
HAL Id: hal-00661875
https://hal.science/hal-00661875v1

Submitted on 20 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ao Dai: Agent Oriented Design for Ambient Intelligence
Amal El Fallah-Seghrouchni, Andrei Olaru, Thi Thuy Nga Nguyen, Diego

Salomone

To cite this version:
Amal El Fallah-Seghrouchni, Andrei Olaru, Thi Thuy Nga Nguyen, Diego Salomone. Ao Dai: Agent
Oriented Design for Ambient Intelligence. PRIMA 2010 - 13th International Conference on Principles
and Practice of Multi-Agent Systems, Nov 2010, Kolkata, India. pp.259-269, �10.1007/978-3-642-
25920-3_18�. �hal-00661875�

https://hal.science/hal-00661875v1
https://hal.archives-ouvertes.fr


Ao Dai: Agent Oriented Design for Ambient
Intelligence?

Amal El Fallah Seghrouchni1, Andrei Olaru12 ??,
Thi Thuy Nga Nguyen13, and Diego Salomone1

1 Laboratoire d’Informatique de Paris 6, University Pierre et Marie Curie,
4 Place Jussieu, 75005 Paris, France

2 Computer Science Department, University Politehnica of Bucharest,
313 Splaiul Independentei, 060042 Bucharest, Romania

3 Institute of French-Speaking Countries for Informatics,
42 Ta Quang Buu, Hanoi, Vietnam

amal.elfallah@lip6.fr,cs@andreiolaru.ro

ngaagn@gmail.com,diego.salomone@sma.lip6.fr

Abstract. In this paper we present mobile Multi-Agent Systems (MAS)
as a specific paradigm to design intelligent and distributed applications
in the context of Ambient Intelligence (AmI). We discuss how mobility,
coupled with MAS, can be useful to meet the requirements of AmI. In-
deed, the main features of mobile MAS, such as natural distribution of
the system, inherent intelligence of the agents, and their mobility help to
address a large scope of distributed applications in the domain of AmI.
Other features of MAS, like multi-agent planning, context-awareness and
self-adaptation are also very useful to bring an added value to AmI ap-
plications. They allow the implementation of both intelligent and col-
laborative agent behavior. This paper presents the Ao Dai project, that
employs the mobile MAS paradigm, and serves as a prototype AmI en-
vironment. We also illustrate the functioning of the application through
a scenario of user guidance in a smart environment.

Keywords: Ambient Intelligence, Mobile Multi-Agent Systems, Context-
Awareness

1 Mobile Multi-Agent Systems

A Multi-Agent System (MAS) is an organization of a set of autonomous and
potentially heterogeneous agents acting in a shared and dynamic environment.
MAS represents (e.g. manages, models and / or simulates) physical systems (in
robotics) or, more often, software systems. The MAS keystone is the double
inference mechanism that is used by the agents. Agents, unlike other design

? Original publication at
http://www.springerlink.com/content/4335601848jx0362

?? This author is a PhD student in cotutelle between University Politehnica of
Bucharest and University Pierre et Marie Curie.



2 Ao Dai: Agent Oriented Design for Ambient Intelligence

paradigms such as objects or components, distinguish the level of task comple-
tion (or problem solving) from the level of solution control. Thus, they may act,
observe their actions and change their own course of action. Agents have specific
properties such as autonomy (an agent controls its condition and its actions re-
gardless of any outside intervention); reactivity (an agent senses its environment
and reacts to its changes); pro-activity (an agent tends to generate and achieve
goals all by itself); and sociability (an agent interacts with other agents in the
system). Within a MAS, agents interact to achieve cooperative (e.g. distributed
problem solving) or competitive (e.g. coalition formation, auction) group be-
havior. Finally, a MAS is deployed in a environment that impacts its dynamic
behavior.

The agent-based paradigm is particularly appropriate for the implementation
of Ambient Intelligence [6, 16], because agents offer features that originate from
the field of Artificial Intelligence and that are vital to the needs of Ambient
Intelligence [11]. Autonomy is useful because individual devices in an Ambient
Intelligence environment must be able to act on their own, without the need for
user intervention or permanent control from centralized components. Learning
can serve to adapt to the user’s habits. And reasoning – as well as the capability
to make plans – is what makes a system appear intelligent to the user.

