Jean-Michel Hufflen
email: jmhufflen@lifc.univ-fcomte.fr

Introduction to XQuery *

XQuery is a query language for data stored in xml form. It can be used to search such documents and arrange the result, as an xml structure or a simple text (possibly suitable for a T E X engine). Like xslt 2.0, it is based on XPath 2.0. We propose an introduction to XQuery, and some comparisons with xslt allow readers to discern the applications XQuery is suitable for. Keywords xml, XQuery (1.0 & 1.1), XPath 2.0, xslt 2.0, generating (L A)T E X source texts.

Streszczenie

XQuery jest językiem zapytań dla danych przechowywanych w formacie xml. Może on być używany do wyszukiwania dokumentów w takim formacie albo w płaskich plikach tekstowych (potencjalnie użyteczne dla maszyny T E

Introduction

This article continues a series of introductions to some languages and tools related to xml 1 , presented at BachoT E X conferences [START_REF] Hufflen | Introduction to xslt[END_REF][START_REF] Hufflen | Advanced Techniques in xslt[END_REF][START_REF] Hufflen | xslt 2.0 vs xslt 1.0[END_REF]. As the language of transformations used for xml texts, xslt 2 has already been presented, more precisely in its two versions: 1.0 [START_REF] Hufflen | Introduction to xslt[END_REF][START_REF] Hufflen | Advanced Techniques in xslt[END_REF] and 2.0 [START_REF] Hufflen | xslt 2.0 vs xslt 1.0[END_REF]. In particular, we showed that xslt was able to generate (L A)T E X source texts. Initially, XQuery was designed as a query language for collections of xml documents, as sql 3 does for relational data bases. Even if our short introduction to this language does not aim to replace official documents [START_REF]W3C: XQuery 1.0: an xml Query Language[END_REF][START_REF][END_REF], we will show that this functional language is powerful and is able to build new xml or simple text documents, in particular (L A)T E X source texts. * Title in Polish: Wprowadzenie do XQuery .

1 eXtensible Markup Language. Readers interested in a general introductory book to this formalism can refer to [START_REF] Ray | Learning xml[END_REF]. 2 eXtensible Stylesheet Language Transformations. 3 Structured Query Language. A good introductory book about it is [START_REF] Melton | Understanding the new sql[END_REF].

XQuery is based on XPath, the language used to address parts of xml documents. More precisely, it uses XPath's new version (2.0) [START_REF]W3C: xml Path Language (XPath) 2.0. w3c Recommendation Draft[END_REF], like xslt 2.0 [START_REF]W3C: xsl Transformations (xslt)[END_REF]. Let us recall that every value handled within this data model is a sequence. An atomic value is a particular case of a sequence: a one-element sequence. For example, [START_REF]W3C: XQuery and XPath Full Text 1.0. w3c Candidate Recommendation[END_REF][START_REF] Hagen | The Luafication of T E X and ConT E Xt[END_REF]2009) is a three-element sequence. Items being different types can be mixed in a sequence, e.g., ("Bachotek",2009,true()). If a sequence is inserted into another one, the items of the inserted sequence become full-fledged items in the flattened resulting sequence, e.g.:

(("tu","Bachotek"),2009,("piwo","dobrze")) is equivalent to:

("tu","Bachotek",2009,"piwo","dobrze") XQuery's 'official' version is 1.0 [START_REF]W3C: XQuery 1.0: an xml Query Language[END_REF] and a new one is in preparation, as a working draft presently [START_REF][END_REF]. As far as we know, zorba [START_REF] Zorba | the XQuery Processor[END_REF] is presently the only XQuery 1.1 processor. Our demonstrations will use saxon [START_REF] Michael | Saxon. The xslt and XQuery Processor[END_REF]. Other XQuery processors are Galax <?xml version="1.0" encoding="ISO-8859-1"?> <books> <omnibus series="Doc Savage"> <author> <!--The organisation of author elements is the same than in [START_REF] Hufflen | Revisiting Lexicographic Order Relations on Person Names[END_REF]. [3] and AltovaXML [1], the latter is interesting if you work on a Windows operating system.

In the first section, we introduce XQuery's basic features. Section 2 makes precises XQuery's place within the world and tools of xml. Then we give a personal point of view in Section 3.

