Amal El

Fallah Seghrouchni

Andrei Olaru

Thi Thuy

Nga Nguyen
email: ngaagn@gmail.com

Diego Salomone
email: diego.salomone@sma.lip6.fr

Ao Dai: Agent Oriented Design for Ambient Intelligence

Keywords: Ambient Intelligence, Mobile Multi-Agent Systems, Context-Awareness

In this paper we present mobile Multi-Agent Systems (MAS) as a specific paradigm to design intelligent and distributed applications in the context of Ambient Intelligence (AmI). We discuss how mobility, coupled with MAS, can be useful to meet the requirements of AmI. Indeed, the main features of mobile MAS, such as natural distribution of the system, inherent intelligence of the agents, and their mobility help to address a large scope of distributed applications in the domain of AmI. Other features of MAS, like multi-agent planning, context-awareness and self-adaptation are also very useful to bring an added value to AmI applications. They allow the implementation of both intelligent and collaborative agent behavior. This paper presents the Ao Dai project, that employs the mobile MAS paradigm, and serves as a prototype AmI environment. We also illustrate the functioning of the application through a scenario of user guidance in a smart environment.

Mobile Multi-Agent Systems

A Multi-Agent System (MAS) is an organization of a set of autonomous and potentially heterogeneous agents acting in a shared and dynamic environment. MAS represents (e.g. manages, models and / or simulates) physical systems (in robotics) or, more often, software systems. The MAS keystone is the double inference mechanism that is used by the agents. Agents, unlike other design paradigms such as objects or components, distinguish the level of task completion (or problem solving) from the level of solution control. Thus, they may act, observe their actions and change their own course of action. Agents have specific properties such as autonomy (an agent controls its condition and its actions regardless of any outside intervention); reactivity (an agent senses its environment and reacts to its changes); pro-activity (an agent tends to generate and achieve goals all by itself); and sociability (an agent interacts with other agents in the system). Within a MAS, agents interact to achieve cooperative (e.g. distributed problem solving) or competitive (e.g. coalition formation, auction) group behavior. Finally, a MAS is deployed in a environment that impacts its dynamic behavior.

The agent-based paradigm is particularly appropriate for the implementation of Ambient Intelligence [START_REF] Ducatel | Scenarios for ambient intelligence in[END_REF][START_REF] Weiser | The computer for the 21st century[END_REF], because agents offer features that originate from the field of Artificial Intelligence and that are vital to the needs of Ambient Intelligence [START_REF] Ramos | Ambient intelligence -the next step for artificial intelligence[END_REF]. Autonomy is useful because individual devices in an Ambient Intelligence environment must be able to act on their own, without the need for user intervention or permanent control from centralized components. Learning can serve to adapt to the user's habits. And reasoning -as well as the capability to make plans -is what makes a system appear intelligent to the user.

The agent-oriented paradigm is also useful in modeling real-world and social systems, where optimal solutions are not needed and problems are solved by cooperation and communication, in a fully distributed fashion [START_REF] Ramos | Ambient intelligence -the next step for artificial intelligence[END_REF]. Currently, several agent-oriented programming languages exist [START_REF] Bordini | A survey of programming languages and platforms for multi-agent systems[END_REF], that allow the programmer to describe an application only by specifying the behaviour of individual agents.

Such an agent-oriented programming language is CLAIM, that also features a deployment platform for agents, called Sympa [START_REF] Suna | Programming mobile intelligent agents: An operational semantics[END_REF]. In CLAIM, each agent has a knowledge base, offers to the exterior a certain number of capabilities and is capable of both reactive (by means of rules) and proactive behaviours. More importantly, the multi-agent system has a structure that is inspired from ambient calculus [START_REF] Cardelli | Mobile ambients[END_REF]: agents are placed in a hierarchical structure and an agent can have another agent as parent, as well as several other agents as children. Agents in CLAIM are mobile -they are able to change the host on which they are executing, and they are also able to change their place in the hierarchical structure. Moreover, when an agent moves, its children move with it automatically.

