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Abstract. Substitutions generate hierarchical colorings of the plane.
Despite the non-locality of substitution rules, one can extend them by
adding compatible local matching rules to obtain locally checkable color-
ings as the set of tilings of finite tileset. We show that the resulting tileset
can furthermore be chosen strongly deterministic, a tile being uniquely
determined by any two adjacent edges. A tiling by a strongly determin-
istic tileset can be locally reconstructed starting from any infinite path
that cross every line and column of the tiling.
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A strongly deterministic tileset is a finite set of Wang tiles, square tiles with
colored edges, having the property that, for any two adjacent edges, no two tiles
share the same pair of colors. This generalization of Kari’s NW-deterministic
tilesets [1], introduced to study dynamical properties of cellular automata, was
introduced by Kari and Papasoglu [2] who constructed a strongly deterministic
aperiodic tileset by enrichment of Robinson’s aperiodic tileset [3]. The result was
more recently extended by Lukkarila [4] who proved that the Domino Problem
remains undecidable for strongly deterministic tilesets. Strong determinism adds
to the locally checkable property of tilings the ability to recover uniquely from
finite holes, the complete description of the whole tiling being encoded into every
8-connected infinite path that cross every line and column of the tiling. Moreover,
the tiling can be reconstructed, that is recomputed, by iteratively applying local
rules. Notice that this notion is different from the robustness to error introduced
by Durand et al. [5], albeit strong determinism can be used as a tool to built
robust tilesets. See Lukkarila [4] for links with self-healing in self-assembly.

A substitution rule associates a finite pattern of letters to every letter. Bigger
and bigger patterns are obtained by iterating the rule, leading to a notion of limit
set: colorings of the plane generated by the substitution. Substitutions provide
a convenient tool to organize areas in space, for example to built the skeleton
of a computation scheme. Indeed, a large amount of constructions on tilings, for
example to construct aperiodic tilings [3, 5–7], involve the enforcement of the
limit set of some substitution using local matching rules. General constructions
have been provided in the literature [7–10] to enforce limit sets of different kinds
of substitutions by encoding locally checkable encodings inside tilings.
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In this paper, we provide an effective method to associate to every two-by-
two substitution s a strongly deterministic tileset τ(s) such that the limit set
Λs of the substitution is equal to the letter by letter projection π

(
Xτ(s)

)
of the

set of tilings Xτ(s). Our approach is based on geometric constructions. After
introducing the necessary definitions, the 104 tiles aperiodic tileset from [7] is
extended as a strongly aperiodic tileset isomorphic to the tileset of Kari and
Papasoglu [2] (section 2). Given a substitution, this tileset is then decorated to
obtain a tileset deterministic in one direction that enforces the limit set (sec-
tion 3). Finally, four copies of the previous tileset are synchronized to obtain the
wanted strongly deterministic tileset (section 4). As a consequence, techniques
from [7] can be combined to Lukkarila [4] to simplify the embedding of a Turing
machine computation inside strongly deterministic tilesets to prove the undecid-
ability of the Domino Problem and transfer more general results on tilings to
the strongly deterministic case.

1 Definitions

A tileset is a triple (τ,H,V) where τ is a finite alphabet of tiles and H,V ⊆ τ2

are finite sets of couples representing respectively the compatible horizontal and
vertical neighbors. A tiling T is a map T : Z2 → τ associating a tile to every cell
of Z2 in such a way that every tile is compatible with its neighbors relatively to
H and V: ∀(x, y) ∈ Z2, (T (x, y), T (x+ 1, y)) ∈ H and (T (x, y), T (x, y + 1)) ∈ V.
The compatibility rules represented by H and V are denoted as the local rules of
the tileset. Implicitely associating the local rules to the tiles, we usually denote
the tileset (τ,H,V) simply as τ . The set of all tilings by a tileset τ is denoted as