XQuery's features

As a progressive example's framework, let us consider the omnibuses.xml file given in Figure 1, already used in [START_REF] Hufflen | xslt 2.0 vs xslt 1.0[END_REF]. This xml text specifies the contents of some omnibus volumes; for each story included into such a book, we make precise its title and the year of its first publication.

Getting started

If we are searching the omnibuses.xml file given in Figure 1 and are looking for the title of the omnibus book containing the story entitled Waves of Death, we can use the following XPath expression 4 : books/ omnibus[story/title = "Waves of Death"]/ booktitle 4 The following expression is suitable w.r.t. XPath 1.0 [START_REF]W3C: xml Path Language (XPath). Version 1.0. w3c Recommendation[END_REF] and can be tested with the xmllint program [START_REF] Veillard | The xml C Parser and Toolkit of Gnome[END_REF], as shown in [START_REF] Hufflen | Introduction to xslt[END_REF].

If saxon processes the following XQuery program: doc("omnibuses.xml")/books/ omnibus[story/title = "Waves of Death"]/ booktitle the result will look like: <?xml version="1.0" encoding="UTF-8"?> <booktitle> Doc Savage Omnibus #10 </booktitle> Now let us assume the existence of a $the-title variable, bound to the string "Waves of Death". Our query can become: doc("omnibuses.xml")/books/ omnibus[story/title = $the-title]/booktitle If we want the result to be stripped of the opening and closing tags, we use XPath 2.0's data function, returning the contents of a node-set's members [11, pp. 330-322]. In addition, the result is now surrounded by opening and closing answer tags, the curly braces force the embedded expression to be evaluated 5 : <answer>{ declare namespace xsd = "http://www.w3.org/2001/XMLSchema" ; declare variable $the-title as xsd:string external ;

for $omnibus-0 as element(omnibus) in doc("omnibuses.xml")/books/omnibus, $title-0 as element(title) at $index in $omnibus-0/story/title where $title-0 eq $the-title return <answer index="{$index}">{ data($omnibus-0/booktitle) }</answer> data(doc("omnibuses.xml")/books/ omnibus[story/title = $the-title]/ booktitle) }</answer> The same result can be reached by using a for expression that allows us to go along the node set of all the omnibus elements of this file. The where clause retains the omnibus elements such that the test yields true: for $omnibus-0 in doc("omnibuses.xml")/books/omnibus where $omnibus-0/story/title = $the-title return <answer>{ data($omnibus-0/booktitle) }</answer> We can nest two loop expressions: the outer one goes along all the omnibus elements, the inner one goes explores the successive title elements of each story6 : for $omnibus-0 in doc("omnibuses.xml")/books/omnibus, $title-0 in $omnibus-0/story/title where $title-0 eq $the-title return <answer>{ data($omnibus-0/booktitle) }</answer> We can improve this search: the iteration number of the inner loop -starting at 1 -is now caught by $omnibus-0/story/title = $the-title reads 'is there an element common to the two sequences $omnibus-0/story/title and $the-title?' i.e., 'is there a title element whose contents is equal to $the-title's value? The eq operator can be used only for atomic values such as strings, numbers, booleans, nodes. See [11, pp. 181-196] means of a variable following the at keyword. We use this iteration number to give the rank -within the omnibus book -of the story we are looking for.

for $omnibus-0 in doc("omnibuses.xml")/books/omnibus, $title-0 at $index in $omnibus-0/story/title where $title-0 eq $the-title return <answer index="{$index}">{ data($omnibus-0/booktitle) }</answer> The result looks like: <?xml version="1.0" encoding="UTF-8"?> <answer index="2"> Doc Savage Omnibus #10 </answer> Finally, the $the-title variable may be declared as follows:

declare variable $the-title := "Waves of Death" ; or declared as 'external' as we do in Figure 2. In this case, this variable's value must be supplied when the query is invoked7 , there is no default value for an external variable [26, § 2.1.2]. Figure 2 gives a definitive version of our first XQuery program. We add some type annotations [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 9] to variables, by means of the as keyword. That allows a XQuery processor to perform type-checking. The type declaration for a general string is provided by XML if (doc-available($filename)) then <items>{ let $stories as element(story)* := doc($filename)/books/omnibus/story for $year-e0 as xsd:untypedAtomic in distinct-values(data($stories/year)) order by xsd:integer($year-e0) return <by-year year="{$year-e0}">{ $stories[year eq $year-e0]/title }</by-year> }</items> else () Schema's library 8 [START_REF]W3C: xml Schema Part 2: Datatypes. w3c Recommendation[END_REF], so we use a prefix -'xsd'to get access to this library's namespace 9 and show how to declare it.

