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SHARP ASYMPTOTICS OF METASTABLE TRANSITION TIMES FOR

ONE DIMENSIONAL SPDES

FLORENT BARRET

Abstract. We consider a class of parabolic semi-linear stochastic partial differential
equations driven by space-time white noise on a compact space interval. Our aim is to
obtain precise asymptotics of the transition times between metastable states. A version
of the so-called Eyring-Kramers Formula is proven in an infinite dimensional setting.
The proof is based on a spatial finite difference discretization of the stochastic partial
differential equation. The expected transition time is computed for the finite dimensional
approximation and controlled uniformly in the dimension.

1. Introduction

Metastability is a phenomenon which concerns systems with several stable states. Due
to perturbations (either deterministic or stochastic) the system undergoes a shift of regime
and reaches a new stable state (see e.g. [15] by Cassandro, Galves, Olivieri and Vares, the
book [36] by Olivieri and Vares and the lecture notes [6] by Bovier). Typical examples of
metastable behavior can be found in chemistry, physics (for models of phase transition)
and ecology.

In this article, our aim is to understand metastability for a class of stochastic partial
differential equations. We consider the Allen-Cahn (or Ginzburg-Landau) model which
represents the behavior of an elastic string in a viscous stochastic environment submitted
to a potential (see e.g. Funaki [27]). This model has other interpretations in quantum field
theory (see [21, 16] and the references therein) and in statistical mechanics as a reaction
diffusion equation modeling phase transitions and evolution of interfaces (see Brassesco
and Buttà [12, 13]).

More precisely, we deal with the following equation, for (x, t) ∈ [0, 1]× R
+

∂tu(x, t) = γ∂xxu(x, t)− V ′(u(x, t)) +
√
2εW (1.1)

where γ > 0. W is a space-time white noise on [0, 1]× R
+ in the sense of Walsh [40] and

ε > 0 is the intensity of the noise. V is a smooth real valued function on R called a local
potential. We consider two boundary conditions: Dirichlet boundary conditions (for all
t ∈ R

+, u(0, t) = u(1, t) = 0) and Neumann boundary conditions (∂xu(0, t) = ∂xu(1, t) =
0). The initial condition is given by a continuous function u0 which satisfies the given
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boundary conditions. Existence and uniqueness of an Hölder-continuous solution in the
mild sense have been proved by Gyöngy and Pardoux in [29].

Faris and Jona-Lasinio in [21] are among the first ones to analyze Equation (1.1) for a
double well potential

V (x) =
x4

4
− x2

2
. (1.2)

In this case, V has only two minima which are +1 and−1. One expects that the model (1.1)
has several stable states and that a metastable behavior occurs. The authors introduced
a functional potential S and interpreted (1.1) as the stochastic perturbation of an infinite
dimensional gradient system:

∂tu = −δS
δφ

+
√
2εW (1.3)

where for φ a differentiable function,

S(φ) =

∫ 1

0

γ

2
|φ′(x)|2 + V (φ(x))dx. (1.4)

S represents the free energy. δS
δφ

is the Fréchet derivative of S i.e. the infinite dimensional

gradient of S.
For more general functions V (real valued C3 functions), we can define a similar potential

S as in (1.4) which determines a potential landscape. Under the stochastic perturbation,
this potential landscape is explored by the process u defined in (1.1). While the system
without noise (i.e. ε = 0) has several stable fixpoints (which are the minima of S), for
ε > 0 transitions between these fixpoints will occur at a suitable timescale. The transition
paths go through the lowest saddle points. Thus, minima and saddle points of S have a
key role to understand metastability but it is often a hard task, given a potential V (and
thus S), to completely compute and comprehend the geometrical structure of the energy
landscape. However, some elegant method exists (see e.g. [22, 41]).

The model (1.3) is an infinite dimensional generalization of the finite dimensional systems
investigated by Freidlin and Wentzell [25] and by Bovier, Eckhoff, Gayrard and Klein
in [9, 10]. Moreover, we will see that (1.1) is rigorously the limit of a gradient finite
dimensional system (via a spatial finite difference approximation).