Mobility means that agents can move (or migrate) within the organization of their associated MAS. In our framework, migration allows for dynamics that cover several aspects:

the structure of the MAS (the organization of agents) may change over time due to openness (arrival and departure of agents) and to the evolution of functional requirements (creation / removal of agents). the dynamics of acquaintances between agents may appear (arrival or creation of agents), others may disappear (departure or removal of agents) and / or change (e.g. for mobile agents).

the environment of the MAS may change which requires that agents perceive the changes and take them into account incrementally.

It is the hierarchical structure of CLAIM, as well as the strong mobility that it offers, that makes it especially appropriate for the implementation of an Ambient Intelligence system. That is because CLAIM makes it easier to implement context-awareness. An agent's ambient -formed by itself and all if its children -can represent a context. Agents can represent smart places, can manage smart devices, or can offer services.

The next section discusses several aspects in the implementation of Ambient Intelligence, like context awareness and representation. Section 3 describes the scenario and the implementation of the Ao Dai project -a proof-of-concept Ambient Intelligence systems implemented in CLAIM. The last section draws the conclusions.

Context-Awareness

One of the central features that makes distributed systems "intelligent" is context awareness. One of the definitions of context is the set of environmental states and settings that either determines an application's behaviour or in which an application event occurs and is interesting to the user [START_REF] Chen | A survey of context-aware mobile computing research[END_REF]. One important point in the above definition is the relevance to the user. Either an event must be relevant to the user, or the application's behaviour must change so that it becomes relevant to the user. Context-awareness is the characteristic of an application that makes it change its behaviour depending on, and according to, context.

Research in the domain of context awareness has shown that there are many aspects of context. One classification of context [START_REF] Chen | A survey of context-aware mobile computing research[END_REF] divides it into computational context -available computing and networking resources, including the cost for using them; user context -user's profile, location, people and objects nearby, social situation; physical context -light and noise levels, temperature, traffic conditions, etc; and time context -the current time coordinate of the user and related information (like the season, for instance). Context can be further classified [START_REF] Dey | Towards a better understanding of context and contextawareness[END_REF] as primary -sensed directly by sensors and specialized devices -and secondary -which is inferred from the primary context.

If many authors consider context as merely a set of sensed values [START_REF] Baldauf | A survey on context-aware systems[END_REF][START_REF] Feng | Towards context-aware data management for ambient intelligence[END_REF], a particularly interesting approach to context-awareness is taken by Henricksen et al [START_REF] Henricksen | Developing context-aware pervasive computing applications: Models and approach[END_REF][START_REF] Henricksen | Modeling context information in pervasive computing systems[END_REF], that model context as associations between entities or between entities and attributes, where an entity can be a person, a place, a communication device, etc. These associations can be of different types: static -associations that remain fixed for the lifetime of the entity; dynamic and sensed -obtained from sensors, usually transformed afterwards, changing frequently and subject to sensing errors; dynamic and derived -information that is inferred, usually from sensed or static associations; dynamic and profiled -introduced explicitly by the user, leading to greater reliability, but also subject to staleness.

In a context-aware system, there are several layers that deal with context information. One possible organization [START_REF] Viterbo | Ambient intelligence: Management of distributed and heterogeneous context knowledge[END_REF] uses three layers: data acquisition, data interpretation and data utilization. However, considering that much context information is volatile (e.g. user's location and time), a context-aware system must also feature components for the degradation of context information.

Another important point in context-aware applications is the representation of context information. The choice of the representation technique is closely related to the system itself but some approaches are more appropriate to the field of AmI, like ontology-based models. This technique is the most promising for context modeling in ubiquitous environments [START_REF] Strang | A context modeling survey[END_REF]. It combines the assets of logic-based models and object-oriented technology [START_REF] Krummenacher | Analyzing the modeling of context with ontologies[END_REF], showing a higher level of robustness and expressiveness with the possibility of semantic representation.

In AmI systems, the heterogeneity of entities makes the global context representation more difficult due the differences between the context models of each agent. The ontology-based approach allows the different representations since it permits the agents to compare and share information. We need to process the information to compare the similarities between the possible representations to eventually arrive at a common understanding [START_REF] Sansonnet | Terminological heterogeneity between agents using a generalized simplicial representation[END_REF]. To avoid this problem, the most part of the implemented projects of Ubiquitous Computing usually work with a smaller part of a bigger scenario. For the sake of simplicity, they cover a closed environment with a global ontology as the base for context representation.

The main drawback of this approach is the definition of a centralized and universal ontology to be used by the system and all of its agents. In open AmI applications, the sensing capacity and incoming agents may change over time, affecting the system's needs. Thus, the MAS should be able to absorb, in some way, the new ontology information and, also, provide tools for the new agents' communication. This distributed ontology issue is an active research domain in part because of the Semantic Web4 requirements.

Ao Dai project

Ao Dai Project scenario

In this project, we have studied several scenarios including the following (see also Figure 1): a user has a meeting in a building that he / she does not previously know. When arriving at the right floor, the user's PDA automatically connects to a local wireless access point. A CLAIM agent executes on the user's PDA -we will call this agent PDA. Another agent executes on a local machine and manages the context of the building's floor -call it Floor. Floor detects the presence of the user's PDA, and instructs the PDA agent to move in the agent structure and become a child of Floor. The movement is only logical: the agents keep executing on the same machines as before.

When PDA enters the floor, Floor also spawns a new agent -called Navigator -and instructs it to move as a child of PDA. This time, the movement is not only logical: Navigator is a mobile agent that actually arrives on the user's PDA and will execute there for all the time during which the user is on the floor. The Navigator can provide PDA (and, inherently, the user) with a map of the floor, can translate indications of the floor's sensors (sent to Navigator by Floor, and through PDA) into positions on the graphical map, and can calculate paths between the offices on the floor. Navigator is an agent that offers to the user services that are available and only makes sense in the context of the floor.

For displaying the map, PDA may detect that its screen is too small too appropriately display the map, so PDA will proactively initiate the search for a larger screen in the nearby area. The search can have several criteria: the space in which the search will take place (the current office, a nearby office, the whole floor), the range in which to search, and the minimal size of the searched screen. Devices are searched by the capabilities they offer -in this case the display capability is needed. PDA sends the query to its parent -Floor -which in turn locates among its children an agent Screen, that manages a physical screen that fits the requirements: it is located near the user and it is available. Screen answers the query and PDA asks it to move to become its child. Being a child of PDA also marks the fact that Screen is in use by the user, and PDA gains control over the displayed information. Agent Screen may either run on the actual intelligent screen, or may only manage the screen while being executed on a server. When the user moves farther from the screen, the PDA will detect that the context is no longer compatible and will free Screen, which will return to be a child of Floor.

Implementation

In the Ao Dai project, we have implemented a prototype of multi-agent system that handles several aspects of context-awareness, like user's location, available resources and user preferences. We have based ourselves in an extension of the scenario defined above. The project has been developed by Thi Thuy Nga Nguyen, Diego Salomone Bruno and Andrei Olaru, under the supervision of Prof. Amal El Fallah Seghrouchni. The prototype is implemented in CLAIM and executes on the Sympa platform. It features several types of agents: Site, which is used for "smart" places like Floor and Office; PDA, which directly assists the user from his personal device; Navigator and Agenda, which offer services to the user; and Screen, which represents a "smart" device with the capability of displaying information.

The prototype has been demonstrated during the 5th NII-LIP6 Workshop held on June 21-22 in Paris, France. The prototype was run on 2 machines. The Floor agent (of type Site) ran on one machine, and two Office agents (also of Site type) ran on the other machine. The floor and the two offices all featured screens of different sizes, managed by Screen agents (see Figure 2). During the demonstration, a PDA agent entered the floor, becoming a child of the Floor agent. A Navigator was created and sent to PDA. When the time of the meeting approached, Agenda announced PDA, which asked Navigator to find the path to the right office. PDA also searched for a larger screen, and found one near to the user, and automatically used it to display the map and the path. When the user -together with the PDA -moved to an office, the screen was freed and PDA with all children (Agenda and Navigator) moved to the other machine. There, the user explicitly requires a large screen, and PDA finds an appropriate one in the next room, and announces the user. The user then moves to the other office and PDA and all of its children move to become children of the agent managing that office. To simulate the interaction between the user and his personal agent PDA, an interface was created in Java (see Figure 2).

Programming in CLAIM

As an agent-oriented programming language, CLAIM [START_REF] Suna | Programming mobile intelligent agents: An operational semantics[END_REF] eases the task of implementing MAS. It works on top of Java, giving direct access to Java resources if needed. This language is based on explicit declaration of agent's characteristics. The following code shows a part of the definition of agent PDA in the Ao Dai project.

Ao Dai agents

The given scenario has three major types of agents: Site agent (Floor, Office), Device / Service agent (Navigator, Agenda, Screen) and PDA agent. The latter with the specific role of representing the user during the simulation.

-The Site agent is used to determine the physical relationship between the agents. It means that an Office agent is a child of a Floor agent only if it is physically located on the given floor. -The Service (or Device) agent has the capability to offer to the other agents some specific service. It may be in a direct or indirect way, like showing some information on the screen or advising other agents of the user meeting. -The PDA agent works like a personal device that follows the user through his tasks. The most important features of this agent are that the PDA moves physically with user and has the CLAIM capability of managing requests for services or devices. It also stores the user's preferences.

Context Representation in Ao Dai

Location is, notably, the most used type of context in applications [START_REF] Dey | Towards a better understanding of context and contextawareness[END_REF], because it reflects an important set of physical contents. In the Ao Dai project, besides location, we also consider, as part of the user's context, the available computing resources around him and his preferences.

In the first version of this project, the context is directly sensed (in a simulated manner) by the PDA and the Site Agents, but it is known that, in real applications, an additional layer is needed to capture the sensor information and translate it in useful data.

The context-awareness in Ao Dai is done by exploiting the particular hierarchical agent structure that is offered by the CLAIM language. In CLAIM it is very easy for the developer to instruct agents to move from one parent to another, and an agent moves automatically along with its entire sub-hierarchy of agents. This resembles the mobile ambients of Cardelli [START_REF] Cardelli | Mobile ambients[END_REF] and is an essential advantage when implementing context-awareness. That is because agents, while representing devices or locations, can also represent contexts, allowing the developer to describe, in fact, a hierarchy of contexts.

For example, when the user is inside a room, its PDA agent is a child of the respective Site agent. The children of PDA -devices or services -are also in the same context. When the user moves to another room, the PDA agent changes parent and, along with it, its children move as well, therefore changing context. Some devices may not be able to move along with the user (e.g. fixed screens, etc.) so they will determine that the new context is incompatible with their properties, moving away from PDA.

But context is not only about location, and the hierarchical structure that is offered by CLAIM can be used for easy implementation of other types of context. One of them is computational context. When the user uses a service, a Service agent is created and becomes a child of PDA. It is easy for the service to interrogate its parent in order to find out more about its capabilities. Conversely, it is easy for PDA to check on its children -Services or Devices -in order to find the resources and capabilities that the user is able to use.

One last type of context that is handled in Ao Dai is user preferences. The user is able to input preferences on the capabilities of devices that it needs to use. These preferences are then integrated in the queries that are launched by the PDA (see Section 3.1). While the structure offered by CLAIM is not directly useful for this aspect, the preferences help find not only the closest device with the required capability, but also the closest device that fulfills certain user requirements. Preferences can also be used to limit the range of the search, which is meaningful from the context-aware point of view: a Device that is closer in the agent hierarchy also shares more context with the user.

Interaction Protocol

In a highly distributed AmI environment, a good representation of context and context-related relations between devices means that most of the communication will happen only at a local level, within the structure formed by these relations. In Ao Dai, the CLAIM agent hierarchy facilitates this: agents sharing a parent share a context.