A more ambitious example

The general expressions used in XQuery are flwor expressions. 'flwor' stands for 'For, Let, Where, Order by, Return', the keywords used throughout such expressions. We already know the for, where, and return clauses. To discover the other clauses, let us consider again the xml text given in Figure 1 and group the titles of included stories by year, sorted increasingly. More precisely, we aim to get the xml text given in Figure 3.

The XQuery program of Figure 4, applied to the omnibuses.xml file, yields this result. A let clause binds variables to associated expressions without iteration, unlike a for clause. Practically, the variables of such a let clause are used to 'factorise' common subexpressions occurring in several places. An 'order by' clause specifies how to sort the results of successive iterations. If this clause is absent, the global declaration: declare ordering ordered ; sorts such subresults according to the document order, whereas the declaration: declare ordering unordered ; 8 Schemas allow users to define document types, such a document type can be viewed as taxonomy common to some xml texts. There exist several schema languages, but only XML Schema [START_REF]W3C: xml Schema[END_REF] is interfaced with xslt 2.0 and XQuery. leaves unspecified the order of appearance of results of a for clause's successive iterations. Such a declaration: declare default order empty least ; causes the empty sequence () to be ranked firstor last if 'greatest' is put instead of 'least'. Default conventions for such global declarations are implementation-dependent. Let us come back to 'order by' clauses, here is a more complicated example: stable order by last descending, first ascending empty least ; which might be used to sort personname elements (cf. Fig. 1). It specifies a stable sort10 ; last names are sorted decreasingly, and person names left unsorted regarding last names are sorted increasingly11 w.r.t. first names, an empty first name taking precedence over non-empty ones. XQuery allows the specification of precise language-dependent lexicographic orders for strings by means of collations [33, Ch. 17], identified by uris 12 . The years of omnibus books' stories are sorted numerically since this 'order by' declare namespace saxon = "http://saxon.sf.net/" ; declare namespace tu = "http://www.bachotex.pl/" ; declare namespace xsd = "http://www.w3.org/2001/XMLSchema" ; declare option saxon:output "omit-xml-declaration=yes" ; (: Tells saxon to omit the processing declaration <?xml ...?> at the output's beginning. Such an order is implementation-dependent. :) declare variable $eol as xsd:string := "
" ; declare variable $filename as xsd:string external ; declare function tu:escape-special-chars($y0 as element()) as xsd:string { replace(data($y0),"(#|%)","\\$1") } ;

if (doc-available($filename)) then for $omnibus-0 as element(omnibus) in doc($filename)/books/omnibus return ("\item{\bullet}", tu:escape-special-chars($omnibus-0/booktitle), $eol, for $story-0 as element(story) in $omnibus-0/story return (" \itemitem{\star}", tu:escape-special-chars($story-0/title), $eol)), concat($eol, "\end", $eol) else () clause uses information coerced into expressions of type xsd:integer 13 (cf. Fig. 4).

XQuery 1.1 [START_REF][END_REF] allows an additional 'group by' clause partitioning an iteration's results. Let us compare Figures 4 & 5: in the first version, the iteration is done on the different years of publication and then we retain the story element whose year child element matches the current year; in the second case, all the story elements are grouped by year, and for each group, we put a by-year element surrounding the titles of all the elements of a group.

Deriving a Plain T E X source text

As shown in Figure 6, XQuery may be used to produce (L A)T E X source texts, even if it was not its initial purpose. When the successive atomic values of a sequence are displayed or copied onto an output file, they are separated by a space character. If you want to drop out this separator, just use XPath's concat function [11, pp. 312-313] as we did to build the last line: the \end command without preceding space character. Applying this XQuery program to the omnibuses.xml file results in the Plain T E X source text given in Figure 7. Two T E X's special characters -'#' and '%' -are escaped by a '\': we only serves as a name and does not have to point to any resource [START_REF] Ray | Learning xml[END_REF]Ch. 3]. 13 The generic type xsd:untypedAtomic applies to all the atomic values that have no specific type [33, p. 438]. The results of XPath's data function [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 10] are of xsd:untypedAtomic type.

can see how to define a function to do that. XPath's replace function [11, pp. 400-403] uses regular expressions [START_REF] Michael | XPath TM 2.0 Programmer's Reference[END_REF]Ch. 11] whose syntax originates from Perl14 .