Our aim is to derive precise asymptotics of the expected transition time i.e. the time
needed, starting from a minimum φ0 of S, to hit a set of lower minima. We define the
hitting time τε(B) by τε(B) = inf {t > 0, u(t) ∈ B} where B is a disjoint union of small ball
around some minima of S lower than φ0. We prove that the expected time, Eφ0 [τε(B)], has
a very distinctive form known as the Arrhenius equation (Theorem 2.6). This expectation
reads

Eφ0 [τε(B)] = AeE/ε(1 +O(
√
ε |ln(ε)|3/2)) (ε → 0) (1.5)

where E is the activation energy and A is the prefactor. E has been computed by Faris and
Jona-Lasinio for the double well potential (1.2) using a large deviation approach (Theorem
1.1 [21]). E is exactly the minimum height of potential that a pathway has to overcome
to reach B starting from φ0. The prefactor A is a constant (for our set of hypotheses)
and depends only on the local geometry of the potential S near the minimum φ0 and near
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the passes (or saddle points) from φ0 to the set B. The order O(
√
ε |ln(ε)|3/2) of the error

term comes directly from the local approximation of the potential S by its quadratic part.
For the double well potential (1.2) with Neumann boundary conditions, Faris and Jona-

Lasinio proved that S has only two global minima, denoted m and −m (correspond-
ing roughly to the constant functions 1 and −1 resp.). For some γ, this model has a
unique saddle point σ = 0 (the constant function 0). We deduce from Theorem 2.6 that
E−m[τε(B

+)], for a small ball B+ in the suitable norm around m, takes the form (1.5) with
E = S(σ)− S(−m) and

A =
2π

|λ−(σ)|

√√√√
+∞∏

k=1

|λk(σ)|
|λk(−m)| (1.6)

where (λk(φ))k>1 are the eigenvalues of the second Fréchet derivative of the potential S
at a point φ and λ−(σ) is the unique negative eigenvalue at the saddle point σ. Using
asymptotic expansion of the eigenvalues, we prove that the infinite product converges. It
is exactly the equivalent for an operator of the classical determinant of a matrix. We also
mention the fact that this infinite product has a nice expression in terms of solutions of
linear differential equations (see e.g. Levit and Smilansky [32]).

Eyring in [20] and particularly Kramers in [31] investigate the case of a one dimensional
diffusion as a model for chemical reaction rates and express rates instead of expectations.
Their formula is known as the Eyring-Kramers Formula. It takes the form (1.5) with the
prefactor given by a formula similar to (1.6) but with a single factor in the product (there
is only one eigenvalue).

Similar Eyring-Kramers Formulas exist through a wide range of reversible Markovian
models from Markov chains, stochastic differential equations. For finite dimensional dif-
fusions, Freidlin and Wentzell in [25], proving that these systems obey a large deviation
principle, obtained the activation energy in terms of the rate function. In recent years, the
potential theory approach initiated by Bovier, Eckhoff, Gayrard and Klein in [9, 10] has
allowed to give very precise results and led to a proof of the Eyring-Kramers Formula for
gradient drift diffusions in finite dimension. Moreover, the potential approach originate
from Markov chains (see [7, 8, 6]) and have been refined to obtain metastable transition
times for specific models (see e.g. [5, 11]).

Formula (1.6) is then the extension of the Eyring-Kramers Formula to a class of one-
dimensional SPDEs (1.1). Maier and Stein in [33] obtained heuristically this formula and
Vanden-Eijnden and Westdickenberg in [39] used it to compute nucleation probability.

Specifically, the system (1.1) and its metastable behavior have been studied for at least
thirty years using mainly large deviation principle and comparison estimates between the
deterministic process ((1.1) with ε = 0) and the stochastic process defined by (1.1). Cas-
sandro, Olivieri, Picco [16] obtained similar asymptotics as Faris and Jona-Lasinio [21]
when the size of the space interval is not fixed and goes to infinity as ε goes to 0 suffi-
ciently slowly. These results first prove the existence of a suitable exponential timescale
in which the process undergoes a transition.
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In the same case as (1.2), Martinelli, Olivieri and Scoppola [34] obtain the asymptotic
exponentiality of the transition times (Theorem 4.1 [34]). Also, Brassesco [12] proves that
the trajectories of this system exhibit characteristics of a metastable behavior: the escape
from the basin of attraction of the minimum −m occurs through the lowest saddle points
(Theorem 2.1 [12]) and the process starting from −m spends most of its time before the
transition near −m (Theorem 2.2 [12]).