Xτ ⊆ τZ
2

. A tiling T ∈ τZ2

is periodic if there exists a translation vector p ∈ Z2

such that ∀x ∈ Z2, T (x+p) = T (x). A tileset τ is aperiodic if it can tile the plane
(i.e. Xτ 6= ∅) but never in a periodic way. We use the abbreviations NE, NW,
SE, SW to denote the directions north-east, north-west, south-east, south-west
respectively. A tileset τ is NE-deterministic if for all couples of tiles (tw, ts) ∈ τ2,
there exists at most one tile tne ∈ τ simultaneously compatible to the east with
tw and to the north with ts: (tw, tne) ∈ H and (ts, tne) ∈ V. {NW,SE,SW}-
determinism is defined the same way. A tileset is strongly deterministic if it is
simultaneously NE, NW, SE and SW-deterministic.

Given a finite alphabet Σ, a Σ-coloring c of the discrete plane Z2 by Σ is a
map c : Z2 → Σ. The translation of a coloring c by a vector u ∈ Z2 is the map
u · c ∈ ΣZ2

verifying ∀x ∈ Z2, u · c(x) = c(x − u). Endowed with the product

topology over Z2 of the discrete topology over Σ, ΣZ2

is a compact topological
space. A subshift Y ⊆ ΣZ2

is a topologically closed and translation invariant
subset of ΣZ2

. E.g. the set of tilings Xτ of a tileset τ is a subshift of τZ
2

. A
subshift Y ⊆ ΣZ2

is sofic if it can be recognized by local constraints in the
following sense: there exist a tileset τ and an alphabetical projection π : τ → Σ,
naturally extended to τ -colorings π : τZ

2 → ΣZ2

, such that π(Xτ ) = Y.
Let us now introduce a strengthened version of the soficity that we refer

to as directional soficity. A subshift Y ⊆ ΣZ2

is NE-sofic if there exist a NE-
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deterministic tileset τ and an alphabetical projection π : τ → Σ such that
π(Xτ ) = Y. {NW,SW,SE}-soficity is defined the same way. A subshift Y ⊆ ΣZ2

is 4-ways-sofic if there exist a strongly deterministic tileset τ and an alphabetical
projection π : τ → Σ such that π(Xτ ) = Y.

Let � denote the finite set {0, 1}×{0, 1}. A 2×2 substitution over an alphabet

Σ is a map s : Σ → Σ�. s is naturally extended to its global map S : ΣZ2 → ΣZ2

verifying: ∀c ∈ ΣZ2

, ∀x ∈ Zd, ∀u ∈ �, S(c)(2x + u) = s(c(x))(u). Following a
dynamical systems point of view, we define the set of colorings of the plane

generated by a substitution s as its limit set Λs =
⋂
n≥0

{
u · Sn

(
ΣZ2

)}
u∈Z2

which is a subshift of ΣZ2

. Let us conclude by stating a useful characterization
of the limit set for our construction. Given a substitution s over Σ, a Σ-coloring
c ∈ ΣZ2

admits a history if there exists a sequence (un, cn)n≥0, with, ∀n ≥ 0,

un ∈ � and cn ∈ ΣZ2

, such that c0 = c and ∀n ≥ 0, cn = un · S(cn+1). Then Λs
is exactly the set of colorings admitting a history.

2 A strongly deterministic aperiodic tileset

In this section, we build a strongly deterministic aperiodic tileset by enriching
the aperiodic tileset τ of 104 tiles introduced in [7].

The aperiodic tileset τ of 104 tiles The tileset τ can be defined as the
smallest fixed point of a 2 × 2 substitution scheme. It is indeed self-simulating
for a certain 2 × 2 substitution s on τ depicted on figure 1: both tilesets τ and
s(τ) (which tiles are 2× 2 macro-tiles on τ) are isomorphic and every tiling by
τ can be uniquely decomposed into a tiling by s(τ). The substitution s is non-
ambiguous: every coloring of its limit set Λs admits a unique pre-image by S.
This forces in particular Λs to contain only non-periodic colorings. As Xτ ⊆ Λs,
τ is aperiodic. For a detailled presentation of this construction, the reader is
invited to refer to [7].