More features

We have showed XQuery's basis. In addition, XQuery allows the creation of elements and attributes whose names are known at run-time [START_REF] Walmsley | XQuery[END_REF]Ch. 5]. Modules allow definitions and queries to be reused in other contexts [START_REF] Walmsley | XQuery[END_REF]Ch. 12]. Special processing based on the type of an expression is provided by typeswitch expressions [26, § 3.12.2]. XQuery 1.1 introduces window iterations, grouping consecutive items of an input sequence [31, § 3.8.4], and try/catch expressions, providing error handling [31, § 3.12], analogous to namesake statements in C++15 [START_REF] Stroustrup | The C++ Programming Language[END_REF].

In 'basic' XQuery, an expression never modifies the state of a document. XQuery Update Facility [START_REF][END_REF] is an extension that allows node insertions, modifications, or deletions. Another extension, XQuery and XPath Full-Text 1.0 [START_REF]W3C: XQuery and XPath Full Text 1.0. w3c Candidate Recommendation[END_REF], provides tools for full-text search, as well as structured search, against xml documents. Full-text search is different from substring search: the former searches for tokens and phrases rather than just substrings. Support for language-based search is provided, too. There is an implementation of this standard proposal: GalaTeX [START_REF]GalaTex: an xml Full-Text Search Engine[END_REF], built on top of the Galax processor [START_REF]Galax: the XQuery Implementation for Discriminating Hackers[END_REF].

2 XQuery within xml's world At first glance, queries have the same look than XPath 2.0 expressions and XQuery programs seems to be able to perform document transformations, as xslt does. The following subsections go throughly into these two points.

XQuery vs XPath

XPath 2.0 only provides 'simple' for expressions and does not allow end users to make precise variables' types 16 , introducing index variables by means of the 'at' keyword is not allowed, either:

for $story-0 in doc(...)/books/omnibus/story return ... It does not provide let expressions, the equivalent in 'pure' XPath 2.0 is a 'for' expression along a oneelement sequence:

for $story-0 in doc(...)/books/omnibus/story, $year-e0 in data($story-0/year) return ... A constant string is a valid XPath expression but the '{...}' notation does not belong to XPath.

XQuery vs xslt

Here is what we can learn by reading and summarising w3c17 documents. See [START_REF] Walmsley | XQuery[END_REF]Ch. 25] for a 'more technical' view.

The standards for xslt 2.0 and XQuery were developed by separate working groups within w3c, operating together to ensure a common approach where appropriate. These two languages share the same data model, type system, and function library; both include XPath 2.0 as a sublanguage. However, they are rooted in different traditions and serve different communities' needs. xslt was initially conceived as a stylesheet language whose primary goal is to render xml documents for human readers on screen, on the Web, or on paper. So, xslt is stronger in its handling of narrative documents with more flexible structure, whilst XQuery is stronger in its data handling.

A personal synthesis

In the previous section, we tried to be as objective as possible; in this one, we give a personal point of view. The difference between xslt and XQuery is close to the nuance between programming by construction and programming with templates. To illustrate that, let us consider the two following expressions in Scheme:

(let ((here 'Bachotek)) (list 'staying 'at here 'Poland)) (let ((here 'Bachotek))

'(staying at ,here Poland)) Both yield the same result:

(staying at Bachotek Poland) In the first version, a functionlist -is applied to arguments, possibly constant. In the second version, the " ' " character abbreviates a form that returns the following template, except when a comma appears, in which case the subexpression is evaluated and inserted at this place 18 . This second style is particularly useful when most of the desired structure is known in advance. The '<...>{...}</...>' notation may be viewed as programming with templates. So XQuery seems to us to be a good choice whenever this style is suitable. On the contrary, xslt emphasises different processing w.r.t. elements and attributes of an input document.

