
HAL Id: hal-00661879
https://hal.science/hal-00661879v1

Submitted on 20 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Graph-Based Approach to Context Matching
Andrei Olaru, Adina Magda Florea

To cite this version:
Andrei Olaru, Adina Magda Florea. A Graph-Based Approach to Context Matching. Scalable Com-
puting : Practice and Experience, 2010, 11 (4), pp.393–399. �hal-00661879�

https://hal.science/hal-00661879v1
https://hal.archives-ouvertes.fr

A GRAPH-BASED APPROACH TO CONTEXT MATCHING∗

ANDREI OLARU† AND ADINA MAGDA FLOREA‡

Abstract. This paper presents the work in progress towards a simple, flexible and decentralized
representation of context and for the detection of appropriate context-aware action. Continuing our
previous work on decentralized multi-agent systems for the context-aware exchange of information,
we propose a representation for context inspired from concept maps and conceptual graphs, and also
a formalism for context patterns, that allows the detection and solution of problems related to the
user’s context.

Key words. knowledge representation, multi-agent systems, pattern recognition

AMS subject classifications. 68T42, 68T30

1. Introduction. Domains like Ubiquitous Computing [27] and Ambient Intel-
ligence [8] have brought context-awareness as a central issue for research. As the
electronic environment that surrounds people must assist them in more and more of
their daily activities, ambient applications must consider more aspects of the user’s
context in order to improve their performance and their adequateness to the principles
of UbiComp and AmI.

A true AmI system must be non-intrusive, but also proactive. This is a balance
that may be difficult to reach. Appropriate proactive action must fit the context
of the user or the user will not have an optimal experience with the system [23].
Additionally, in order to be useful, many times proactive action must result from the
anticipation, based on the current context, of future situations. Context-aware action
and anticipation will also make an AmI system seem ”intelligent” [4, 22].

There is a large body of research dealing with the subject of context-awareness.
Context has been defined as [6]: ”Any information that can be used to characterize
the situation of entities (i.e. whether a person, place or object) that are considered
relevant to the interaction between a user and an application, including the user and
the application themselves”. Most works deal with context as location, location and
time or other physical conditions, like temperature [1, 21, 10]. Another aspect of
context that is considered in some works is activity [12, 14].

However, most times the situation of the user is defined only by means of aspects
that have been predefined. Situations may be described by means of certain types
of associations [12] or by means of ontologies and / or rules [21]. However, these
methods are not very flexible and the range of contexts that can be treated becomes
limited with respect to what Ambient Intelligence should ideally be.

In our approach towards an implementation of Ambient Intelligence, we are trying
to build mechanisms and representations that facilitate a more flexible approach to
AmI and context-awareness, while in the same time are easy to implement and can
work on resource-constrained devices. In previous work a decentralized multi-agent

∗This work has been supported by CNCSIS–UEFISCSU, project number PNII–IDEI 1315/2008
and by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Ro-
manian Ministry of Labour, Family and Social Protection through the Financial Agreement POS-
DRU/6/1.5/S/16.
†Computer Science Department, University Politehnica of Bucharest, 313 Splaiul Independentei,

060042 Bucharest, Romania (cs@andreiolaru.ro).
‡Computer Science Department, University Politehnica of Bucharest, 313 Splaiul Independentei,

060042 Bucharest, Romania (adina@cs.pub.ro).

1

2 A. OLARU AND A.M. FLOREA

system for the distribution of information was built, that shared relevant information
between agents, based on some simple measures of context-awareness [19]. However,
context-awareness requires a more complex and powerful representation of context,
while less capable devices require that this representation be flexible in size and also
easy to process.

This paper deals with describing a simple formalism that allows agents in a multi-
agent system, that have only local knowledge, to share and process context-related
information and to solve problems by using context matching. We consider that there
is one agent assigned to each user of the system (we call the system AmIciTy and
the agents AmIciTy agents). Each agent has a representation of the context of its
user, including models on other users. The focus of this paper is more on defining a
manner of representation, and less on the algorithms used for context matching, the
agent’s behaviour or the protocol used in the communication between agents.

Context matching is based on representing information about the context of a
user as a conceptual graph [24] and on the existence of context patterns, or, in short,
patterns. Patterns can describe (in more or less detail) situations that the user has
been in, they can describe common sense knowledge, or just associations between
different pieces of information that are observed to appear frequently in the user’s
history. They resemble the notion of pattern in knowledge discovery in databases. In
fact, patterns may be extracted by using data mining techniques, but this is not the
focus of this paper.

Two matching context graphs (for two different users) mean a shared context,
which is an occasion for further sharing of information between the users’ agents.
A pattern that matches the user’s context means the user has been in the situation
before (or it is a well-known, commonsense, situation) and this can allow the agent to
anticipate possible problems, as well as to find solutions to problems already detected.

The next section presents related work in the field of context-awareness. The
proposed context representation, as well as a scenario and examples of context-aware
behaviour form the content of Section 3. The last two sections give an insight on
future work and draw the conclusions.

2. Related Work. In previous work in the field of context-awareness there are
usually two points of focus: one is the architecture for capturing context information;
the other is the modeling of context information and how to reason about it.

Ever since the first works on context-awareness for pervasive computing [7], cer-
tain infrastructures for the processing of context information have been proposed
[13, 11, 15, 12, 1, 9]. There are several layers that are usually proposed, going from
sensors to the application: sensors capture information from the environment, there
is a layer for the preprocessing of that information, the layer for its storage and man-
agement, and the layer of the application that uses the context information [1]. This
type of infrastructures is useful when the context information comes from the envi-
ronment and refers to environmental conditions like location, temperature, light or
weather. However, physical context is only one aspect of context [5]. Moreover, these
infrastructures are usually centralized, using context servers that are queried to ob-
tain relevant or useful context information [7, 15]. In our approach [18], we attempt
to build an agent-based infrastructure that is decentralized, in which each agent has
knowledge about the context of its user, and the main aspect of context-awareness is
based on associations between different pieces of context information.

Modeling of context information uses representations that range from tuples to
logical, case-based and ontological representations [21, 25]. These are used to deter-

A GRAPH-BASED APPROACH TO CONTEXT MATCHING 3

(a)

(b)

Fig. 3.1. The knowledge of Alice’s and Bob’s agents, respectively: (a) Alice will go to a concert
where a rock band is playing and which is located at the stadium, and then to go out with friends; (b)
Bob will be going at the same concert, and has also booked a taxi to get there. Part of the relations
and concepts that appear in the graphs may come from ontologies.

mine the situation that the user is in. Henricksen et al use several types of associations
as well as rule-based reasoning to take context-aware decisions [12, 3]. However, these
approaches are not flexible throughout the evolution of the system – the ontologies
and rules are hard to modify on the go and in a dynamical manner. While ontolo-
gies make an excellent tool of representing concepts, context is many times just a set
of associations that changes incessantly, so it is very hard to dynamically maintain
an ontology that describes the user’s context by means of a concept. In this paper
we propose a more simple, but flexible and easy-to-adapt dynamical representation
of context information, based on concept maps and conceptual graphs. While our
representations lacks the expressive power of ontologies in terms of restrictions, a
graph-based representations is very flexible and extensible, so support for restriction
may be added as future work.

Our approach to context representation is rooted in existing knowledge repre-
sentation methods like semantic networks, concept maps [17] and conceptual graphs
[24]. These structures can be used to describe situations (and context) in a more
flexible manner and using less memory than ontological representations. While graph
matching has been previously used, for instance for image processing [2], we attempt
to use it for the matching of context graphs, also improving the graphs by means of
special notation elements that allow the definition of patterns.

There has been a significant body of work in the domain of ontology alignment,
which is vital for a viable implementation of Ambient Intelligence systems [26]. How-
ever, this is not the subject of this paper. We assume that all agents in the system
work with terms from the same ontology (where it is the case), or that ontologies have
already been aligned.

Software agents and multi-agent systems have been used many times in the im-
plementation of AmI environments in the past [15, 4, 16], however context-awareness
in these systems is limited to location-related associations and simple forms of repre-
sentation.

4 A. OLARU AND A.M. FLOREA

Fig. 3.2. A pattern that says that if the user attends an activity that has a location, then the
location of the activity should be reached in some way.

3. Context Matching. The main idea of this paper is to propose a graph
representation for contexts, designed in order to facilitate the detection of compatible
contexts.

Scenario. Alice will go to a rock concert in the evening of the current day. The
concert is located at a stadium outside the city, therefore she should find some means
of transportation to get there, but she hasn’t yet given thought about that. Bob,
her roommate, will go to the same concert but he has not talked to Alice about that
yet. However, he has already booked a taxi to get to the concert. This is a typical
situation for our approach [18]: insufficient communication between people leads to a
lack of otherwise relevant information that could be easily obtained by means of an
AmI system.

Alice and Bob are both users of the AmIciTy Ambient Intelligence system. What
we want is that the system (1) detects the need for a means of transportation for Alice,
(2) based on information on Bob’s agenda, suggest that a taxi may be an appropriate
solution for Alice as well, and (3) based on the existing shared context, propose to
Alice that she uses the same taxi that Bob has already booked.

Each user of AmIciTy has an associated agent. Figure 3.1 shows the concept graph
for the knowledge of the two agents (agent A for Alice and agent B or Bob) that is
relevant to the scenario. Formally, the knowledge of each agent can be represented as
a graph:

G = (V,E)

V = {vi}, E = {ek}, ek = (vi, vj , value)

where vi, vj ∈ V, i, j = 1, n, k = 1,m

The values of vertices and edges can be either strings or, better, URI identifiers
that designate concepts, relations, people, etc. The value of an edge may be null.

The graph that an agent has contains the knowledge that the agent has about
the user and about the user’s context. The graph represents the context of the user,
in the measure in which the agent has perceived it (or been informed of by the user
or by another agent).

First, we want the system to detect the fact that it is necessary to know how Alice
will be getting at the concert. This can be done by means of the following pattern:
if the user intends to attend something that is an activity, and that has a location
(it’s not, for instance, making a phone call), then there should also be a means for
the user to reach that location. The pattern is represented in Figure 3.2.

A pattern is also a graph, but there are several additional features that makes it
match a wider range of situations. The graph for a pattern s is defined as:

GP
s = (V P

s , EP
s)

V P
s = {vi}, vi = string | URI | ?, i = 1, n

EP
s = {ek}, ek = (vi, vj , E RegExp), vi, vj ∈ V P

s , k = 1,m

where E RegExp is a regular expression formed of strings or URIs.

A GRAPH-BASED APPROACH TO CONTEXT MATCHING 5

A pattern represents a set of associations that has been observed to occur many
times and that is likely to occur again. Patterns may come from past perceptions of
the agent on the user’s context or be extracted by means of data mining techniques
from the user’s history of contexts. Commonsense patterns may come from public
databases, and patterns may also be exchanged between agents. However, the creation
or extraction of patterns is not the subject of this paper.

The agent has a set of patterns that it matches against the current context (graph
G). We will mark with the P superscript the graphs or vertex / edge sets that contain
special pattern features (like ? nodes, for instance).

A pattern GP
s matches a subgraph G′ of G, with G′ = (V ′, E′) and GP

s =
(V P

s , EP
s), iff an injective function f : V P

s → V ′ exists, so that
(1) ∀vPi ∈ V P

s , vPi =? or vPi = f(vPi) (same value)
and
(2) ∀eP ∈ EP

s , eP = (vPi , v
P
j , value) we have:

if value is a string or an URI, then the edge (f(vPi), f(vPj), value) ∈ E′

if value is a regular expression, then it matches the values value0, value1, ..., valuep
of a series of edges e0, e1, ..., ep ∈ E′, where

e0 = (f(vPi), va0
, value0),

ek = (vak−1
, vak

, value1), k = 1, p− 1
ep = (vap−1

, f(vPj), valuep),
val
∈ V ′.

In other words, every non-? vertex from the pattern must match a different vertex
from G′; every non-RegExp edge from the pattern must match an edge from G′; and
every regular expression edge from the pattern must match a series (that can be void,
if the expression allows it) of edges from G′. Subgraph G′ should be minimal. A
graph (or subgraph) G′ is minimal with respect to a matching pattern GP

s iff there is
no edge in G′ that is not the match (or part of the match) of an edge in GP

s .
A pattern GP

s k-matches a subgraph G′ of G, if condition (2) above is fulfilled for
m−k edges in EP

s , k ∈ [1,m−1], m = ||EP
s || and G′ remains connected and minimal.

The relationship of k-matching should be interpreted as matching except for k edges.
Non-matching vertexes imply non-matching edges. We consider the number of edges
as relevant (as opposed to number of vertices, for instance), because context is a set
of associations, so it is the edges that matter.

For the example in Figure 3.1 (a), the pattern in Figure 3.2 2-matches the knowl-
edge about Alice that her agent has, G′ containing the information that the user
(Alice) will attend a concert (which is an activity) which is located at the stadium.
The missing edges are the go by edge and the to edge, and there is also a vertex that
is missing – the means of transportation. Because the pattern fits in a percentage of
66%, it means that Alice is in the situation described by the pattern, but something
is missing, so the agent should ask Alice about that piece of information or to try to
find it itself (see also Figure 4.1). This is defined as a problem.

4. Problem Solving. A Problem is a graph GP that contains features that are
specific for patterns (like ? nodes for instance) and that is a partial instantiation of a
pattern GP

s , according to the current context. A problem GP is the union between the
subgraph G′ (of the context graph G) that k-matches pattern GP

s and the part of GP
s

that is not matched by G′. The latter is the unsolved part of the problem. A problem
also remains associated with the pattern that generated it. Therefore, formally, if a
pattern GP

s = (V P
s , EP

s) k-matches the subgraph G′ = (V ′, E′) of G, we can define a
problem p as a tuple (GP

s , G
P
p), where GP

p is the problem’s graph:

6 A. OLARU AND A.M. FLOREA

Fig. 3.3. The knowledge base of agent A, completed with the information on Bob’s agenda.
Also the problem and its unsolved part are circled with a continuous and a dashed line respectively.
Although the unsolved part is displayed together with the rest of the context graph, it is not a concrete
or known fact so it would not be used in pattern-matching.

Fig. 3.4. A second pattern, specifying that two people can use the same taxi to get to the same
location if the person who has not booked the taxi has permission from the other to ride the same
taxi.

GP
p = G′ ∪GP

x

GP
x = (V P

x , EP
x)

V P
x = {v ∈ V P

s , v /∈ dom(f)}
EP

x = {e ∈ EP
s for which condition (2) is not

fulfilled}
Note that GP

x (the unsolved part of the problem) is a subgraph of GP
s . Also note

that the unsolved part may contain edges whose vertices are not both in the unsolved
part. The problem from our example is circled in Figure 3.3 with a continuous line,
and its unsolved part is circled with a dashed line.

The agents in AmIciTy are not single agents. They are part of a multi-agent
system. Agents A and B communicate frequently due to the fact that Alice and Bob
live in the same place and exchange a lot of data. At some point in this communication,
they exchange data about Alice’s and Bob’s agendas, which is normal for two people
that share an apartment. Agent B will send the subgraph agenda→ Concert and A
will send agenda→ Concert/→ Go Out (agent A will only send the GoOut activity
if Alice has not designated it as private).

Agent A receives the subgraph agenda→ Concert and matches it against Alice’s
context, detecting the compatibility (a full match). So it responds by building upon
this common context: it sends a larger subgraph, containing the band playing at the
concert, as well as the location of the concert. Agent B does the same operations as
A (they share the same context regarding the concert, so each one’s context matches
the other one’s), just that it also sends to A the associations Concert − go by →

A GRAPH-BASED APPROACH TO CONTEXT MATCHING 7

pattern GP
s k −matches G →

if k > 0
put problem in the list

if there is a problem and this can be a solution
is the solution is certain / complete

let user know
user confirms solution

increase confidence in pattern
otherwise

decrease confidence in pattern
otherwise

link possible solution to problem

Fig. 4.1. Pseudocode of the agent’s behaviour related to context matching.

Taxi− to→ Stadium.

The communication between agents as described above is done based on shared
context. Starting from sharing their agendas, at each step agents detect matches
between the two contexts and respond with a subgraph that is larger with one level
(breadth-first).

All the data that agent A has about other agents (here, agent B) is stored in
the agent’s knowledge base as its model of the other users. The model for the other
users is not necessarily separate though: if the same concept appears in both models
(provided the concept ha the same URI, or the agent is able to detect by means of
common sense knowledge that it is the same concept), both subgraphs will contain
the corresponding node. Figure 3.3 shows the knowledge of agent A regarding users
Alice and Bob. The model for Bob’s agenda contains the same Concert node that
is contained in the graph for Alice. When matching patterns from its pattern set, A
detects that the pattern mentioned above fully matches the model for Bob. Agent A
also has a problem that is linked to this pattern. Since Bob’s context fully matches
the pattern, it means it may be a solution to Alice’s problem: Alice may also use
a taxi to reach the concert. But that would mean booking a different taxi (use a
different instance of the concept).