Let us now fix some useful notations. Let ����, ����, ����, ���� (i.e. SW, SE, NW,
NE) denote the four colors of the layer 1 (parity), respectively represented in
dark blue, blue, dark red, red on the figures; and X, H, V the three general
types: cross, horizontal bridge and vertical bridge respectively, of decorations of
the layer 2. Paths of information on the layer 2 are called cables. We finally use
the notations q, p, y, x to indicate the cables of positions SW, SE, NW, NE
respectively of a tile with layer 2 of type cross X.

Remark 1. Observe that s forces the layer 2 (cables) of any tiling to describe
an infinite stacking of parity grids (where square colors are alternating parity in
both directions) which nth level is a grid of step 2n + 1. To establish the soficity
of a limit set, one could code a coloring of the history on each level. Also note
that s forces each level of the parity grid to be translated of 1/2 step of the
immediately inferior level grid in the SW direction.
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7−→

7−→

7−→

Fig. 1. Substitution s and pattern of s3(τ)

The 4-ways-deterministic enriched tileset τ ′ The tileset τ is not deter-
ministic in any direction: the only reason is that is it not possible to determine
whether the type of layer 2 H or V must be chosen when producing a tile of
parity ����.

Let us define an alphabet of labels L = {X,H,V} and label the cables of
the layer 2 by elements of � × L (instead of �). The local rule is extended so
that the labels of L are preserved (as the colors of �) all along a same cable.
Observe that any tile t of parity ���� is directly encircled by a cable on the layer 2
of its eight neighbors. Let us enrich the local rules in respect to the four directly
neighboring tiles so that this label corresponds to the type of the tile t: if t is a
cross, the label must be X; if t is an horizontal bridge, the label must be H; if
t is a vertical bridge, the label must be V. Let us observe that the substitutive
structure of the tilings already forces every tile of parity ��

�� directly encircled
by a cable of color ����, ����, ���� to be a horizontal bridge, vertical bridge, cross
respectively. Hence the added labeling is only necessary for cables of color ���� as
the other couples color-label appearing in a tiling must always be (����,H), (����,V)
and (����,X).

Those new labels and local rules force the choice between types H and V on
the layer 2 of tiles of parity ��

��. However the production of the labels on cables
of color ���� is not deterministic: e.g. when the considered determinism direction
is NE, the label on the cable at position x of a tile of type X is not determined
when this cable is of color ����. That piece of information can only be obtained
back in the history of the coloring coded by the tiling. For this purpose, we
add some wires as depicted on the figure 2(a), carrying a label of L. Those new
wires must start on every corner of a square of color ���� (figure 2(b)) and follow
cables of color ���� (figures 2(d) and 2(e)) until they reach an orthogonal cable of
superior level (figures 2(c) and 2(e)). Tiles receiving those new decorations are
hence perfectly identified. Associated local rules are: the label carried by a wire
must be preserved all along; on both ends of a wire, the label must corresponds
to the ones held by the cables to which it is connected.

The proof of the following result is mainly an exhaustive verification.

Theorem 1. τ ′ is an aperiodic strongly deterministic tileset.
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(a)

(b) start

(c) end

(d) wire

(e) wire & end

Fig. 2. Pattern of a tiling by τ ′ (a) and tiles holding new wires

3 NE-soficity of substitutions limit sets

Enforcing the limit set of a substitution: the enriched tileset τ ′(s′)
Given a 2 × 2 substitution s′ over an alphabet Σ, we use the quaternary tree
structure constituted by the cables of color ���� and contained in every tiling, to
carry the history of a configuration of the limit set of s′. For that purpose, every
cable of color ���� must carry a letter of Σ: those cables are hence labeled by
elements of �×L×Σ (instead of �×L). The added labels must verify certain
rules to enforce the tree to hold the hierarchy imposed by the substitution s′:
on V tiles where two cables of color ���� cross, the letters a ∈ Σ carried by the
superior vertical cable and b ∈ Σ carried by the inferior horizontal cable must
verify b = s′(a)(x, y) where x = 0 (resp. x = 1) if the superior ���� cable in on
right (resp. left) position and y = 0 (resp. y = 1) if the inferior ���� cable in on
bottom (resp. top) position; symmetrically, on H tiles where two cables of color