This article is intentionally based on the same examples than [START_REF] Hufflen | xslt 2.0 vs xslt 1.0[END_REF]. So it can be noticed that XQuery programs are more compact and easier to understand. XQuery's main weakness is that many extensions are implementation-dependent, e.g., the use of character maps19 , interesting in xslt 2.0 when we derive source texts for formats or engines built out of T E X, as shown in [9, § 6]. Using XPath's replace function is sufficient for simple texts, as we did in Figure 6, but may be more tedious if the input document contains non-alphanumerical characters, in particular, mathematical ones. In such a case, a solution might be to derive texts for a Unicodecompliant engine based on T E X20 , e.g., X E T E X [START_REF] Kew | X E T E X in T E X Live and beyond[END_REF] or LuaT E X [START_REF] Hagen | The Luafication of T E X and ConT E Xt[END_REF]. Another implementation-dependent feature is the separator between a sequence's consecutive items. In xslt 2.0, this point is controlled by the xsl:value-of element's separator attribute [12, pp. 465-471]. In practice, the default ruleputting a space character -often suits us, as shown in Figures 6 &7. Otherwise, it may result in many calls of XPath's concat function. To sum up about the derivation of source texts for T E X-based engines from xml documents, we think that XQuery is very suitable for such a task, except if the use of character maps is really needed.

Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has translated the abstract and keywords in Polish very quickly.

A Giving a file name at run-time

As you can see whenever an xslt processor is used, an xslt stylesheet is applied to an xml document, the name of it being given at run-time 21 . For example, if you use the xsltproc processor [START_REF] Veillard | The xslt C Library for Gnome[END_REF], the command line that causes the grouping.xsl stylesheet [START_REF] Hufflen | xslt 2.0 vs xslt 1.0[END_REF]Fig. 3] to be applied to the omnibuses.xml file is: xsltproc grouping.xsl omnibuses.xml If this file does not exist, the error is signalled by the operating system in use. On the contrary, the name of the xml file processed by an XQuery request is hard-wired in most of examples given in official references [START_REF]W3C: XQuery 1.0: an xml Query Language[END_REF][START_REF]W3C: xml Schema[END_REF] or introductory books [START_REF] Walmsley | XQuery[END_REF], as we did in Figure 2. In fact, there is no standard way to set it up outside XQuery programs [33, pp. 54 & 290]. Some implementations can start the execution of an XQuery program from a context node, so the request given in Figure 2 could be rewritten as:

for $omnibus-0 as ... in ./books/omnibus, ... If saxon [START_REF] Michael | Saxon. The xslt and XQuery Processor[END_REF] is used, this new program, stored in a file named find-saxon.xq, can be invoked by setting the context node -given by the XPath expression '.' -to the root of an xml document by means of the '-s:...' option: java net.sf.saxon.Query -s:omnibuses.xml \ find-saxon.xq the-title="Waves of Death"

Similar methods can be used with AltovaXML [1] and Galax [START_REF]Galax: the XQuery Implementation for Discriminating Hackers[END_REF]. However, this modus operandi is not portable 22

Figure 1 :

 1 Figure 1: File omnibuses.xml: specification of some stories collected in omnibus volumes.

Figure 2 :

 2 Figure 2: Searching omnibuses for a story's title.

Figure 3 :

 3 Figure 3: Grouping elements of Fig. 1's text.

 declare namespace xsd = "http://www.w3.org/2001/XMLSchema" ; declare variable $filename as xsd:string external ;

Figure 4 :

 4 Figure 4: Grouping stories' title by year in XQuery.

Figure 5 :

 5 Figure 5: Using a 'group by' clause in XQuery 1.1.

Figure 6 :

 6 Figure 6: Generating a source text for Plain T E X.

Figure 7 :

 7 Figure 7: Applying Fig. 6's query to Fig. 1's text.

Figure 9 :