In this paper, we consider a local potential V (satisfying Assumptions 2.1 and 2.4) and
we rigorously prove an infinite dimensional version of the Eyring-Kramers Formula. Our
method relies on a spatial finite difference approximation of Equation (1.1) introduced by
Berglund, Fernandez and Gentz in [3, 4] as a model of coupled particles submitted to a
potential. The computation of the expected transition time for the approximated system
gives us the prefactor, the activation energy and some error terms. We need to control
the behavior of these error terms as the step of discretization goes to 0 (or equivalently as
the dimension N of the approximated system goes to +∞). To this aim, we adapt results
from [2] by Bovier, Méléard and the author.

As proved by Funaki [27] and Gyöngy [28], the solution of the approximated system
converges to the solution of the SPDE. By combining different results from SPDE theory,
large deviation theory (from Chenal and Millet [17]) and Sturm-Liouville theory we are
able to take the limit of the finite dimensional model in order to retrieve the SPDE (1.1).
We also need to adapt estimates on the loss of the memory of the initial condition (from
Martinelli, Scoppola and Sbano [34, 35]) uniformly in the dimension.

The use of spatial finite difference approximation is quite natural since we consider our
SPDEs in the sense of Walsh [40], limited to the case of space-time white noise. Other
approximations could be possible, notably the Galerkin approximation should lead to
similar results for a different class of SPDEs in the framework of Da Prato and Zabczyk
(see the book [19]).

The article is organized as follows. In Section 2, we present the equation, the assump-
tions, the main theorem (Theorem 2.6) and a sketch of its proof. Then in Section 3, we
adapt the convergence of the approximations and prove convergence of the approximated
transition times. In Section 4, we state large deviations estimates by Chenal and Millet
[17], contraction results by Martinelli, Olivieri, Scoppola and Sbano [34, 35] and prove
a uniform control in the initial condition uniformly in the dimension. In Section 5, we
recall results about eigenvalues and eigenvectors of Sturm-Liouville problems and prove
the convergence of the prefactor. In the last section, we compute the expected transition
times uniformly in the dimension.

We will use the following notations henceforth. For a functional space C, equipped with
a norm ‖·‖C, we denote by Cbc the closed subspace in the C topology of the functions in C
satisfying the suitable boundary conditions (Dirichlet or Neumann). For f ∈ L∞([0, 1]×
[0, T ]) we set the norm of this space ‖f‖∞,T or simply ‖f‖∞ when T = +∞.

Acknowledgments. I am very grateful to Anton Bovier and Sylvie Méléard for suggesting
this topic and for constant help and advice. I am indebted to the Hausdorff Center for
Mathematics Bonn for financial support of numerous visits to Bonn. Part of the work
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in this paper has been realized at the Technion in Haifa at the invitation of Dima Ioffe
whom I thank for his kind hospitality. The research on this project was supported by ANR
MANEGE.

2. Results

2.1. The Equation. The assumptions are of two kinds: some on the local potential V ,
others on the functional potential S. We first start with the hypotheses on V .

Assumptions 2.1. We suppose that:

• V is C3 on R.
• V is convex at infinity: there exist R, c > 0 such that for |u| > R

V ′′(u) > c > 0. (2.1)

• V grows at infinity at most polynomially: there exist p, C > 0 such that

V (u) < C(1 + |u|p). (2.2)

These hypotheses are made to avoid complications for the definition of the solution u of
(1.1) and to allow the computations of the derivatives of S.

Let (Ω,F ,P) be a probability space on which we define a space-time white noise W as
defined in [40] equipped with a filtration (Ft)t>0 with the usual properties. The integrable
processes for the white noise are the predictable measurable processes in L2(Ω×R+×[0, 1]).
We denote by gt(x, y) the density of the semi-group generated by γ∂xx on [0, 1] with the
suitable boundary conditions.

