author) then author else editor)/*" mode="sort-people-key"/> </xsl:variable> <xsl:value-of select="$sort-people-subkey-s" separator=""/> </xsl:sort> <xsl:sort select="xsd:integer(year)"/> <xsl:sort select="add:month-position(month)"/> </xsl:apply-templates> </xsl:template> <!--Computing the sort key for a name, resulting in a single string. --> <xsl:template match="name" mode="sort-people-key" as="xsd:string"> <xsl:apply-templates mode="sort-people-key"/> </xsl:template> <xsl:template match="personname" mode="sort-people-key" as="xsd:string"> <xsl:value-of select="last,'&start-firstname;',first,'&start-von;',von,'&start-junior;',junior" separator=""/> </xsl:template> <xsl:template match="othername" mode="sort-people-key" as="xsd:string"> <xsl:value-of select="."/> </xsl:template> <!--Replacing connector elements by markers. In the first two cases, xsl:text elements are useless, because markup surrounds the string to be put down. --> <xsl:template match="and" mode="sort-people-key" as="xsd:string">&and-marker;</xsl:template> <xsl:template match="with" mode="sort-people-key" as="xsd:string">&with-marker;</xsl:template> <xsl:template match="and-others" mode="sort-people-key" as="xsd:string"> <xsl:text>&and-others-marker;</xsl:text> </xsl:template> <xsl:template match="with-others" mode="sort-people-key" as="xsd:string"> <xsl:text>&with-others-marker;</xsl:text> </xsl:template> ... (cf. Fig. 6). It is especially useful to sort such items sharing the same authors' names, the same year, and the same month. A missing LASTSORTKEY value takes precedence over a present one. If several entries share the same sort key, including the same value associated with the LASTSORTKEY fields [START_REF]The Unicode Consortium: The Unicode Standard Version 5.0[END_REF] , the original order is retained [START_REF]W3C: xsl Transformations (xslt). Version 1.0. w3c Recommendation[END_REF] . That means that if the \bibliography command of a L A T E X source text is: \bibliography{...,f i ,...,f j ,...} and let e x and e y be two bibliographical items sharing the same sort key. If e x (resp. e y) comes from the .bib file f i (resp. f j), then e x comes before e y within the generated bibliography. The same if e x takes precedence over e y within the same .bib file. Let us recall that superfluous fields are ignored by 'old' BibT E X, so this field can be added without disturbing this program. In addition, since BibT E X's standard bibliography styles ignore this new field, it is also ignored when these styles are applied by means of MlBibT E X's compatibility mode [5].

</xsl:stylesheet>

The second change concerns the nbst:sort element. Its original definition [3, App. A] makes it very close to xslt 1.0's [17, § 10], but not identical. Like this xsl:sort element coming from Version 1.0, it provides insufficient service, unless if it used with functions written using a 'more classical' programming language. We think that some simple functionalities -like finding a month name's position -can be programmed using Scheme, but specifying a crucial operation such as sorting bibliographical items w.r.t. names should not depend on deep knowledge of Scheme. In other words, we think that we cannot require that a style designer should be a Scheme expert. Some operations, such as languagedependent lexicographical order relations are to be programmed in Scheme, but we tried to reach a form easily understandable by basic programmers [7].

What about a new element, close to xslt 2.0 [18, § 13]? More generally, why nbst would not be close to xslt 2.0? That would cause major rewriting even if such an evolution could be a good idea. However, it would be a partial solution since we think that a sort operation based on the concatenation of parts of all the names is not really efficient (cf. § 3).

The compromise is an extended definition of the nbst:sort element, given in Figure 5. This new definition overrides the old one, given in [3, App. A]. The new element works as follows.

<nbst:sort select=expr language=lg-idf data-type=("text" | "number") order=("ascending" | "descending") case-order=("upper-first" | "lower-first") use=name personname-part-order=part-order and-as=code-list and-others-as=code-list with-as=code-list with-others-as=code-list > template </nbst:sort> where: code-list a space-separated list whose elements are natural numbers, expr is analogous to an XPath expression, lg-idf a language identifier, name an identifier, part-order a space-separated list whose elements are first, junior, last, von, template a (possibly empty) sequence of nbst elements, except for the top-level ones.

Default values are underlined. • Invoking template yields the sort key, except if the select attribute gives it, in which case template must be empty. If both template and select are absent, this is equivalent to specifying ' select="." ', that is, the sort key is the identity function.

• If the use attribute is given, all the other attributes, except for select, are irrelevant and cause errors. The value associated with the use attribute must be a Scheme function whose model is:

(define (a-function-name rel?) (lambda (node-0 node-1 k0) ...)) where:

rel? receives the order relation associated with the bibliography's language, e.g., a Scheme function given in [7, Fig. 2]; node-0 and node-1 are two sxml nodes; -k0 receives the function implementing the next sort key, that is, the function to be called when two nodes are equal w.r.t. the present relation [START_REF]W3C: xsl Transformations (xslt). Version 2.0. w3c Recommendation[END_REF] . The function resulting from evaluating the expression (a-function-name rel?) should return #t (a 'true' value) if node-0 is to be put before node-1 , #f (the 'false' value) if node-0 is to be put after node-1 ; otherwise the k0 function is applied and allows us to process the next sort key, that is, the next nbst:sort element.

• If the use attribute is absent, we look for the attributes:

personname-part-order, giving the primary sort key, secondary sort key, etc. for a personname element, and-as, and-others-as, with-as, and with-others-as, whose associated values are viewed as successive codes of the characters of a 'dummy' string. Let us recall that the MlBibT E X's current version is based on Latin 1 encoding [7], so the codes of 'actual' characters are less than 256.