 9 Figure 9: Searching omnibuses for a story's title -version using XQueryX (Fig. 8 continued).

 . From our point of view, the best solution is to pass the file name by means of an external variable and return an empty sequence if the file is not processable. We can check that by means of the doc-available function[26, § 15.5.5]. So did we in Figures2, 4 & 5.As shown by all the examples above, XQuery programs are not xml texts. XQuery's syntax is related to a 'classical' programming language's. XQueryX 23[START_REF] W3c | Syntax for XQuery 1.0[END_REF] allows an xml representation of XQuery. The two syntaxes are merely different, but they express the same query semantics; in other words, the expressive power is the same. The main advantage for XQueryX texts is that they can be embedded directly in xml documents. On the contrary, XQuery's texts are more convenient for humans to read and write.Figures8 & 9are a rewriting of our first example (cf. Fig.2) using XQueryX's syntax. As you can see, the result, rooted by the xqx:module element, is very verbose24 (!) but closely reflects XQuery statements' structure. We put this text only to give a representative idea about XQueryX's look. At the time of writing, there is no processor that directly deals with XQueryX texts. In fact, the normative document[START_REF] W3c | Syntax for XQuery 1.0[END_REF] App. B] includes an xslt stylesheet converting XQueryX's syntax into 'classical' XQuery's syntax. Applying this stylesheet to the text of Figures 8 & 9 results in the program given in Figure 2. ?xml version="1.0" encoding="ISO-8859-1"?> <!DOCTYPE module [<!ENTITY child "<xqx:xpathAxis>child</xqx:xpathAxis>"> <!ENTITY xsd "<xqx:uri>http://www.w3.org/2001/XMLSchema</xqx:uri>">]> <xqx:module xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xqx="http://www.w3.org/2005/XQueryX" xsi:schemaLocation="http://www.w3.org/2005/XQueryX http://www.w3.org/2005/XQueryX/xqueryx.xsd"> Searching omnibuses for a story's title -version using XQueryX.

	B XQueryX <xqx:namespaceDecl><xqx:prefix>xsd</xqx:prefix>&xsd;</xqx:namespaceDecl> <xqx:mainModule> <xqx:prolog> <xqx:varDecl> <xqx:varName>the-title</xqx:varName> <xqx:typeDeclaration><xqx:atomicType xqx:prefix="xsd">string</xqx:atomicType></xqx:typeDeclaration> <xqx:external/> </xqx:varDecl> </xqx:prolog> <xqx:queryBody> <xqx:flworExpr> <xqx:forClause> <xqx:forClauseItem> <xqx:typedVariableBinding> <xqx:varName>omnibus-0</xqx:varName> <xqx:typeDeclaration> <xqx:elementTest> <xqx:elementName><xqx:QName>omnibus</xqx:QName></xqx:elementName> </xqx:elementTest> </xqx:typeDeclaration> </xqx:typedVariableBinding> <xqx:forExpr> <xqx:pathExpr> <xqx:stepExpr> <xqx:filterExpr> <xqx:functionCallExpr> <xqx:functionName>doc</xqx:functionName> <xqx:arguments> <xqx:stringConstantExpr><xqx:value>omnibuses.xml</xqx:value></xqx:stringConstantExpr> </xqx:arguments> </xqx:functionCallExpr> </xqx:filterExpr> </xqx:stepExpr> <xqx:stepExpr>&child;<xqx:nameTest>books</xqx:nameTest></xqx:stepExpr> <xqx:stepExpr>&child;<xqx:nameTest>omnibus</xqx:nameTest></xqx:stepExpr> </xqx:pathExpr> </xqx:forExpr> </xqx:forClauseItem> <xqx:forClauseItem> <xqx:typedVariableBinding> <xqx:varName>title-0</xqx:varName> <xqx:typeDeclaration> <xqx:elementTest> <xqx:elementName><xqx:QName>title</xqx:QName></xqx:elementName> </xqx:elementTest> </xqx:typeDeclaration> </xqx:typedVariableBinding> <xqx:positionalVariableBinding>index</xqx:positionalVariableBinding> <xqx:forExpr> <xqx:pathExpr> <xqx:stepExpr> <xqx:filterExpr><xqx:varRef><xqx:name>omnibus-0</xqx:name></xqx:varRef></xqx:filterExpr> </xqx:stepExpr> <xqx:stepExpr>&child;<xqx:nameTest>story</xqx:nameTest></xqx:stepExpr> <xqx:stepExpr>&child;<xqx:nameTest>title</xqx:nameTest></xqx:stepExpr> </xqx:pathExpr> </xqx:forExpr> </xqx:forClause> <xqx:whereClause> <xqx:eqOp> <xqx:firstOperand> <xqx:pathExpr> <xqx:stepExpr> <xqx:filterExpr><xqx:varRef><xqx:name>title-0</xqx:name></xqx:varRef></xqx:filterExpr> </xqx:stepExpr> </xqx:pathExpr> </xqx:firstOperand> <xqx:secondOperand> <xqx:pathExpr> <xqx:stepExpr> <xqx:filterExpr><xqx:varRef><xqx:name>the-title</xqx:name></xqx:varRef></xqx:filterExpr> </xqx:stepExpr> </xqx:pathExpr> </xqx:secondOperand> </xqx:eqOp> </xqx:whereClause> <xqx:returnClause> <xqx:elementConstructor> <xqx:tagName>answer</xqx:tagName> <xqx:attributeList> <xqx:attributeConstructor> <xqx:attributeName>index</xqx:attributeName> <xqx:attributeValueExpr> <xqx:pathExpr> <xqx:stepExpr> <xqx:filterExpr><xqx:varRef><xqx:name>index</xqx:name></xqx:varRef></xqx:filterExpr> </xqx:stepExpr> </xqx:pathExpr> </xqx:attributeValueExpr> </xqx:attributeConstructor> </xqx:attributeList> <xqx:elementContent> <xqx:pathExpr> <xqx:stepExpr> <xqx:filterExpr> <xqx:functionCallExpr> <xqx:functionName>data</xqx:functionName> <xqx:arguments> <xqx:pathExpr> <xqx:stepExpr> <xqx:filterExpr> <xqx:varRef><xqx:name>omnibus-0</xqx:name></xqx:varRef> </xqx:filterExpr> </xqx:stepExpr> <xqx:stepExpr>&child;<xqx:nameTest>booktitle</xqx:nameTest></xqx:stepExpr> </xqx:pathExpr> </xqx:arguments> </xqx:functionCallExpr> </xqx:filterExpr> </xqx:stepExpr> </xqx:pathExpr> </xqx:elementContent> </xqx:elementConstructor> </xqx:returnClause> </xqx:flworExpr> </xqx:queryBody> </xqx:mainModule> Figure 8: </xqx:forClauseItem> </xqx:module>