��
�� cross, the letters a carried by the superior horizontal cable and b carried by
the inferior vertical cable must verify b = s′(a)(x, y) where y = 0 (resp. y = 1) if
the superior ���� cable in on top (resp. bottom) position and x = 0 (resp. x = 1)
if the inferior ���� cable in on left (resp. right) position; finally, on every cross X in

��
�� position, the letters a carried by the ���� cable of the layer 2 and b carried by
the layer 1 must verify b = s′(a)(u) where u = ��

�� (resp. ����,����,����) if the ���� cable
is in position x (resp. y,p,q) in the cross. We also enrich the local rules to force
the four tiles of a same 2× 2 parity block to share the same letter of Σ. For all
tiles t ∈ τ ′(s′) with layer 1 (u, a) ∈ �×Σ, let us define π(t) = s′(a)(u).

Theorem 2 ([7]). π
(
Xτ ′(s′)

)
= Λs′ , hence limit sets of 2× 2 substitutions are

sofic.
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So that in every level of a tiling all cables symmetrically carry the hierarchical
information, we ultimately enrich τ ′(s′) by adding letters of Σ on cables of colors

��
��, ���� and ��

�� and forcing every ��
�� cable to share its letter with the three other

cables of its parity block: on every tile (X included) where a cable of color ����

(resp. ����) appears at the left of a ���� (resp. ����) cable, they must share the same
letter of Σ; similarly, on every tile where a cable of color ���� (resp. ����) appears
at the top of a ��

�� (resp. ����) cable, they must share the same letter of Σ. We
refer to these rules as sharing rules. That way, every level of the parity grid of
every tiling t by τ ′(s′) codes a coloring of the history of π(t) where each letter
is carried by a parity block.

The NE-deterministic tileset τNE(s
′) The tileset τ ′(s′) is not deterministic

in any direction. The reason is that the letter of Σ carried by the corner of a
cable on a X tile cannot always be deterministically determined when its position
corresponds to the considered direction of determinism and no sharing rule force
this letter: e.g. for the determinism direction NE, the letters of ���� cables of
position x on X tiles are not determined. Note that this problem also arises in
the particular case of the level 0: e.g. for the determinism direction NE, the
letter of Σ held by the parity layer of any tile of parity ��

�� cannot be obtained
deterministically. That piece of information can be obtained in the superior level
of the history which appears, according to the remark 1, to be translated in the
SW direction. In the following, we build a NE-deterministic tileset based on that
observation.

For that purpose, we must add a color of � and a letter of Σ on some of
the wires added in the previous section: those that link the SW corner of a ����

cable to the closest superior level cable in the south or west direction, e.g. the
vertical wires running to the south depicted on the figure 3(a) (or we could have
chosen equivalently the corresponding horizontal wires running to the west).
Those wires are then labeled by elements of L × � × Σ (instead of L). Tiles
holding a wire are represented on figure 3. On tiles carrying the end (figure 3(c))
of such a wire, the color and letter of the wire must be the same as the ones of
the cable to which it is connected. On tiles carrying the start (figure 3(b)) of
such a wire, the color u ∈ � and letter a ∈ Σ carried by the wire and the letter
b ∈ Σ carried by the ���� cable must verify b = s′(a)(u). Associated local rules
are: the labels carried by a wire must be preserved all along its propagation.

Solving the same problem at level 0, i.e. predicting the letter of the parity
layer of ���� tiles, is easier. Remember that every ���� tile is directly encircled by a
cable on its eight neighbors. Then simply add the following local rules: the letters
b ∈ Σ of the parity layer of any ��

�� tile and a ∈ Σ of the direct encirclement
cable, of color u ∈ �, in any of its four direct neighbors, must verify b = s′(a)(u).