Another pattern may be used in this context: agent A may know that two people
may share the same taxi to get to the same destination, if one has permission from
the person that booked the taxi (we have somewhat simplified the problem and we do
not mention that the two people must leave from the same location and need to reach
the destination at the same time). This pattern is shown in Figure 3.4. Matching
this pattern against the knowledge of agent A about Alice’s context in Figure 3.3
(remember that unsolved parts are not matched), a 2-match is obtained (missing
relations are has permission and Alice’s go by). Not only that, but adding those
relation would solve the problem that Alice has. Therefore, the agent can suggest to
Alice to ask permission from Bob to use the same taxi.

In this particular case, with the given knowledge and patterns, there is only one
solution to the problem that arose. But in a more realistic case, where context is
more complex and there are more patterns, more solutions to the same problem may
be found. In case they fit equally well in the current context, then the agent must
prompt the user with all of them and the user must be given the choice.

It can be argued that context-matching is a very difficult problem in the case of

8 A. OLARU AND A.M. FLOREA

large graphs and complex situations. However, resource-constrained devices will work
only with smaller pieces of context information (i.e. smaller graphs), that are relevant
to their function. Second, algorithms inspired from data-mining allow for incremental
matching, starting from common nodes and growing the matching sub-graph (similar
to the algorithm for matching Rule Schemas [20]).

Another problem that may appear in realistic situations (as opposed to our sim-
ple example) is the abundance of simultaneous matching context patterns, possibly
describing contradictory situations. This is where more refined measures must be
found that will allow calculating the relevance of each match. This too will be part
of our future work.

5. Future Work. The work presented in this paper is in progress. We are in
the process of identifying an efficient matching algorithm, as well as deploying the
described formalism into a previously implemented multi-agent system.

Besides detecting compatible contexts, there is a very interesting potential in
detecting incompatible contexts, or contexts that the user should not be in. Also,
uncertainty has yet to be included in our work. Both these problems have been
researched in the domain of conceptual graphs and graph matching.

One last question that must be further researched is if a subgraph k-matching
a pattern should really be connected. Moreover, should a pattern be necessarily
connected, and how could unconnected patterns and matches be interpreted.

6. Conclusion. So far, work in context-awareness for pervasive environments
has been based predominantly on location-awareness and physical conditions. The
use of ontologies or rules does not bring much dynamical flexibility and they are not
easy to modify automatically, at runtime.

This paper presents the work in progress towards the development of a more sim-
ple – suitable for resource-constrained devices – and more flexible manner of repre-
senting context and context patterns, that allows the agents to take decisions without
the need for a centralized structure, by means of their knowledge, their history and
local communication alone.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg, A survey on context-aware systems, Interna-
tional Journal of Ad Hoc and Ubiquitous Computing, 2 (2007), pp. 263–277.

[2] E. Bengoetxea, P. Larrañaga, I. Bloch, A. Perchant, and C. Boeres, Inexact graph
matching by means of estimation of distribution algorithms, Pattern Recognition, 35
(2002), pp. 2867–2880.

[3] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, and
D. Riboni, A survey of context modelling and reasoning techniques, Pervasive and Mobile
Computing, 6 (2010), pp. 161–180.

[4] G. Cabri, L. Ferrari, L. Leonardi, and F. Zambonelli, The LAICA project: Supporting
ambient intelligence via agents and ad-hoc middleware, Proceedings of WETICE 2005,
14th IEEE International Workshops on Enabling Technologies, 13-15 June 2005, Linköping,
Sweden, (2005), pp. 39–46.

[5] G. Chen and D. Kotz, A survey of context-aware mobile computing research, Technical Report
TR2000-381, Dartmouth College, November 2000.

[6] A. Dey, Understanding and using context, Personal and ubiquitous computing, 5 (2001), pp. 4–
7.

[7] A. Dey, G. Abowd, and D. Salber, A context-based infrastructure for smart environments,
Proceedings of the 1st International Workshop on Managing Interactions in Smart Envi-
ronments (MANSE’99), (1999), pp. 114–128.

A GRAPH-BASED APPROACH TO CONTEXT MATCHING 9

[8] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. Burgelman, Scenarios for
ambient intelligence in 2010, tech. report, Office for Official Publications of the European
Communities, February 2001.