<

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

This '{...}' notation generalises the attribute value templates used in xslt [12, pp.116-119]. TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

In addition, this reformulation allows the use of a value comparison operator. The '=' operator is used for general sequence comparisons and:

See how to do that with saxon in Appendix A.

A stable sort keeps the original order of items with equal sort keys.

Of course, an order defaults to 'ascending', but users can put this keyword down.

Uniform Resource Identifier. The syntax is close to urls' (Uniform Resource Locators) of the Web, but an uri TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Practical Extraction Report Language. A good introductory book to this language is[START_REF] Wall | Programming Perl. 3rd edition[END_REF].

[START_REF] Kew | X E T E X in T E X Live and beyond[END_REF] But there is no 'finally' clause, as in Java [10] and C#[START_REF]Microsoft C# Specifications[END_REF].

But xslt 2.0 allows variables and parameters of functions and templates to be typed by end users by means of the as attribute[12, pp. 73-76].

[START_REF]Microsoft C# Specifications[END_REF] World Wide Web Consortium.

See[14, § 4.2.6] for more details.

. . . mentioned in[START_REF] Walmsley | XQuery[END_REF] Table 22.1] about XQuery.

Likewise, Polish texts built by means of XQuery should be processed by an engine accepting a suitable input encoding. The encoding of an XQuery program can be declared with the version used (cf. Fig.5):xquery version "1.0" encoding "ISO-8859-2" ;

[START_REF] Veillard | The xslt C Library for Gnome[END_REF] More exactly, an xslt stylesheet is applied to a main document, other additional xml documents can be accessed by means of XPath's doc function[11, pp. 329-332].

As a counter-example, another technique is used within Zorba[START_REF] Zorba | the XQuery Processor[END_REF].

XQuery's Xml syntax.

Some entities[18, pp. 45-53], introduced by means of a dummy DOCTYPE tag, as we did already in[START_REF] Hufflen | Introducing L A T E X users to xsl-fo[END_REF], allow us to enlighten this text.

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Xowej). Podobnie jak xslt 2.na XPath 2.0.