τne(s′) is a NE-deterministic tileset. The proof of this result is an exhaustive
verification. It should be quite clear as the enrichments were done in purpose.
The soficity result is obviously still valid (for a naturally extended projection
π simply removing all additional decorations): we have π

(
Xτne(s′)

)
= Λs′ . This

lead to the following result.

Theorem 3. Limit sets of 2× 2 substitutions are NE-sofic.
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(a)

(b) start

(c) end

(d) wire

Fig. 3. Pattern of a tiling by τne(s
′) (a) and tiles holding wires

4 4-ways-soficity of substitutions limit sets

In this section, we enrich the NE-deterministic tileset τne(s′) into a strongly
deterministic tileset τ4w(s′).

The 4-ways-deterministic tileset τ4w(s′) We have underlined in remark 1
the fact that the substitution s translates superior levels of the parity grid to-
wards the SW direction. Considering the three other symmetrical possible choices
for this substitution represented on the figure 4, we can similarly build tilesets
τnw(s′), τse(s′) τsw(s′) that are NW, SE and SW-deterministic respectively. To
build a strongly deterministic tileset τ4w(s′), let us consider the tileset consti-
tuted by the cartesian product τne(s′)× τnw(s′)× τse(s′)× τsw(s′) for which we
require the local rules to be verified on each of the components of the product.
For any tile t = (t1, t2, t3, t4), we moreover require the four components t1,. . . ,
t4 to share the same layer 1, i.e. same parity and same letter of Σ. That way, the
coloring coded by each of the components of a tiling T = (T1, T2, T3, T4) is the
same: π1(T1) = π2(T2) = π3(T3) = π4(T4) with πi the associated projections.
Each of the components of the product tileset is deterministic in one direction.
The idea is to use this component to make the three others deterministic in its
direction. We must then synchronize the histories coded by the four components
of a tiling so that they code the same coloring at every level. The synchronized
tileset should then be strongly deterministic.

Recall that the obstacle to determinism is that the letter of Σ carried by
the corner of a cable on a tile X cannot always be deterministically determined
when its position corresponds to the considered direction of determinism and no
sharing rule force this letter.

Analyzing the case of two opposite directions Let us examine the case
of two components of opposite determinism directions. Without loss of gener-
ality, let us consider SW and NE directions and, in this paragraph only, the
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7−→

(a) sne = s

7−→

(b) snw

7−→

(c) sse

7−→

(d) ssw

Fig. 4. Four symmetrical substitutions

τne(s′) × τsw(s′) associated product (i.e. components 1 and 4 of the previously
introduced product) for which a tiling pattern is depicted of figure 5(a) (where
on each tile, the first and second components are represented in the SW and NE
corners respectively, and colors of the second components are dark green, green,
orange, yellow for ����,����,����,���� respectively). In any tiling, only the parity layers
of both components are actually synchronized so that they both code the same
coloring at level 0. But let us assume one moment that we have synchronized
both components on every level so that both components code exactly the same
history of that coloring. Let us now pick the determinism direction SW, and
analyze how the first component can be made SW-deterministic using the sec-
ond component. By symmetry, the same analyze would make sense for the other
component in the opposite determinism direction. In our choice, for the deter-
minism direction SW on the first component, the letters of ���� cables of position

q on X tiles are not determined. As illustrated by the scattered representations
of figures 5(c) and 5(d), we claim, when the tiling is fully synchronized, that the
letters of these cables are precisely those carried by the corresponding ���� cables
(in yellow) of the second component and same hierarchical level that appear on
neighboring tiles pointed by a vector (−1,−1), i.e. one diagonal shift away in
the SW direction. It is not convenient that this piece of information is available
one shift away in the considered determinism direction: it precisely arrives one
step later the position we need it. Nevertheless, observe that, at every level, that
shift is constant (−1,−1).