Let us recall that a random field u is a mild solution of (1.1) if

(1) u is almost surely continuous on [0, 1]× R
+ and predictable

(2) for all (x, t) ∈ [0, 1]× R
+

u(x, t) =

∫ 1

0

gt(x, y)u0(y)dy −
∫ t

0

∫ 1

0

gt−s(x, y)V
′(u(y, s))dyds

+
√
2ε

∫ t

0

∫ 1

0

gt−s(x, y)W (dy, ds). (2.3)

We state from [29] the following result on the existence, uniqueness and regularity of
the solution.

Proposition 2.2 ([29]). For every initial condition u0 ∈ Cbc([0, 1]), the stochastic partial
differential equation (1.1) has a unique mild solution. Moreover for all T > 0 and p > 1,

E

[
sup

[0,T ]×[0,1]

|u(x, t)|p
]
6 C(T, p). (2.4)

The random field u is essentially 1
2
-Hölder in space and 1

4
-Hölder in time.

The only complication comes from the fact that V ′ is not globally Lipschitz but prevents
the process to go to infinity. From Assumptions 2.1, we have

− xV ′(x) < C. (2.5)
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The proof of Proposition 2.2 is standard and uses mainly estimates on the density gt(x, y).

Remark 1. The definition of the stochastic convolution (the last expression of the right-
hand side of (2.3)) requires the density of the semi-group to be in L2([0, 1] × [0, T ]) for
every T > 0. Unfortunately, that is only true in dimension one. For higher dimensions, the
stochastic convolution does not define a classical function but a distribution in a Sobolev
space of negative index [40].

2.2. Stationary Points. As for the finite dimensional case, the minima and saddle points
of S play a crucial role. To this end, we first specify what is the ”gradient” (or the Fréchet
derivative) of the functional S. Let us recall that S is defined, for φ ∈ H1

bc, by

S(φ) =

∫ 1

0

γ

2
|φ′(x)|2 + V (φ(x))dx. (2.6)

For φ, h in C2
bc([0, 1]) we have a Taylor expansion of S at the second order in h

S(φ+ h) = S(φ) +DφS(h) +
1

2
D2
φS(h, h) +O(‖h‖2C2) (2.7)

where ‖h‖C2 = ‖h‖∞+‖h′‖∞+‖h′′‖∞. By integration by parts we compute the differentials
DφS and D2

φS. The first order differential is a linear functional which takes the form

DφS(h) =

∫ 1

0

[−γφ′′(x) + V ′(φ(x))]h(x)dx. (2.8)

The Fréchet derivative is δS
δφ

= −γφ′′(x) + V ′(φ(x)). The second order derivative (the

Hessian operator) takes the form

D2
φS(h, h) =

∫ 1

0

h(x)[−γh′′(x) + V ′′(φ(x))h(x)]dx. (2.9)

We denote by HφS the Hessian operator at φ:

HφSh(x) = −γh′′(x) + V ′′(φ(x))h(x). (2.10)

The Hessian operator is a Sturm-Liouville operator.
We say that φ is a stationary point of S if φ is solution of the non-linear differential

equation
δS

δφ
= −γφ′′ + V ′(φ) = 0. (2.11)

Let us now fix two points φ, ψ ∈ Cbc([0, 1]) and define some quantities.

Γ(φ → ψ) = {f, f(0) = φ, f(1) = ψ, f ∈ C([0, 1], Cbc([0, 1]))} (2.12)

is the set of continuous paths from φ to ψ. For f ∈ Γ(φ→ ψ), f̂ denotes the set of maxima
of the path f ,

f̂ =

{
f(t0), t0 ∈ argmax

t∈[0,1]
S(f(t))

}
. (2.13)

The saddle points are passes from a valley to another one. The definition uses this idea.
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Definition 2.3 (Saddles). For any φ, ψ ∈ Cbc([0, 1]), we define Ŝ(φ, ψ), the minimum
height needed to go from φ to ψ

Ŝ(φ, ψ) = Ŝ(ψ, φ) = inf
{
S(φ), φ ∈ f̂ , f ∈ Γ(φ→ ψ)

}
. (2.14)

For φ, ψ such that Ŝ(φ, ψ) < ∞, we denote S (φ, ψ) the set of admissible saddles: the
points which realize the maximum along a minimal pathway

S (φ, ψ) =
{
σ ∈ Cbc([0, 1]), S(σ) = Ŝ(φ, ψ), ∃f ∈ Γ(φ→ ψ), σ ∈ f̂

}
. (2.15)

The set of admissible saddle points is very important to compute the prefactor of the
mean transition times. Near these points the process spends the most crucial time as it
passes from a basin of attraction to another one.