The agent-oriented paradigm is also useful in modeling real-world and social
systems, where optimal solutions are not needed and problems are solved by
cooperation and communication, in a fully distributed fashion [11]. Currently,
several agent-oriented programming languages exist [2], that allow the program-
mer to describe an application only by specifying the behaviour of individual
agents.

Such an agent-oriented programming language is CLAIM, that also features
a deployment platform for agents, called Sympa [14]. In CLAIM, each agent has
a knowledge base, offers to the exterior a certain number of capabilities and is
capable of both reactive (by means of rules) and proactive behaviours. More im-
portantly, the multi-agent system has a structure that is inspired from ambient
calculus [3]: agents are placed in a hierarchical structure and an agent can have
another agent as parent, as well as several other agents as children. Agents in
CLAIM are mobile – they are able to change the host on which they are execut-
ing, and they are also able to change their place in the hierarchical structure.
Moreover, when an agent moves, its children move with it automatically.

Mobility means that agents can move (or migrate) within the organization
of their associated MAS. In our framework, migration allows for dynamics that
cover several aspects:

– the structure of the MAS (the organization of agents) may change over time
due to openness (arrival and departure of agents) and to the evolution of
functional requirements (creation / removal of agents).

– the dynamics of acquaintances between agents may appear (arrival or cre-
ation of agents), others may disappear (departure or removal of agents) and
/ or change (e.g. for mobile agents).



Ao Dai: Agent Oriented Design for Ambient Intelligence 3

– the environment of the MAS may change which requires that agents perceive
the changes and take them into account incrementally.

It is the hierarchical structure of CLAIM, as well as the strong mobility
that it offers, that makes it especially appropriate for the implementation of
an Ambient Intelligence system. That is because CLAIM makes it easier to
implement context-awareness. An agent’s ambient – formed by itself and all if
its children – can represent a context. Agents can represent smart places, can
manage smart devices, or can offer services.

The next section discusses several aspects in the implementation of Ambient
Intelligence, like context awareness and representation. Section 3 describes the
scenario and the implementation of the Ao Dai project – a proof-of-concept
Ambient Intelligence systems implemented in CLAIM. The last section draws
the conclusions.

2 Context-Awareness

One of the central features that makes distributed systems ”intelligent” is context
awareness. One of the definitions of context is the set of environmental states
and settings that either determines an application’s behaviour or in which an
application event occurs and is interesting to the user [4]. One important point
in the above definition is the relevance to the user. Either an event must be rel-
evant to the user, or the application’s behaviour must change so that it becomes
relevant to the user. Context-awareness is the characteristic of an application
that makes it change its behaviour depending on, and according to, context.

Research in the domain of context awareness has shown that there are many
aspects of context. One classification of context [4] divides it into computational
context – available computing and networking resources, including the cost for
using them; user context – user’s profile, location, people and objects nearby,
social situation; physical context – light and noise levels, temperature, traffic
conditions, etc; and time context – the current time coordinate of the user and
related information (like the season, for instance). Context can be further clas-
sified [5] as primary – sensed directly by sensors and specialized devices – and
secondary – which is inferred from the primary context.

If many authors consider context as merely a set of sensed values [1, 7], a
particularly interesting approach to context-awareness is taken by Henricksen
et al [8, 9], that model context as associations between entities or between enti-
ties and attributes, where an entity can be a person, a place, a communication
device, etc. These associations can be of different types: static – associations
that remain fixed for the lifetime of the entity; dynamic and sensed – obtained
from sensors, usually transformed afterwards, changing frequently and subject
to sensing errors; dynamic and derived – information that is inferred, usually
from sensed or static associations; dynamic and profiled – introduced explicitly
by the user, leading to greater reliability, but also subject to staleness.

In a context-aware system, there are several layers that deal with context
information. One possible organization [15] uses three layers: data acquisition,



4 Ao Dai: Agent Oriented Design for Ambient Intelligence

data interpretation and data utilization. However, considering that much context
information is volatile (e.g. user’s location and time), a context-aware system
must also feature components for the degradation of context information.

Another important point in context-aware applications is the representation
of context information. The choice of the representation technique is closely
related to the system itself but some approaches are more appropriate to the
field of AmI, like ontology-based models. This technique is the most promising
for context modeling in ubiquitous environments [13]. It combines the assets of
logic-based models and object-oriented technology [10], showing a higher level
of robustness and expressiveness with the possibility of semantic representation.