The case of two components of orthogonal determinism (e.g. τne(s′)×τnw(s′)
directions (e.g. τne(s′) × τnw(s′) depicted of figure 5(b)) is similar (required in-
formation available one shift away).

Grouping tiles The analyses lead before show that the required pieces of
information to synchronize the histories of the four components and by this
way make the tileset strongly deterministic always are available one shift away,
unfortunately in the considered determinism direction, of the tile to predict. A
simple solution to this constant shift problem is a 3× 3 grouping of tiles: let τ0
be the previously defined product tileset, let denote the set {0, 1, 2}2, τ1 ⊆ τ0
denote the set of valid 3 × 3 patterns (in respect to τ0 local rules) over τ0 and
consider the grouped tileset (τ1,H1,V1) verifying, ∀(t, t′) ∈ τ21 , (t, t′) ∈ H1 ⇔
∀y ∈ {0, 1, 2}, t2,y = t′0,y and (t, t′) ∈ V1 ⇔ ∀x ∈ {0, 1, 2}, tx,2 = t′x,0. We then
obtain τ4w(s′) from τ1 by adding some synchronization requirements on the tiles.
Let us get back to the example used in the case of two opposite directions: on
each tile t for which the central sub-tile t1,1 has a first component of type X with
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(a) τne(s
′)× τsw(s′) (b) τne(s

′)× τnw(s′)

(c) Cables of level 1 of τne(s
′)× τsw(s′) (d) Cables of level 2 of τne(s

′)× τsw(s′)

Fig. 5. Scattered view of the cables of the two-components tilesets and views level-by-
level of the cables of τne(s

′)× τsw(s′)
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a ���� cable in q position labeled by a letter a ∈ Σ, there must be, as t forms a
3 × 3 valid pattern for τ0, a yellow ��

�� cable going along the fourth components
of the sub-tiles t0,2, t0,1, t0,0, t1,0, t2,0 and, still for validity reasons, carrying
a same letter b ∈ Σ. We require in that case, based on the previous analysis,
to have a = b. Considering all the symmetrical requirements and the analog
requirements for the orthogonal case, we obtain the τ4w(s′) tileset.

Results τ4w(s′) is a strongly deterministic tileset. The proof of this result is an
exhaustive verification. The cases examined before should convince the reader of
its correctness. Again, the soficity result is obviously still valid (for a naturally
extended projection π simply removing all additional decorations): we still have
π
(
Xτ4w(s′)

)
= Λs′ . This lead to the final result.

Theorem 4. Limit sets of 2× 2 substitutions are 4-ways-sofic.
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A Complementary material

This appendix contains additional material and figures, as well as larger versions
of figures of the paper.

A.1 Complements to section 2

The figure 6 is a large version of the figure 2(a) of the paper.

Proof sketch (of theorem 1). τ ′ cannot tile the plan periodically as it can obvi-
ously be projected onto τ which is aperiodic. The substitution s can naturally be
enriched into a substitution on τ ′ that can be iterated to generate valid square
patterns of all sizes over τ ′, hence ensuring using compactness that it can still
tile the plane.

Proving that τ ′ is 4-way-deterministic is a simple verification. It should be
clear as we have enriched τ in purpose. �

A.2 Complements to section 3

The figure 7 illustrates the quaternary tree contained in every tiling.

Proof sketch (of theorem 2). We prove π
(
Xτ ′(s′)

)
⊇ Λs′ (easy inclusion) by

simply encoding the history of a coloring of Λs′ into the quaternary tree of a
tiling. For π

(
Xτ ′(s′)

)
⊆ Λs′ , we prove that every tiling t contains the history of

the coloring π(t), which is then in Λs′ . �

The figure 8 is a large version of the figure 3(a) of the paper.
We prove here that τne(s′) is NE-deterministic.