We now present the assumptions on S.

Assumptions 2.4. We suppose that:

• S has a finite number of minima and saddle points.
• All the minima and saddle points of S are non-degenerate (i.e. hyperbolic): at each
point, the Hessian operator has non-zero eigenvalues.

Assumptions 2.4 are structural. The finite number of stationary points provides a sim-
ple generalization of the case where there is only one saddle point. The non-degeneracy
condition is necessary in order to approximate locally at the minima and saddle points
the potential by its quadratic part. If this is not the case the prefactor in (1.5) is not a
constant but should have a dependence in ǫ.

Connections between Assumptions 2.1 and 2.4 are not straightforward. Proving that a
given potential S satisfies Assumption 2.4 is not easy, a precise analysis is often needed.
Moreover if we want to investigate the dependence of the potential S on the parameter γ,
bifurcations can occur and the landscape do not satisfy Assumption 2.4 for some critical
values of γ. See Berglund, Fernandez and Gentz [3, 4] for the finite and infinite dimensional
cases for the double well potential. However, results exist (see [1] and references therein)
on the generality of Assumption 2.4.

In addition, under Assumptions 2.4 and 2.1, the deterministic dynamical system (i.e.
(1.1) without the white noise) satisfies a Morse-Smale structure (see [14, 22] and the
references therein). This means that the attractor of the dynamical system consists of
equilibria and heteroclinic orbits connecting these equilibria. Methods has been developed
by Fiedler and Rocha in [22], by Wolfrum in [41] to compute the global attractor of the
deterministic system.

Remark 2. H1 is the convenient functional space for the process since S(φ) < +∞ if and
only if φ is in H1([0, 1]). In fact from the upper bound (2.2) and lower bound (2.1) on V
we get

C1(‖φ‖2H1 − 1) 6 S(φ) 6 C ′
1(‖φ‖2H1 + ‖φ‖pH1 + 1). (2.16)

Each function in H1([0, 1]) is continuous and even α-Hölder continuous (for 0 < α < 1
2
).

For each φ ∈ C([0, 1]), we define the quantity Det(HφS):
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• for Dirichlet boundary conditions, let f be the solution on [0, 1] of

HφSf = 0 f(0) = 1 f ′(0) = 0 (2.17)

then Det(HφS) = f(1)
• for Neumann boundary conditions, let f be the solution on [0, 1] of

HφSf = 0 f(0) = 0 f ′(0) = 1 (2.18)

then Det(HφS) = f ′(1).

Let us recall that, as a regular Sturm-Liouville operator, HφS has a countable number
of eigenvalues, all of them real. We denote by (λk(φ))k>1 the sequence of these eigenvalues
in the increasing order. The definition of Det(HφS) is justified by the following lemma.

Lemma 2.5 ([32]). For any φ and ψ with non-degenerate Hessian operator, the infinite

product
∏∞

k=1
λk(φ)
λk(ψ)

is convergent and we have

∞∏

k=1

λk(φ)

λk(ψ)
=

Det(HφS)

Det(HψS)
. (2.19)

This lemma relates the infinite product of the ratio of eigenvalues to a ratio of terminal
values of solutions. We find an elementary proof in [32] by Levit and Smilansky which relies
on two different expressions of the Green function associated to the problem HφSf = 0
satisfying the boundary conditions. In fact, the Green function could either be expressed
using the spectral decomposition of HφS or expressed as a linear combination of two well-
chosen fundamental solutions (of the second order linear differential equation).