In AmI systems, the heterogeneity of entities makes the global context repre-
sentation more difficult due the differences between the context models of each
agent. The ontology-based approach allows the different representations since it
permits the agents to compare and share information. We need to process the
information to compare the similarities between the possible representations to
eventually arrive at a common understanding [12]. To avoid this problem, the
most part of the implemented projects of Ubiquitous Computing usually work
with a smaller part of a bigger scenario. For the sake of simplicity, they cover a
closed environment with a global ontology as the base for context representation.

The main drawback of this approach is the definition of a centralized and
universal ontology to be used by the system and all of its agents. In open AmI
applications, the sensing capacity and incoming agents may change over time,
affecting the system’s needs. Thus, the MAS should be able to absorb, in some
way, the new ontology information and, also, provide tools for the new agents’
communication. This distributed ontology issue is an active research domain in
part because of the Semantic Web 4 requirements.

3 Ao Dai project

3.1 Ao Dai Project scenario

In this project, we have studied several scenarios including the following (see also
Figure 1): a user has a meeting in a building that he / she does not previously
know. When arriving at the right floor, the user’s PDA automatically connects
to a local wireless access point. A CLAIM agent executes on the user’s PDA
– we will call this agent PDA. Another agent executes on a local machine and
manages the context of the building’s floor – call it Floor. Floor detects the
presence of the user’s PDA, and instructs the PDA agent to move in the agent
structure and become a child of Floor. The movement is only logical: the agents
keep executing on the same machines as before.

When PDA enters the floor, Floor also spawns a new agent – called Navigator
– and instructs it to move as a child of PDA. This time, the movement is not
only logical: Navigator is a mobile agent that actually arrives on the user’s PDA
and will execute there for all the time during which the user is on the floor.

4 Semantic Web: http://www.w3.org/2001/sw/



Ao Dai: Agent Oriented Design for Ambient Intelligence 5

(a) (b)

Fig. 1. Sequences of messages exchanged between agents: (a) Floor announces PDA of
its new position, and instructs it to move as its child, then creates a Navigator that
will offer services to PDA; (b) Agenda announces a new meeting, PDA asks a path
from Navigator, which in turn requires a larger screen – which is searched on the floor,
and found, then Screen moves as a child of PDA.

The Navigator can provide PDA (and, inherently, the user) with a map of the
floor, can translate indications of the floor’s sensors (sent to Navigator by Floor,
and through PDA) into positions on the graphical map, and can calculate paths
between the offices on the floor. Navigator is an agent that offers to the user
services that are available and only makes sense in the context of the floor.

For displaying the map, PDA may detect that its screen is too small too
appropriately display the map, so PDA will proactively initiate the search for a
larger screen in the nearby area. The search can have several criteria: the space
in which the search will take place (the current office, a nearby office, the whole
floor), the range in which to search, and the minimal size of the searched screen.
Devices are searched by the capabilities they offer – in this case the display
capability is needed. PDA sends the query to its parent – Floor – which in turn
locates among its children an agent Screen, that manages a physical screen that
fits the requirements: it is located near the user and it is available. Screen answers
the query and PDA asks it to move to become its child. Being a child of PDA
also marks the fact that Screen is in use by the user, and PDA gains control over
the displayed information. Agent Screen may either run on the actual intelligent
screen, or may only manage the screen while being executed on a server. When
the user moves farther from the screen, the PDA will detect that the context
is no longer compatible and will free Screen, which will return to be a child of
Floor.

3.2 Implementation

In the Ao Dai project, we have implemented a prototype of multi-agent sys-
tem that handles several aspects of context-awareness, like user’s location, avail-
able resources and user preferences. We have based ourselves in an extension
of the scenario defined above. The project has been developed by Thi Thuy
Nga Nguyen, Diego Salomone Bruno and Andrei Olaru, under the supervision
of Prof. Amal El Fallah Seghrouchni.



6 Ao Dai: Agent Oriented Design for Ambient Intelligence

Fig. 2. The map shown by different screens in Ao Dai. There are three Site agents:
Floor and two Office agents. Each one has a child of type Screen, representing the
screens in the different places. The user starts on the floor (1) then moves to one office
(2) and then to the other (3).

The prototype is implemented in CLAIM and executes on the Sympa plat-
form. It features several types of agents: Site, which is used for ”smart” places
like Floor and Office; PDA, which directly assists the user from his personal de-
vice; Navigator and Agenda, which offer services to the user; and Screen, which
represents a ”smart” device with the capability of displaying information.

The prototype has been demonstrated during the 5th NII-LIP6 Workshop
held on June 21-22 in Paris, France. The prototype was run on 2 machines. The
Floor agent (of type Site) ran on one machine, and two Office agents (also of
Site type) ran on the other machine. The floor and the two offices all featured
screens of different sizes, managed by Screen agents (see Figure 2). During the
demonstration, a PDA agent entered the floor, becoming a child of the Floor
agent. A Navigator was created and sent to PDA. When the time of the meeting
approached, Agenda announced PDA, which asked Navigator to find the path to
the right office. PDA also searched for a larger screen, and found one near to the
user, and automatically used it to display the map and the path. When the user
– together with the PDA – moved to an office, the screen was freed and PDA
with all children (Agenda and Navigator) moved to the other machine. There,
the user explicitly requires a large screen, and PDA finds an appropriate one in
the next room, and announces the user. The user then moves to the other office
and PDA and all of its children move to become children of the agent managing
that office. To simulate the interaction between the user and his personal agent
PDA, an interface was created in Java (see Figure 2).

3.3 Programming in CLAIM

As an agent-oriented programming language, CLAIM [14] eases the task of im-
plementing MAS. It works on top of Java, giving direct access to Java resources
if needed. This language is based on explicit declaration of agent’s characteris-
tics. The following code shows a part of the definition of agent PDA in the Ao
Dai project.



Ao Dai: Agent Oriented Design for Ambient Intelligence 7

defineAgentClass PDA(?w,?h,?xi,?yi){
authority = null;

parent = null;

knowledge = {location(?xi,?yi); type(1);}
goals = null;

messages = null;

capabilities = {
message = PDAatLoc (?name,?xnew,?ynew);

condition = null;

do{send(this,migrateTo(?name))}
effects = null;

}

migrate{
message = migrateTo(?name);
condition = not(Java(PDA.isParent(this,?name)));
do{send(this,removeOldNavi(?name))

.moveTo(this,?name).send(this,demandNavi(?name))}
effects = null;

}
...

processes = {send(this,starting())}
agents = null;

}

When the agent PDA (the PDA is initially characterized by its location and
the size – w, h – of its screen) receives a message about its new location, it
will execute the action ”migrate”. In this action, it checks if its actual location
is already the location in the message (the variable ?name). If it is, the agent
ignores the message. Otherwise, it moves to the new site by calling the function
”moveTo()”. If the new site is located in another computer in the network, the
agent and its children will migrate to the new computer.

These characteristics are used to build the hierarchical relationship between
agents in CLAIM. As a result, the MAS will be a set of hierarchies distributed
over a network [14]. In the Ao Dai project, the agents of type Floor and Office
ran on different machines to simulate the agents’ migration.

The developer, in this case, need not to worry about the code migration and
registration problems that may arise. The language takes care of it, concentrating
the agents’ information on the Administration System (see Figure 3). To address
the security issues concerning mobile code, CLAIM offers some features like the
agent’s authority validation. The language also allows the developer to decide if
an agent must have some special access or if an agent must have some resource
denied. The sum of these features creates a powerful platform to the development
of agent-oriented mobile applications.



8 Ao Dai: Agent Oriented Design for Ambient Intelligence

(a) (b)

Fig. 3. System distribution in CLAIM: (a) Distribution over the network with each
system deployed on a different machine; (b) An example hierarchy in Ao Dai.

3.4 Ao Dai agents

The given scenario has three major types of agents: Site agent (Floor, Office),
Device / Service agent (Navigator, Agenda, Screen) and PDA agent. The latter
with the specific role of representing the user during the simulation.

– The Site agent is used to determine the physical relationship between the
agents. It means that an Office agent is a child of a Floor agent only if it is
physically located on the given floor.

– The Service (or Device) agent has the capability to offer to the other agents
some specific service. It may be in a direct or indirect way, like showing some
information on the screen or advising other agents of the user meeting.

