Jean-Michel Hufflen
email: jmhufflen@lifc.univ-fcomte.fr

How MlBibT E X's Documentation Is Organised *

Keywords: MlBibT E X, L A T E X, mlbdoc package, Scheme, multilingual documentation, configuration management. Streszczenie

MlBibT E X's documentation is planned to be multilingual -that is, written in several languages -and to be able to share as many examples as possible. Different people can write translations of the original English documentation in parallel. Besides, we show how the translations of this documentation can be updated if need be. This documentation can be used as a printed text or as an on-line document. The functionalities managing this documentation can be reused by another program. In a first part, we explain in detail what our requirements are. Then we show how they are implemented.

Introduction

Software documentation is an important part, and it is well-known that maintaining such documentation causes some difficulty [START_REF] Sommerville | Software Engineering[END_REF], especially if the program evolves in successive versions. Updating a documentation is often done late, in comparison with program update. There are different kinds of documentation: requirements, source code documentation, installation manual, documentation about tests, user manual, . . . In this article, we will only focus on installation and user manuals. In addition, that is good for such manuals to be provided in different natural languages, but may complicate updates, if precise conventions have not been de-fined. Here we will explain our conventions for the documentation of MlBibT E X1 . Let us recall that this programs aims to be a 'better and extended BibT E X' [START_REF] Patashnik | Part of the BibT E X distribution[END_REF] -the bibliography processor usually associated with the L A T E X word processor [START_REF] Lamport | A Document Preparation System. User's Guide and Reference Manual[END_REF] -with particular focus on multilingual features [START_REF] Hufflen | MlBibT E X's Version 1.3[END_REF]. As explained in [START_REF] Hufflen | BibT E X, MlBibT E X and Bibliography Styles[END_REF], MlBibT E X allows BibT E X's bibliography styles to be run in a compatibility mode, but its new features are based on paradigms related to xml2 . Last but not least, MlBibT E X has been written in Scheme [START_REF] Kelsey | Revised 5 Report on the Algorithmic Language Scheme[END_REF], as we explained in [START_REF] Hufflen | MlBibT E X: Reporting the Experience[END_REF]. We have begun to write MlBibT E X's documentation in both English and French. This led us to the definition of a pre-cise framework for a multilingual documentation. Later, we also plan to give a documentation in German. Anyway, we think that other people could write other translations of this documentation. In a first section, we list our requirements about a good multilingual documentation. Then Section 2 shows that the tools used to install and maintain software do not exactly meet our requirements. Section 3 explains how our documentation system is implemented. Reading this article only requires basic knwoledge about programming as well as software installation and maintenance, as described in [START_REF] Sommerville | Software Engineering[END_REF] from a general point of view, or more specifically in [START_REF] Loukides | Programming with gnu Software[END_REF], that introduces the languages and programs doing such tasks within the gnu3 project.

Requirements

Here are our requirements for MlBibT E X's installation and user manual. Of course, the word 'requirements' is too strong, since there is no 'official' contract between a developer and a customer. However, the list above clearly explains what our framework is, what we aim to do, and why.

• The basis of MlBibT E X's installation and user manual is the English version. Some translations may be provided, but any change related to the services provided -as well as any error fixing -must be applied to the English version at first, and then translations can be updated.

• MlBibT E X's original installation and user manual -as well as all its translations -must be processed by L A T E X or pdfL A T E X. Some translations or additional parts may be typeset by another T E X-based engine -e.g., LuaT E X -but the word processor must be a T E X-based engine or format. This last point holds for languages using a special T E X engine, e.g., pT E X [START_REF] Haruhiko | pT E X and Japanese Typesetting[END_REF] for Japanese.

• On-line versions of MlBibT E X's installation and user manual can be available, they must be build by means of converters from source texts for T E X-based engines to (x)html 4 , such as T E X4ht or L A T E X2HTML [START_REF] Goossens | The L A T E X Web Companion[END_REF].

• Each translation may be written and updated by different people, possibly working at different sites. Of course, a team cannot be in charge of all the translations, but error-fixing should be supported by the people that have realised previous versions.

• If some points are added in a translation, that should be clearly stated within the source text.

• If some parts are missing within a translation, they must be replaced by a text in another language, preferably the original English version.

• Examples illustrating manuals should be shared among versions, as far as possible. If an example is replaced within a translation, each update of the original example must cause the changed example to be re-examined. In other words, examples could be translated for better understanding, but examples' translations should be updated as soon as original examples are.

• A translation should be done from the original English text, as far as possible. If a translation has been done from another translation, this information must be kept. In other words, translating a translation into a close language might be easier, but if any source text of a translation is updated, the translation's target must be updated, too.

2 State of the art

Using L A T E X documentation tools?