2.3. Main results. Before stating the main result, we describe the set of minima and
saddle points. In fact, the prefactor depends greatly on the geometry of a graph connecting
the minima to each other through the saddle points (so-called the 1-skeleton connection
graph by Fiedler and Rocha in [23]). We define this graph and express the prefactor partly
as an equivalent conductance on this graph.

We denote by M the set of minima of S. Since by Assumption 2.4, there is a finite
number of stationary points, we order the minima by increasing energy. We denote by
φ1, φ2, . . . , φm, m = |M|, the different minima indexed by increasing energy

S(φ1) 6 S(φ2) 6 . . . 6 S(φm). (2.20)

We denote by Ml, the subset of minima Ml = {φ1, φ2, . . . , φl} for 1 6 l 6 m.
We consider the transitions from a minimum φl0 to Ml for l < l0. These are the only

visible metastable transitions. We will see from large deviations estimates, that to go from

a minimum φ to another ψ, it requires a time of order exp
(
Ŝ(φ, ψ)− S(φ)/ε

)
. The time

required to make the reverse transition is also of order exp
(
Ŝ(ψ, φ)− S(ψ)/ε

)
. Therefore

if S(ψ) > S(φ), we get

Ŝ(φ, ψ)− S(φ) > Ŝ(ψ, φ)− S(ψ) (2.21)

and the time required to go from φ to ψ is much larger than for the reverse transition. So
we cannot see the reverse transitions since there are absorbed by the direct ones. If some
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minima have the same potential, we can suitably order them to consider a transition from
one minimum to another one at a same height.

Let us now construct the weighted graph of paths from φl0 to Ml. We denote Ŝ =

Ŝ(φl0 ,Ml) the common potential of the saddles. The minima M are the vertices of the
graph, the saddle points in S (φl0 ,Ml) are the edges. We connect an edge σ̂ between two
vertices φ, ψ ∈ M if the saddle σ̂ is a pass between the valleys of φ and ψ: there exists

f ∈ Γ(φ → ψ) such that f̂ has a unique element and f̂ = σ̂. Existence of this graph is
ensured by Assumptions 2.4 (see [23] and references therein).

Each saddle point in S (φl0 ,Ml) has a unique negative eigenvalue from the Morse-Smale
property and the hyperbolicity of the stationary points. The weight associated to an edge
σ̂ is defined as

w(σ̂) =
|λ−(σ̂)|√
|DetHσ̂S|

(2.22)

where λ−(σ̂) is the unique negative eigenvalue of Hσ̂S.
σ̂+ and σ̂− denote the two minima connected by a given edge σ̂. Let us recall that we

have m minima in M. For a real valued vector a ∈ R
m indexed by the minima in M, we

consider the following quadratic form

Q(a) =
∑

σ̂∈S (φl0 ,Ml)

w(σ̂)(a(σ̂+)− a(σ̂−))2. (2.23)

We define C∗(φl0,Ml) the equivalent conductance of the graph between φl0 and Ml as

C∗(φl0,Ml) = inf {Q(a), a ∈ R
m, a(φl0) = 1, a(φ) = 0, φ ∈ Ml} . (2.24)

This conductance is an approximation of the capacity between a neighborhood of φl0 and
Ml. In some sense, we replace the continuous landscape defined by S by a graph containing
the relevant geometric structure of the landscape.

Let us denote by Bρ(φ), for φ ∈ H1
bc[0, 1], the ball of center φ and radius ρ in H1

bc

Bρ(φ) =
{
σ ∈ H1

bc, ‖σ − φ‖L2 6 ρ, ‖σ‖H1 < A1

}
(2.25)

where A1 is a sufficiently large constant. We also define Bρ(Ml) = ∪φ∈Ml
Bρ(φ). We

choose this kind of neighborhood because in the following we need to control the norm in
the uniform norm and in the α-Hölder norm (for α < 1

2
).

We now state our main result describing the dependence in ε of the mean of the hitting
time of a union of balls around the points of Ml starting from φl0 .