– The PDA agent works like a personal device that follows the user through
his tasks. The most important features of this agent are that the PDA moves
physically with user and has the CLAIM capability of managing requests for
services or devices. It also stores the user’s preferences.

3.5 Context Representation in Ao Dai

Location is, notably, the most used type of context in applications [5], because
it reflects an important set of physical contents. In the Ao Dai project, besides
location, we also consider, as part of the user’s context, the available computing
resources around him and his preferences.

In the first version of this project, the context is directly sensed (in a sim-
ulated manner) by the PDA and the Site Agents, but it is known that, in real
applications, an additional layer is needed to capture the sensor information and
translate it in useful data.

The context-awareness in Ao Dai is done by exploiting the particular hier-
archical agent structure that is offered by the CLAIM language. In CLAIM it
is very easy for the developer to instruct agents to move from one parent to
another, and an agent moves automatically along with its entire sub-hierarchy
of agents. This resembles the mobile ambients of Cardelli [3] and is an essen-
tial advantage when implementing context-awareness. That is because agents,



Ao Dai: Agent Oriented Design for Ambient Intelligence 9

while representing devices or locations, can also represent contexts, allowing the
developer to describe, in fact, a hierarchy of contexts.

For example, when the user is inside a room, its PDA agent is a child of
the respective Site agent. The children of PDA – devices or services – are also
in the same context. When the user moves to another room, the PDA agent
changes parent and, along with it, its children move as well, therefore changing
context. Some devices may not be able to move along with the user (e.g. fixed
screens, etc.) so they will determine that the new context is incompatible with
their properties, moving away from PDA.

But context is not only about location, and the hierarchical structure that
is offered by CLAIM can be used for easy implementation of other types of
context. One of them is computational context. When the user uses a service, a
Service agent is created and becomes a child of PDA. It is easy for the service to
interrogate its parent in order to find out more about its capabilities. Conversely,
it is easy for PDA to check on its children – Services or Devices – in order to
find the resources and capabilities that the user is able to use.

One last type of context that is handled in Ao Dai is user preferences. The
user is able to input preferences on the capabilities of devices that it needs
to use. These preferences are then integrated in the queries that are launched
by the PDA (see Section 3.1). While the structure offered by CLAIM is not
directly useful for this aspect, the preferences help find not only the closest device
with the required capability, but also the closest device that fulfills certain user
requirements. Preferences can also be used to limit the range of the search, which
is meaningful from the context-aware point of view: a Device that is closer in
the agent hierarchy also shares more context with the user.

3.6 Interaction Protocol

In a highly distributed AmI environment, a good representation of context and
context-related relations between devices means that most of the communication
will happen only at a local level, within the structure formed by these relations.
In Ao Dai, the CLAIM agent hierarchy facilitates this: agents sharing a parent
share a context.

To preserve the hierarchy, agents interact only with their parent and their
children. Take for example the search for devices (see Figure 1). When agent
PDA wants to search for a device with a certain capability and certain criteria,
it must send a request to its parent, for example agent Floor. Once the request
is received, agent Floor searches itself to see if it has the requested capability
and satisfies the criteria. If it does, Floor answers immediately to agent PDA,
in the other case, it searches in all of its children (if any) except the agent who
invoked the search (agent PDA). After all of its children have answered, agent
Floor checks if there are one or more children that have the capability requested
and satisfy the criteria. If it has a confirmation answer, it sends the search result
which contains the information about the found device(s) to agent PDA and the
search is finished. If not, agent Floor has to search in its parent (if any). After
the parent has answered, agent Floor sends the search result to agent PDA and



10 Ao Dai: Agent Oriented Design for Ambient Intelligence

finishes the search. The process is executed recursively. User preferences can be
used to limit the range of the search to closer contexts.

The advantage of using such a protocol in conjunction with mapping context
over the agent hierarchy is that the search will usually end very quickly, assuming
the user will most times ask for devices that are likely to exist in his context. The
search is executed in the current context first, and then in the parent context
and sibling contexts.

4 Conclusion

In this paper we have discussed the use of Mobile Multi-Agent Systems for Am-
bient Intelligence. Features like distribution, inherent intelligence of the agents,
and mobility make MMAS a natural solution for the problems raised in the im-
plementation of Ambient Intelligence environments. Other features of MAS, like
multi-agent planning, collective learning and adaptation bring added value by
allowing intelligent collaborative behaviour.