The items of our requirements related to T E X-based engines are easy to put into action. However, the packages described in [START_REF] Mittelbach | The L A T E X Companion[END_REF]Ch. 14] seem to us to be unsuitable for our purpose. First, they have been developed to document new functionalities added to L A T E X; if you use MlBibT E X, only few macros are to be defined in L A T E X, in comparison with other points of the documentation: installing MlBibT E X, calling it with suitable options, extended syntax for bibliography (.bib files), use of bibliography styles written in nbst5 [START_REF] Hufflen | MlBibT E X's Version 1.3[END_REF]. Second, the only way to build multilingual documentation by means of these packages seems the use of tags [14, § 14. 1.5]) %</english|polish> Concerning our purpose, this tag system has severe drawbacks. First, even if we can order the insertion of a file between a pair of opening and closing tags, this complicates the parallel writing of translated documentations 6 . Second, if the master file is changed, it is up to users to generate only files impacted by this change. In other words, the only 'sure' solution it to generate again all the files of all the versions, what is exaggerated after just fixing a typographical mistake. This second point is related to dependency management, as we will show now.

Dependency management

The points of our requirements not related to the use of T E X-based engines concern dependency management. In Software Engineering, there are utility tools that automatically rebuild executable files to be updated after some change of source code files. The most well-known program to do that is make, present since Unix's first versions. The configuration is described in a file called Makefile, e.g.: example.o: example.c macros.h gcc -c -o example.o example.c expresses that if the example.o file is either nonexisting, or older7 than the example.c or macros.h file, this example.c file is compiled by means of the gcc8 compiler. In other words, if a source file has been modified since the last compilation order, this source file has to be compiled again. So, the command 'make example.o' may or may not issue a compilation order. In practice, this make program is used both in maintenance and installation. In the first case, we can rebuild only executable files impacted by changing source files. In the second case, the whole process of installing a software is launched by compilation orders issued by the make command. More details about this program can be found in [START_REF] Oram | Managing Projects with make[END_REF]. However, this make program has three main drawbacks. First, Makefile's syntax is not userfriendly. A partial solution to this problem is the use of a generator of Makefiles, e.g., imake [START_REF] Dubois | Software Portability with imake[END_REF], this preprocessor being particularly useful for software using graphical capabilities. Second, the specification of the commands launched by the make program assumes that some tools and libraries -e.g., a C compiler or some graphical libraries -are available. The imake program may localise such tools and libraries, but most often a configure command is provided in the distribution of the software to be installed and performs such checks [13, App. B]. So, the 'standard' way to install software on Unix-based systems, -e.g., Linux -is:

./configure # Looking for tools needed for # software installation. Absolute paths to # reach them are put in Makefiles files. make # Building the software. make install # Installing it in public places. In such a case, the distribution includes template files, called Makefile.in. They are processed by the configure command to create final outputs, as 'definitive' Makefile. Most often, configure files are generated by means of the autoconf program [START_REF] Vaughn | Autoconf, Automake, and Libtool[END_REF]. The third drawback of make also exists within Makefile.in files and is related to information redundancy. If we consider programs written using the C programming language [START_REF] Kernighan | The C Programming Language[END_REF], the fact that an example.c program relies upon a macros.h file -see the example aboveis put at the beginning of the example.c file:

#include "macros.h" because the macros.h file contains preprocessing directives and type definitions that must be known by the C compiler when it operates on the example.c file. As a consequence, this information related to dependency is put twice: a first time within the source file, a second one within Makefile. The same drawback holds with the Ant program [START_REF] Tilly | Ant: the Definitive Guide[END_REF]: it can be viewed as a 'modern' version of make, using xml-like syntax for its configuration files 9 , but end users have to put down dependency relations in these files. To cope with this problem, a workaround consists of using an option of the gcc compiler: gcc -MM example.c (answers:) example.o: example.c macros.h and adding dependency information to Makefiles dynamically. Another solution is provided by some tools usable above the make command, the most well-known tool being automake [START_REF] Vaughn | Autoconf, Automake, and Libtool[END_REF], an alternative one being CMake10 [1]. However, these tools are language-dependent. The make program can deal with source files written in any programming language, provided that the tool used to compile them is identified. On the contrary, automake and CMake only deal with some programming languages, such as C or C++ [START_REF] Stroustrup | The C++ Programming Language[END_REF] -or Lua [START_REF] Ierusalimschy | Programming in Lua[END_REF] for CMake -but are presently unusable with (L A)T E X source files. Last but not least, our dependency relation may be semantic: if an example file e is replaced by another, say e 0 , we want e 0 's author to be warned if e has changed, but e 0 may or may not have to be updated: this relation is called weak dependency, that is, this relation can be ignored. To sum up, the existing tools do not meet our requirements, that is why we have developed our own system.

