Robust Regression through the Huber's criterion and adaptive lasso penalty - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2011

Robust Regression through the Huber's criterion and adaptive lasso penalty

Résumé

The Huber's Criterion is a useful method for robust regression. The adaptive least absolute shrinkage and selection operator (lasso) is a popular technique for simultaneous estimation and variable selection. The adaptive weights in the adaptive lasso allow to have the oracle properties. In this paper we propose to combine the Huber's criterion and adaptive penalty as lasso. This regression technique is resistant to heavy-tailed er- rors or outliers in the response. Furthermore, we show that the estimator associated with this procedure enjoys the oracle properties. This approach is compared with LAD-lasso based on least absolute deviation with adaptive lasso. Extensive simulation studies demonstrate satisfactory finite-sample performance of such procedure. A real example is analyzed for illustration purposes.
Fichier principal
Vignette du fichier
EJS635.pdf (476.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00661864 , version 1 (20-01-2012)

Identifiants

Citer

Sophie Lambert-Lacroix, Laurent Zwald. Robust Regression through the Huber's criterion and adaptive lasso penalty. Electronic Journal of Statistics , 2011, 5, pp.1015-1053. ⟨10.1214/11-EJS635⟩. ⟨hal-00661864⟩
2138 Consultations
1575 Téléchargements

Altmetric

Partager

More