Additional challenges that MAS have to deal with in the context of Ambient
Intelligence are issues like context-awareness, anticipation and user modeling.
The paper discusses some of these issues and then presents the Ao Dai project,
a prototype AmI environment, implemented as a multi-agents system, using the
agent-oriented language CLAIM.

Ao Dai project is a preliminary work that will serve as a foundation of an
international collaboration between four teams 5.

The prototype has been developed as a proof of concept and gave promis-
ing results. It shows that the hierarchy of the CLAIM language is very useful
to capture different aspects of context-awareness. CLAIM also provides native
primitives that allow agents to move – in a single step – between contexts, while
their own context follows their movement.

As future steps in our research, integration of better mechanisms of antic-
ipation, more types of contexts and improved context representation into the
project will bring it closer to dealing with realistic requirements.

References

1. M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263–277, 2007.

2. R. H. Bordini, L. Braubach, M. Dastani, A. E. Fallah-Seghrouchni, J. J. Gómez-
Sanz, J. Leite, G. M. P. O’Hare, A. Pokahr, and A. Ricci. A survey of programming
languages and platforms for multi-agent systems. Informatica (Slovenia), 30(1):33–
44, 2006.

3. L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–
213, 2000.

5 MAS team from Paris 6, AIMAS from Politehnica of Bucharest, IFI form Hanoi and
PUC-Rio from Brazil.



Ao Dai: Agent Oriented Design for Ambient Intelligence 11

4. G. Chen and D. Kotz. A survey of context-aware mobile computing research.
Technical Report TR2000-381, Dartmouth College, November 2000.

5. A. Dey and G. Abowd. Towards a better understanding of context and context-
awareness. CHI 2000 workshop on the what, who, where, when, and how of context-
awareness, pages 304–307, 2000.

6. K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. Burgelman. Scenarios
for ambient intelligence in 2010. Technical report, Office for Official Publications
of the European Communities, February 2001.

7. L. Feng, P. M. G. Apers, and W. Jonker. Towards context-aware data management
for ambient intelligence. In F. Galindo, M. Takizawa, and R. Traunmüller, editors,
Proceedings of DEXA 2004, 15th International Conference on Database and Expert
Systems Applications, Zaragoza, Spain, August 30 - September 3, volume 3180 of
Lecture Notes in Computer Science, pages 422–431. Springer, 2004.

8. K. Henricksen and J. Indulska. Developing context-aware pervasive computing
applications: Models and approach. Pervasive and Mobile Computing, 2(1):37–64,
2006.

9. K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling context information
in pervasive computing systems. Lecture notes in computer science, pages 167–180,
2002.

10. R. Krummenacher, H. Lausen, T. Strang, and J. Kopeckỳ. Analyzing the modeling
of context with ontologies. International Workshop on Context-Awareness for Self-
Managing Systems, 2007.

11. C. Ramos, J. Augusto, and D. Shapiro. Ambient intelligence - the next step for
artificial intelligence. IEEE Intelligent Systems, 23(2):15–18, 2008.

12. J.-P. Sansonnet and E. Valencia. Terminological heterogeneity between agents
using a generalized simplicial representation. In M. P. Gleizes, G. A. Kaminka,
A. Nowé, S. Ossowski, K. Tuyls, and K. Verbeeck, editors, EUMAS, pages 363–
374. Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten,
2005.

13. T. Strang and C. Linnhoff-Popien. A context modeling survey. Workshop on
Advanced Context Modelling, Reasoning and Management as part of UbiComp,
pages 1–8, 2004.

14. A. Suna and A. El Fallah Seghrouchni. Programming mobile intelligent agents:
An operational semantics. Web Intelligence and Agent Systems, 5(1):47–67, 2004.

15. J. Viterbo, L. Mazuel, Y. Charif, M. Endler, N. Sabouret, K. Breitman, A. El Fal-
lah Seghrouchni, and J. Briot. Ambient intelligence: Management of distributed
and heterogeneous context knowledge. CRC Studies in Informatics Series. Chap-
man & Hall, pages 1–44, 2008.

16. M. Weiser. The computer for the 21st century. Scientific American, 272(3):78–89,
1995.