3 MlBibT E X's documentation system

Package and commands

The documentation's files use the mlbdoc package, that will be added to MlBibT E X's distribution. This package requires the fancyvrb package [14, § 3.4.3], used to insert example files verbatim. To avoid name conflicts, all the names of the command provided by this package are prefixed by 'mlbdoc'. Table 1 gives them. In this table, 'cf ' is for the current file being processed by L A T E X, 'f ' and 'f 0 ' are for any file names, 'f ← f 0 ' (resp. 'f ↼ f 0 ') denotes that f depends (resp. weakly depends) on f 0 . When cf is processed, an additional auxiliary file, cf.dep.scm, is built. Such a file is devoted to be read by a Scheme interpreter. More precisely, all the .dep.scm files are supposed to be stored in the same directory, and the dependency graph should be acyclic. Table 2 gives all the Scheme functions used to manage MlBibT E X's documentation. In this table, 'd ' is a string denoting a directory name -use "." for the current directory.

Discussion

Using L A T E X to generate files processed by Scheme might seem strange. Of course, this is related to the fact that Scheme is MlBibT E X's implementation language. In addition, an important advantage, related to Lisp 11 -like languages, is that data and programs use the same format. We take advantage of this feature: when .dep.scm files are processed (cf. Fig. 2), the expressions they include are evaluated. On another point, our functions are portable, we just had to develop an interface between operating systems and Scheme interpreters. Besides, our interaction between L A T E X and Scheme cannot be compared by what is done within LuaT E X [START_REF] Hagen | The Luafication of T E X and ConT E Xt[END_REF]. In both cases, there is some cooperation between a T E X-based engine and a more 'classical' programming language. LuaT E X allows fragments written using Lua to be called as procedures, whereas our Scheme functions 'intelligently' pilots calls of L A T E X or pdfL A T E X.

Conclusion

For other purposes, we built L A T E X documents whose typesetting was controlled by the make program, and we were not fully satisfied by the result. We think our system -presently running on Linux -is 11 LISt Processor.Scheme belongs to this language family. \mlbdocrunswith{s }{s0} expresses that cf is to be processed with the s (resp. s0) a DeVice-Independent.

b Portable Document Format. c However, we think that using the \mlbdocinput command is better, for sake of clarity. The same remark holds about the other three commands \mlbdocinclude, \mldocincludegraphics, and \mlbdocincludegraphics*.

d See [14, § 2.1.2] for more details about this feature of L A T E X.

e See [14, § 10.2.2 & 10.2.3] for more details about these packages allowing the insertion of graphical files. better, even if it cannot be used for any documentation. At the time of writing, we have written alone all the parts of the present documentation. The 'baptism of fire' will arise when other people participate in this documentation.

Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has translated the abstract and keywords in Polish very quickly.

 T E X-based engine to produce a .dvi a (resp. .pdf b) file; if s and s0 are not made precise, they default to L A T E X and pdfL A T E X; \mlbdoctranslates{f } expresses that cf is a translation of f , so cf ↼ f ; \mlbdocexf{f } inserts the contents of f verbatim and expresses that cf ← f ; \mlbdocinput{f } tells L A T E X to process f and expresses that cf ← f ; the \input command is redefined, too, and has the same effect c ; \mlbdocinclude{f } tells L A T E X to process f if it appears within the \includeonly command's arguments d and expresses that cf ← f ; the \include command is redefined, too, and has the same effect; \mlbdocreplaces{f }{f0} inserts f by means of the \mlbdocinput command; expresses that f replaces f0 within the current translation, that is, cf ← f and f ↼ f0; \mlbdocincludegraphics[opt][opt0]{f } if the package graphics or graphicx e has been loaded, inserts f as the original \includegraphics would do with optional arguments opt and opt0 and expresses that cf ← f ; the \includegraphics command is redefined and has the same effect; \mlbdocincludegraphics*[opt][opt0]{f } like above, but the original command interfaced and redefined is \includegraphics*.

Table 1 :

 1 Commands provided by the mlbdoc package.

MultiLingual BibT E X.

eXtensible Markup Language. Readers interested in a general introductory book to this formalism can refer to[START_REF] Ray | Learning xml[END_REF].TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Recursive acronym for 'Gnu's Not Unix'.

(eXtensible) HyperText Markup Language. xhtml is a reformulation of html -the original language of Web pages -using xml conventions.[START_REF] Musciano | html & xhtml: The Definitive Guide[END_REF] is a good introduction to these languages.

New Bibliography STyles. This language is close to xslt (eXtensible Stylesheet Language Transformations), the language of transformations used for xml texts[START_REF]W3C: xsl Transformations[END_REF].

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Of course, there are version management tools that can perform a merge operation among several releases developed in parallel from the same files -the most recent and efficient being undoubtedly Subversion[2] -but this merge operation is still difficult and error-prone. Besides, it has to be guided by users.

Last modification times are compared.

Gnu C Compiler. See[START_REF] Matthew | Stallman and the gcc developer community: Using the gnu Compiler Collection[END_REF] for details about it.

. . . generally called build.xml.

Cross platform MAKE. TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting