
HAL Id: hal-00661860
https://hal.science/hal-00661860

Submitted on 20 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Agent Systems: A Paradigm to Design Ambient
Intelligent Applications

Amal El Fallah-Seghrouchni, Adina Magda Florea, Andrei Olaru

To cite this version:
Amal El Fallah-Seghrouchni, Adina Magda Florea, Andrei Olaru. Multi-Agent Systems: A Paradigm
to Design Ambient Intelligent Applications. IDC 2010 - 4th International Symposium on Intelligent
Distributed Computing, Sep 2010, Tangier, Morocco. pp.3-9, �10.1007/978-3-642-15211-5_1�. �hal-
00661860�

https://hal.science/hal-00661860
https://hal.archives-ouvertes.fr


Multi-Agent Systems: a Paradigm to Design
Ambient Intelligent Applications∗

Amal El Fallah Seghrouchni, Adina Magda Florea and Andrei Olaru

Abstract In this paper we present a Multi-Agent System (MAS) paradigm and
discuss how it can be used to design intelligent and distributed systems. The main
features of this MAS, such as natural distribution of the system, inherent intelligence
of its agents, and their mobility help address a large scope of distributed applications
including the domain of ambient intelligence. Other features of the MAS, like multi-
agent planning, context-awareness and adaptation are also very useful since they
bring added value, by allowing to implement intelligent and collective behavior.
The paper also presents a scenario of ambient intelligence and shows how it could
be designed using the MAS paradigm.

1 Introduction to Multi-Agent Systems

A Multi-Agent System (MAS) [7] is an organization of a set of autonomous and
potentially heterogeneous agents operating in a shared and dynamic environment.
MAS represent (e.g. manage, model and / or simulate) physical systems (as is the
case in the field of robotics) or (more often) software. The MAS keystone is the
double inference mechanism that is used by the agents. Agents, unlike other de-
sign paradigms as objects or components, distinguish the level of task completion

∗ Original publication at http://www.springerlink.com/content/u0372853523ux693/abstract/

Amal El Fallah Seghrouchni
LIP6, University Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France

Adina Magda Florea
University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania

Andrei Olaru
University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania (in
cotutelle with LIP6, University Pierre et Marie Curie)

e-mail: amal.elfallah@lip6.fr · adina@cs.pub.ro · cs@andreiolaru.ro

1



2 Amal El Fallah Seghrouchni, Adina Magda Florea and Andrei Olaru

or problem solving from the level of control of the problem solving. Thus, they may
act, observe their actions and change their own course of action. Agents have spe-
cific properties such as autonomy (an agent controls his condition and his actions
regardless of any outside intervention); reactivity (an agent senses its environment
and reacts to its changes); pro-activity (an agent tends to generate and achieve goals
all by itself); and sociability (an agent interacts with other agents in the system).

Within a MAS, agents interact to achieve cooperative (e.g. distributed problem
solving) or competitive (e.g. coalition formation, auction) group behavior. Finally,
a MAS is deployed in a environment that impacts its dynamic behavior.

The dynamism of MAS covers several aspects:

• The dynamic structure of the MAS (the organization of agents) may change over
time due to openness (arrival and departure of agents) and to the evolution of
functional requirements (creation / removal of agents).

• The dynamics of acquaintances between agents: links can appear (arrival or cre-
ation of agents), others may disappear (departure or removal of agents) and / or
change (e.g. for mobile agents).

• The dynamic environment of the MAS: changes in the environment are perceived
by agents and taken into account incrementally.

At the agent level, it is the very structure of the agent that may change over
time. Beyond changes in the cognitive elements of the agent (e.g. knowledge, goals,
preferences, plans, etc.), we have proposed a model of agents whom are able to
absorb other agents (their sub-agents) or conversely, to dissolve into their parents.

To capture these dynamics and concepts, we proposed an agent-oriented pro-
gramming language that incorporates the cognitive foundations of MAS and extends
them by means of local and distant mobility. Thus, a MAS is represented by a set of
hierarchies distributed on multiple networked machines, each agent being a node in
the hierarchy. It consists of cognitive elements (such as goals, beliefs), of processes,
and of sub-agents.

An agent can dynamically acquire the knowledge, the capabilities and the sub-
agents of sub-agents that it absorbs. The migration of agents, enriched with mecha-
nisms of absorption and dissolution, allow the dynamic reconfiguration of MAS.

2 Context-Awareness

One of the central features that makes distributed systems ”intelligent” is context
awareness. One of the definitions of context is that it is the set of environmental
states and settings that either determines an application’s behaviour or in which an
application event occurs and is interesting to the user [4]. One important point in
the definition above is the relevance to the user. Either an event must be relevant
to the user, or the application’s behaviour must change so that it becomes relevant
to the user. Context awareness is that characteristic of an application that makes it
change its behaviour in function of, and according to, context.



Multi-Agent Systems: a Paradigm to Design Ambient Intelligent Applications† 3

Research in the domain of context awareness has shown that there are many as-
pects of context. One classification of context [4] divides context into computational
context – available computing and networking resources, including the cost for us-
ing them; user context – user’s profile, location, people and objects nearby, social
situation; physical context – light and noise levels, temperature, traffic conditions,
etc; and time context – the current time coordinate of the user and related informa-
tion (like the season, for instance). Context can be further classified [5] as primary
– sensed directly by sensors and specialized devices – and secondary – which is
inferred from the primary context.

If many authors consider context as merely a set of sensed values [1, 6], a par-
ticularly interesting approach to context-awareness is taken by Henricksen et al
[8, 9], that model context as associations between entities or between entities and
attributes, where an entity can be a person, a place, a communication device, etc.
These associations can be of different types: static – associations that remain fixed
for the lifetime of the entity; dynamic and sensed – obtained from sensors, usually
transformed afterwards, changing frequently and subject to sensing errors; dynamic
and derived – information that is inferred, usually from sensed or static associa-
tions; dynamic and profiled – introduced explicitly by the user, leading to greater
reliability, but also subject to staleness.

In a context-aware system, there are several layers that deal with context in-
formation. One possible organization [12] uses three layers: data acquisition, data
interpretation and data utilization. However, considering that much context infor-
mation is volatile (e.g. user’s location and time), a context-aware system must also
feature components for the degradation of context information.

3 Mobile MAS Meets Ambient Intelligence

The agent-based paradigm is one of the paradigms that can be used for the imple-
mentation of distributed systems [7]. In the case of Ambient Intelligence, agents are
particularly appropriate, because they offer features that originate from the field of
Artificial Intelligence and that are vital to the needs of Ambient Intelligence [10]:
proactive and reactive reasoning, autonomy, social abilities and learning. Autonomy
is useful because individual devices in an Ambient Intelligence environment must
be able to act on their own, without the need for user intervention or control from
centralized components. Learning can serve to adapt to the user’s habits. And rea-
soning – as well as the capability to make plans – is what makes a system appear
intelligent to the user.

The agent-oriented paradigm is also useful in modeling real-world and social
systems, where optimal solutions are not needed and problems are solved by co-
operation and communication, in a fully distributed fashion [10]. Currently several
agent-oriented programming languages exist [2], that allow the programmer to de-
scribe an application only by specifying the behaviour of individual agents.



4 Amal El Fallah Seghrouchni, Adina Magda Florea and Andrei Olaru

(a) (b)

Fig. 1 Sequences of messages exchanged between agents: (a) Floor announces PDA of its new
position, and instructs it to move as its child, then creates a Navigator that will offer services to
PDA; (b) Agenda announces a new meeting, PDA asks a path from Navigator, which in turn asks
for a larger screen – which is searched on the floor, and found, then Screen will move as a child of
PDA.

Such an agent-oriented programming language is CLAIM, that also features a
deployment platform for agents, called Sympa [11]. In CLAIM, each agent has a
knowledge base, offers a to the exterior a certain number of capabilities and is capa-
ble both of reactive (by means of rules) and proactive behaviour. More importantly,
the multi-agent system has a structure that is inspired from ambient calculus [3]:
agents are placed in a hierarchical structure and an agent can have another agent as
parent, as well as several other agents as children. Agents in CLAIM are mobile –
they are able to change the host on which they are executing, and they are also able
to change their place in the hierarchical structure. Moreover, when an agent moves,
its children move with it automatically.

It is the hierarchical structure of the CLAIM multi-agent system that makes it
especially appropriate for the implementation of an Ambient Intelligence system.
That is because CLAIM makes it easier to implement context-awareness. An agent’s
ambient – formed by itself and all if its children can also represent a context. Agents
can represent smart places, can manage smart devices, or can offer services.

4 A Case Study

Take for example the following scenario (also refer to Figure 1): a user has a meeting
in a building that he / she does not previously know. When arriving at the right floor,
the user’s PDA automatically connects to a local wireless access point. A CLAIM
agent executes on the user’s PDA – we will call this agent PDA. Another agent
executes on a local machine and manages the context of the building’s floor – call
it Floor. Floor detects the presence of the user’s PDA, and instructs the PDA agent
to move in the agent structure and become a child of Floor. The movement is only
logical: the agents keep executing on the same machines as before.



Multi-Agent Systems: a Paradigm to Design Ambient Intelligent Applications† 5

When PDA enters the floor, Floor also spawns a new agent – called Navigator
– and instructs it to move as a child of PDA. This time, the movement is not only
logical: Navigator is a mobile agent that actually arrives on the user’s PDA and will
execute there for all the time during which the user is on the floor. The Navigator
can provide PDA (and inherently the user) with a map of the floor, can translate
indications of the floor’s sensors (sent to Navigator by Floor, and through PDA)
into positions on the graphical map, and can calculate paths between the offices on
the floor. Navigator is an agent that offers to the user services that are available and
only makes sense in the context of the floor.

For displaying the map, PDA may detect that its screen is too small too appro-
priately display them map, so PDA will proactively initiate the search for a larger
screen in the nearby area. The search can have several criteria: the space in which
the search will take place (the current office, a nearby office, the whole floor), the
range in which to search, and the minimal size of the searched screen. Devices are
searched by the capabilities they offer – in this case the display capability is needed.
PDA sends the query to its parent – Floor – which in turn locates among its children
an agent Screen, that manages a physical screen that fits the requirements, is located
near to the user and is available. Screen answers the query and PDA asks it to move
to become its child. Being a child of PDA also marks the fact that Screen is in use by
the user, and PDA gains control over the displayed information. Agent Screen may
either run on the actual intelligent screen, or may only manage the screen while
being executed on a server. When the user moves farther from the screen, the PDA
will detect that the context is no longer compatible and will free Screen, which will
return to be a child of Floor.

5 The Ao Dai Project

In the Ao Dai project, we have implemented, using CLAIM, a prototype of multi-
agent system that handles several aspects of context-awareness, like user’s loca-
tion, available resources and user preferences. We have also implemented a scenario
which is an extension of the one above. The project has been implemented by Thi
Thuy Nga Nguyen, Diego Salomone Bruno and Andrei Olaru, under the supervision
of Prof. Amal El Fallah Seghrouchni.

The prototype is implemented in CLAIM and executes on the Sympa platform. It
features several types of agents: Site, which is used for ”smart” places like Floor and
Office; PDA, which directly assists the user from his personal device; Navigator and
Agenda, which offer services to the user; and Screen, which represents a ”smart”
device with the capability of displaying information.