To preserve the hierarchy, agents interact only with their parent and their children. Take for example the search for devices (see Figure 1). When agent PDA wants to search for a device with a certain capability and certain criteria, it must send a request to its parent, for example agent Floor. Once the request is received, agent Floor searches itself to see if it has the requested capability and satisfies the criteria. If it does, Floor answers immediately to agent PDA, in the other case, it searches in all of its children (if any) except the agent who invoked the search (agent PDA). After all of its children have answered, agent Floor checks if there are one or more children that have the capability requested and satisfy the criteria. If it has a confirmation answer, it sends the search result which contains the information about the found device(s) to agent PDA and the search is finished. If not, agent Floor has to search in its parent (if any). After the parent has answered, agent Floor sends the search result to agent PDA and finishes the search. The process is executed recursively. User preferences can be used to limit the range of the search to closer contexts.

The advantage of using such a protocol in conjunction with mapping context over the agent hierarchy is that the search will usually end very quickly, assuming the user will most times ask for devices that are likely to exist in his context. The search is executed in the current context first, and then in the parent context and sibling contexts.

Conclusion

In this paper we have discussed the use of Mobile Multi-Agent Systems for Ambient Intelligence. Features like distribution, inherent intelligence of the agents, and mobility make MMAS a natural solution for the problems raised in the implementation of Ambient Intelligence environments. Other features of MAS, like multi-agent planning, collective learning and adaptation bring added value by allowing intelligent collaborative behaviour.

Additional challenges that MAS have to deal with in the context of Ambient Intelligence are issues like context-awareness, anticipation and user modeling. The paper discusses some of these issues and then presents the Ao Dai project, a prototype AmI environment, implemented as a multi-agents system, using the agent-oriented language CLAIM. Ao Dai project is a preliminary work that will serve as a foundation of an international collaboration between four teams 5 .

The prototype has been developed as a proof of concept and gave promising results. It shows that the hierarchy of the CLAIM language is very useful to capture different aspects of context-awareness. CLAIM also provides native primitives that allow agents to move -in a single step -between contexts, while their own context follows their movement.

As future steps in our research, integration of better mechanisms of anticipation, more types of contexts and improved context representation into the project will bring it closer to dealing with realistic requirements.

Fig. 1 .

 1 Fig. 1. Sequences of messages exchanged between agents: (a) Floor announces PDA of its new position, and instructs it to move as its child, then creates a Navigator that will offer services to PDA; (b) Agenda announces a new meeting, PDA asks a path from Navigator, which in turn requires a larger screen -which is searched on the floor, and found, then Screen moves as a child of PDA.

Fig. 2 .

 2 Fig. 2. The map shown by different screens in Ao Dai. There are three Site agents: Floor and two Office agents. Each one has a child of type Screen, representing the screens in the different places. The user starts on the floor (1) then moves to one office (2) and then to the other (3).

Fig. 3 .

 3 Fig. 3. System distribution in CLAIM: (a) Distribution over the network with each system deployed on a different machine; (b) An example hierarchy in Ao Dai.

Semantic Web: http://www.w3.org/2001/sw/

MAS team from Paris

6, AIMAS from Politehnica of Bucharest, IFI form Hanoi and PUC-Rio from Brazil.

When the agent PDA (the PDA is initially characterized by its location and the size -w, h -of its screen) receives a message about its new location, it will execute the action "migrate". In this action, it checks if its actual location is already the location in the message (the variable ?name). If it is, the agent ignores the message. Otherwise, it moves to the new site by calling the function "moveTo()". If the new site is located in another computer in the network, the agent and its children will migrate to the new computer. These characteristics are used to build the hierarchical relationship between agents in CLAIM. As a result, the MAS will be a set of hierarchies distributed over a network [START_REF] Suna | Programming mobile intelligent agents: An operational semantics[END_REF]. In the Ao Dai project, the agents of type Floor and Office ran on different machines to simulate the agents' migration.

The developer, in this case, need not to worry about the code migration and registration problems that may arise. The language takes care of it, concentrating the agents' information on the Administration System (see Figure 3). To address the security issues concerning mobile code, CLAIM offers some features like the agent's authority validation. The language also allows the developer to decide if an agent must have some special access or if an agent must have some resource denied. The sum of these features creates a powerful platform to the development of agent-oriented mobile applications.