If you want these markers to be viewed as characters greater than 'actual' characters, put natural numbers greater than or equal to 256.

Of course, these attributes will work if the sort key is either an author or an editor element.

In another case, generated functions will always return a 'true' value and the node set will remain in the original order. In addition, let us notice that the data-type attribute must be set to text -its default value -in this case. If a subpart of these attributes is only provided, the omitted ones default to an empty list,

• If none of these attributes: use and-others-as personname-part-order with-as and-as with-others-as is given, the data-type attribute may be set to number (resp. text) for a lexicographical (resp. numerical) sort.

• The meaning of the other attributesorder, case-order -is unchanged. Most of bibliography styles coming as part of MlBibT E X's source files use this nbst:sort element as shown in Figure 6.

Conclusion

As mentioned in [6], dealing with person names is a difficult problem, since we have to face many figure cases. As mentioned in [9, p. 429], sorting person names can be defined carefully. And let us not forget that this order is language-dependent [7]. We think that MlBibT E X provides a good and complete toolbox to tackle this problem and put acceptable solutions into action. But we would not be surprised <nbst:template match="mlbiblio"> ... <nbst:apply-templates> <nbst:sort use="<authors<?"/> <nbst:sort select="year" data-type="number"/> <nbst:sort select="call(month-position,month)" data-type="number"/> <nbst:sort> <nbst:choose> <nbst:when test="@lastsortkey"> <nbst:value-of select="@lastsortkey"> </nbst:when> <nbst:otherwise> <nbst:value-of select="-Inf"/> </nbst:otherwise> </nbst:choose> </nbst:sort> </nbst:apply-templates> ... </nbst:template> where:

• <authors<? is a Scheme function provided within the source files of MlBibT E X, it efficiently compares sxml representations of bibliographical itemsarticle, book, booklet, . . . and other children of the mlbiblio root element -w.r.t. author or editors subtrees by using as sort keys as needed;

• month-position is also a Scheme function provided by MlBibT E X that returns the same result than the add:month-position function written in xslt in [8, Fig. 5] -there is no nbst:function element in nbst -;

• the '-Inf' expression returns the smallest negative integer. if a new version had to refine these tools. We only hope that such refinement will be slight.

Figure 2 :

 2 Figure 2: Our conventions for authors and editors.

Figure 3 :

 3 Figure 3: Using several sort keys when there is only one author or editor.

Figure 4 :

 4 Figure 4: Sorting keys using concatenation.

Figure 5 :

 5 Figure 5: New nbst:sort element in nbst.

Figure 6 :

 6 Figure 6: 'Standard' use of the nbst:sort element.

 Examples of sort keys computed within BibT E X's standard bibliography styles.

	robeson␣␣kenneth␣␣␣␣1964␣␣␣␣man of bronze	
	robeson␣␣kenneth␣␣␣␣2␣␣␣␣man of bronze	
	robeson␣␣kenneth␣␣␣murray␣␣will␣␣␣␣1992␣␣␣␣white eyes	⇐= Kenneth Robeson and Will Murray
	robeson␣␣kenneth␣␣␣et al␣␣␣␣1975␣␣␣␣king maker	⇐= Kenneth Robeson and others
	du bois␣␣paul␣␣␣␣2008␣␣␣␣title	⇐= first => Paul, von => du, last => Bois
	du bois␣␣paul␣␣␣␣2008␣␣␣␣title	⇐= first => Paul, last => {Du Bois}
	Figure 1:	

].

	...	
	<xsl:stylesheet version="2.0" ... xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
	xmlns:xsd="http://www.w3.org/2001/XMLSchema" ...>
	<xsl:template match="mlbiblio">	<!--Root element of a bibliography. -->
	<xsl:apply-templates>	
	<xsl:sort	
	select=	
	"for $the-people in if (author) then author else editor return
	if ($the-people/name[1]/personname) then $the-people/name[1]/personname/last else
	if ($the-people/name[1]

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Multi-Lingual BibT E X.

eXtensible Markup Language. Readers interested in an introductory book to this formalism can refer to[START_REF] Ray | Learning xml[END_REF].

Scheme implementation of xml. See[START_REF] Kiselyov | xml and Scheme[END_REF] for more details.

[START_REF] Hufflen | Bibliography Styles Easier with MlBibT E X[END_REF] eXtensible Stylesheet Language Transformations, the language of transformations used for xml

texts.[START_REF] Hufflen | BibT E X, MlBibT E X and Bibliography Styles[END_REF] New Bibliography STyles.

Some initial words irrelevant for a 'semantic' sort operation are also removed: 'A', 'An', 'The'.

[START_REF] Hufflen | Managing Order Relations in MlBibT E X[END_REF] BibT E X's entry.max$ variable is bound to

250.[START_REF] Hufflen | xslt 2.0 vs xslt 1.0[END_REF] When BibT E X parses the value of a field, several consecutive occurrences of this character are replaced by a single one.

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

This error disappears if '2' is replaced by '0002' in the value associated with the YEAR field. But that causes '0002' to be put down in the generated reference processed by L A T E X, so that is only a workaround.

This notion of collaborators also exists in the bibliographies built with DocBook, an xml system for writing structured documents[START_REF] Walsh | Doc-Book: The Definitive Guide[END_REF].

Concerning us, we were processing some tests between the compatibility mode for 'old' bibliography styles[START_REF] Hufflen | BibT E X, MlBibT E X and Bibliography Styles[END_REF] and were puzzled because bst's sort and nbst's did not result in the same order. That was the story's beginning. . . TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

. . . or if the values associated with this field are both missing.

In programming's terminology, such a sort is called stable sort.

In functional programming, such an argument is used within the Continuation-Passing Style [1]. TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has written the Polish translation of the abstract.