The prototype has been demonstrated during the 5th NII-LIP6 Workshop held on
June 21-22 in Paris, France. The prototype was run on 2 machines. The Floor agent
(of type Site) ran on one machine, and two Office agents (also of type Site) ran on the
other machine. The floor and the two offices all featured screens of different sizes,
managed by Screen agents (see Figure 2). During the demonstration, a PDA agent



6 Amal El Fallah Seghrouchni, Adina Magda Florea and Andrei Olaru

Fig. 2 The map shown by different screens in Ao Dai. There are three Site agents: Floor and two
Office agents. Each one has a child of type Screen, representing the screens in the different places.
The user starts on the floor (1) then moves to one office (2) and then to the other (3).

entered the floor, becoming a child of the Floor agent. A Navigator was created and
sent to PDA. When the time of the meeting approached, Agenda announced PDA,
which asked Navigator to find the path to the right office. PDA also searched for a
larger screen, and found one near to the user, and automatically used it to display
the map and the path. When the user – together with the PDA – moved to an office,
the screen was freed and PDA with all children (Agenda and Navigator) moved to
the other machine. There, the user explicitly requires a large screen, and PDA finds
an appropriate one in the next room, and announces the user. The user then moves to
the other office and PDA and its children all move to become children of the agent
managing that office.

6 Conclusion

In this paper we showed how the MAS paradigm can be used to design intelligent
and distributed systems. Hence, we have discussed some features of MAS such as
natural distribution of MAS, inherent intelligence of the agents, and how mobile
agents can help to address a large scope of applications in the domain of pervasive
computing.

Other features of MAS like multi-agent planning, collective learning and adap-
tation deserve to be mentioned here. These additional features are very important
since they bring added value by allowing intelligent collective behavior (the shift
from single agent to multi-agent approach).

From our research perspective, the new challenges for MAS are related to their
scalability and the balance to be found between the real time reaction of agents and
the intelligent processing of the information gathered from the environment in this
kind of applications. Another issue which is central, in particular in the context of



Multi-Agent Systems: a Paradigm to Design Ambient Intelligent Applications† 7

pervasive computing, is the relation to users, which become a part of the system.
Our future work at a short term is to provide a computational model to predict the
users’ intentions.

7 Acknowledgements

We would like to thank Thi Thuy Nga Nguyen and Diego Salomone Bruno for their
work within Ao Dai project as Master degree training.

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

2. Bordini, R.H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A.E., Gómez-Sanz, J.J., Leite,
J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming languages and platforms
for multi-agent systems. Informatica (Slovenia) 30(1), 33–44 (2006)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)
4. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report

TR2000-381, Dartmouth College (2000)
5. Dey, A., Abowd, G.: Towards a better understanding of context and context-awareness. CHI

2000 workshop on the what, who, where, when, and how of context-awareness pp. 304–307
(2000)

6. Feng, L., Apers, P.M.G., Jonker, W.: Towards context-aware data management for ambient
intelligence. In: F. Galindo, M. Takizawa, R. Traunmüller (eds.) Proceedings of DEXA
2004, 15th International Conference on Database and Expert Systems Applications, Zaragoza,
Spain, August 30 - September 3, Lecture Notes in Computer Science, vol. 3180, pp. 422–431.
Springer (2004)

7. Ferber, J.: Multi-agent systems: an introduction to distributed artificial intelligence. Addison-
Wesley (1999)

8. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:
Models and approach. Pervasive and Mobile Computing 2(1), 37–64 (2006)

9. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in perva-
sive computing systems. Lecture notes in computer science pp. 167–180 (2002). URL
http://www.springerlink.com/content/jbxd2fd5ga045p8w/

10. Ramos, C., Augusto, J., Shapiro, D.: Ambient intelligence - the next step for artificial intelli-
gence. IEEE Intelligent Systems 23(2), 15–18 (2008)

11. Suna, A., El Fallah Seghrouchni, A.: Programming mobile intelligent agents: An operational
semantics. Web Intelligence and Agent Systems 5(1), 47–67 (2004)

12. Viterbo, J., Mazuel, L., Charif, Y., Endler, M., Sabouret, N., Breitman, K., El Fal-
lah Seghrouchni, A., Briot, J.: Ambient intelligence: Management of distributed and hetero-
geneous context knowledge. CRC Studies in Informatics Series. Chapman & Hall pp. 1–44
(2008)