Theorem 5. τne(s′) is a NE-deterministic tileset

Proof. We prove that for all couples (tw, ts) ∈ τne(s′), there exists at most one
tile t ∈ τne(s′) such that (tw, t) ∈ H and (t, ts) ∈ V.

Obviously the parity color (among ����, ����, ���� and ��
��), the type of the layer 2

(among X, H and V), as well as the color of the cables (but not necessarily the
letters of Σ they carry) of t are forced respectively by the parity layer and the
colors of the cables of tw and ts (assuming they force compatible information,
otherwise there is no compatible tile t). However, producing deterministically
the letters of Σ is not that easy.

Producing letters of the layer 1 (parity). The letter carried by the parity layer
of t is directly contained by ts if t is of parity ���� and by tw if t is of parity ����. The
letter can easily be derived from the letter carried by the cable of color ���� if t is
a tile X of parity ����. The only problematic case concerns tiles of parity ����. Recall
that a tile of parity ���� is necessarily directly encircled in a tiling by a cable from
which the desired letter can be easily derived. Then in that case, the desired
letter can be obtained from the cables of ts (or indifferently tw, assuming, again,
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Fig. 6. Pattern of a tiling by τ ′
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Fig. 7. Quaternary tree (cables NE) appearing in every tiling
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Fig. 8. Pattern of a tiling by τne(s
′)
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that they provide compatible information). For that purpose, the enrichments
of the rules discussed at the end of the second subsection of the section 3 force
the letter on the parity layer of the tile t.

Producing letters on cables of the layer 2. Let us first observe that producing
this information for a tile of type H (parity ��

�� or ����) or V (parity ��
�� or ����) is

always deterministic as the colors and letters of the cables are directly forced
by the layer 2 of tw and ts (where they propagate). Only producing letters of
the tiles of type X (parity ��

�� or ����) is tricky. Note that the letters of cables at
positions q, p and y of the tile t are always forced by tw and ts (where, again,
they propagate). While the cable at position x of the tile t is not of color ����,
the sharing rules (see the end of the first subsection of section 3) always force
the letter carried by the cable at position x (as it is then shared by the cable at
position p or q). If, on the other hand, the cable at position x of the tile t is of
color ����, then the information held by the layer 2 of tw and ts does not suffice
to determine the letter carried by this cable. In that case, t however contains a
wire stop on this cable and ts contains a wire (or the start of a wire, see figure 3)
which then force the desired letter.

Producing the other layers. Producing the layer 3 and the wires is direct and
easily seen deterministic, which concludes the proof.

A.3 Complements to section 4

The figures 9 and 11 are large versions of the figures 5(a) and 5(b) of the pa-
per. The figure 10 provides some large versions, plus one additional level, of the
figures 5(c) and 5(d) (opposite directions case analysis) of the paper. The fig-
ure 12 is the same for the orthogonal directions case analysis which is done in
the following paragraph.

Analyzing the case of two orthogonal directions Let us examine the case
of two components of orthogonal determinism directions by considering this time
the product τne(s′)× τnw(s′) for which a tiling pattern is depicted on figure 5(b)
(same conventions as before). Assuming that we have synchronized both com-
ponents on every level, let us pick, without loss of generality, the determinism
direction NW. For this direction on the first component, the letters of ���� ca-
bles of position y on X tiles are not determined. The letters of these cables are
precisely those carried by the corresponding ���� cables (in green) of the second
component and same hierarchical level that appear on neighboring tiles pointed
by a vector (0, 1), i.e. one vertical shift away, again in the determinism direction.
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Fig. 9. Scattered view of the cables of τne(s
′)× τsw(s′)
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(a) Cables of level 1

(b) Cables of level 2

(c) Cables of level 3

Fig. 10. Scattered views level-by-level of the cables of τne(s
′)× τsw(s′)
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Fig. 11. Scattered view of the cables of τne(s
′)× τnw(s′)
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(a) Cables of level 1

(b) Cables of level 2

(c) Cables of level 3

Fig. 12. Scattered views level-by-level of the cables of τne(s
′)× τnw(s′)