[9] L. Feng, P. M. G. Apers, and W. Jonker, Towards context-aware data management for
ambient intelligence, in Proceedings of DEXA 2004, 15th International Conference on
Database and Expert Systems Applications, Zaragoza, Spain, August 30 - September 3,
F. Galindo, M. Takizawa, and R. Traunmüller, eds., vol. 3180 of Lecture Notes in Computer
Science, Springer, 2004, pp. 422–431.

[10] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, and H. Duman,
Creating an ambient-intelligence environment using embedded agents, IEEE Intelligent
Systems, (2004), pp. 12–20.

[11] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, The anatomy of a context-
aware application, Wireless Networks, 8 (2002), pp. 187–197.

[12] K. Henricksen and J. Indulska, Developing context-aware pervasive computing applications:
Models and approach, Pervasive and Mobile Computing, 2 (2006), pp. 37–64.

[13] J. Hong and J. Landay, An infrastructure approach to context-aware computing, Human-
Computer Interaction, 16 (2001), pp. 287–303.

[14] M. Kaenampornpan and E. ONeill, An integrated context model: Bringing activity to con-
text, in Proceedings of the Workshop on Advanced Context Modelling, Reasoning and
Management, 2004, pp. 7–10.

[15] T. C. Lech and L. W. M. Wienhofen, AmbieAgents: a scalable infrastructure for mobile and
context-aware information services, Proceedings of the 4th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht,
The Netherlands, (2005), pp. 625–631.

[16] C. Muldoon, G. M. P. O’Hare, R. W. Collier, and M. J. O’Grady, Agent factory micro
edition: A framework for ambient applications, in Proceedings of ICCS 2006, 6th Interna-
tional Conference on Computational Science, Reading, UK, May 28-31, V. N. Alexandrov,
G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds., vol. 3993 of Lecture Notes in
Computer Science, Springer, 2006, pp. 727–734.

[17] J. D. Novak and A. J. Cañas, The origins of the concept mapping tool and the continuing
evolution of the tool, Information Visualization, 5 (2006), pp. 175–184.

[18] A. Olaru, A. El Fallah Seghrouchni, and A. M. Florea, Ambient intelligence: From
scenario analysis towards a bottom-up design, in Proceedings of IDC’2010, the 4th In-
ternational Symposium on Intelligent Distributed Computing, M. Essaaidi, M. Malgeri,
and C. Badica, eds., vol. 315 of Studies in Computational Intelligence, Springer, 2010,
pp. 165–170.

[19] A. Olaru, C. Gratie, and A. M. Florea, Context-aware emergent behaviour in a MAS
for information exchange, Scalable Computing: Practice and Experience - Scientific In-
ternational Journal for Parallel and Distributed Computing, 11 (2010), pp. 33–42. ISSN
1895-1767.

[20] A. Olaru, C. Marinica, and F. Guillet, Local mining of association rules with rule schemas,
in Proceedings of CIDM 2009, the IEEE Symposium on Computational Intelligence and
Data Mining, March 30 - April 2, Nashville, TN, USA, IEEE Symposium Series on Com-
putational Intelligence, 2009, pp. 118–124.

[21] M. Perttunen, J. Riekki, and O. Lassila, Context representation and reasoning in pervasive
computing: a review, International Journal of Multimedia and Ubiquitous Engineering, 4
(2009), pp. 1–28.

[22] C. Ramos, J. Augusto, and D. Shapiro, Ambient intelligence - the next step for artificial
intelligence, IEEE Intelligent Systems, 23 (2008), pp. 15–18.

[23] G. Riva, F. Vatalaro, F. Davide, and M. Alcañiz, eds., Ambient Intelligence, IOS Press
Amsterdam, 2005.

[24] J. Sowa, Knowledge representation: logical, philosophical, and computational foundations,
MIT Press, 2000.

[25] T. Strang and C. Linnhoff-Popien, A context modeling survey, Workshop on Advanced
Context Modelling, Reasoning and Management as part of UbiComp, (2004), pp. 1–8.

[26] J. Viterbo, L. Mazuel, Y. Charif, M. Endler, N. Sabouret, K. Breitman, A. El Fal-
lah Seghrouchni, and J. Briot, Ambient intelligence: Management of distributed and
heterogeneous context knowledge, CRC Studies in Informatics Series. Chapman & Hall,
(2008), pp. 1–44.

[27] M. Weiser, The computer for the 21st century, Scientific American, 272 (1995), pp. 78–89.