Theorem 2.6. Under the assumptions 2.1, 2.4, for any minimum φl0, and a set of minima
Ml with l0 > l, there exists ρ0 such that for any ρ0 > ρ > 0

Eφl0
[τε(Bρ(Ml))] =

2πeŜ(φl0 ,Ml)/ε

C∗(φl0 ,Ml)
√
DetHφl0

S
(1 + Ψ(ε)) (2.26)

where the error term satisfies Ψ(ε) = O(
√
ε |ln(ε)|3/2).
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For the simple case where we have only three stationary points, two minima and one
saddle (e.g. the case of the double well potential (1.2) with Neumann boundary conditions,
for γ > 1/π2), we have the following corollary.

Corollary 2.7. Let φ+ and φ− be the two minima with S(φ−) > S(φ+) and σ̂ the unique
saddle point. There exists ρ0 such that for any ρ0 > ρ > 0

Eφ− [τε(Bρ(φ+))] =
2π

|λ−(σ̂)|

√
|DetHσ̂S|
DetHφ−S

e(S(σ̂)−S(φ
−))/ε(1 + Ψ(ε)) (2.27)

where the error term is Ψ(ε) = O(
√
ε |ln(ε)|3/2).

2.4. Sketch of proof of Theorem 2.6. We first introduce the discretization we consider.
The finite dimensional approximation of the SPDE is constructed as in the work of Funaki
[27] and the work of Gyöngy[28]. The approximation is defined via a spatial finite difference
approximation of Equation (1.1).

We denote by SN the discretized potential, for y ∈ R
N+2

SN(y) = hN

N∑

i=0

γ

2h2N
(yi+1 − yi)

2 + V (yi) (2.28)

where hN > 0 is the step of discretization. We set X i
0 = u0(xi) where u0 ∈ Cbc([0, 1]) is

the initial condition and the xi are the discretization points on [0, 1]. Let us denote by
xi−1/2 the middle point of [xi−1, xi]. We construct a N -dimensional Brownian motion B
from the white noise W . Doing so we will be able to prove the convergence of uN to u in
Lp and almost surely. Thus we define, for 1 6 i 6 N

Bi
t =

1√
hN

W
([
xi−1/2, xi+1/2

]
× [0, t]

)
. (2.29)

The properties of the white noise imply that (Bi) are independent Brownian motions.
The N -dimensional process (Xt)t is the solution of

dX i
t = − 1

hN
∇SN(Xt)

idt +

√
2ε

hN
dBi

t for i = 1..N. (2.30)

X0 and XN+1 are defined by the boundary conditions

• for Dirichlet boundary conditions:

X0
t = XN+1

t = 0, ∀t > 0 (2.31)

• for Neumann boundary conditions:

X0
t = X1

t and XN+1
t = XN

t , ∀t > 0. (2.32)

The discretized system uN is the linear interpolation between the points (xi, X
i). To

simplify, it is easier to adapt the parameters to the boundary conditions.

• For Dirichlet boundary conditions, we choose

hN =
1

N + 1
, xi =

i

N + 1
, ∀0 6 i 6 N + 1. (2.33)
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• For Neumann boundary conditions, we choose

hN =
1

N
, xi =

i

N
− 1

2N
, ∀0 6 i 6 N + 1. (2.34)

We set τNε (B) the hitting time of a set B for the discretized system

τNε (B) = inf
{
t > 0, uN(N−1t) ∈ B

}
. (2.35)

We decompose the proof of Theorem 2.6 in several steps:

(1) for a given ε and a sequence of initial conditions φNl0 , each being a minimum

of SN , converging to φl0 (see Proposition 5.6), we prove that the expectation of
τNε (Bρ(Ml)) converges to the expectation of the hitting time for the SPDE:

lim
N→∞

EφNl0
[τNε (Bρ(Ml))] = Eφl0

[τε(Bρ(Ml))]. (2.36)

To this aim, we use the convergence of uN to the solution u. This is done in Section
3.

(2) For a fixed N , we compute the asymptotics of the transition time uniformly on the
dimension. We get a prefactor aN (ε) such that
∣∣∣∣

1

aN(ε)
EφNl0

[τNε (Bρ(Ml))]− 1

∣∣∣∣ = ψ(ε,N) < Ψ(ε) = O(
√
ε |ln(ε)|3/2) (2.37)

where the error term Ψ(ε) does not depend on N . This step is the main estimate
and is detailed below.

(3) The limit N → ∞ of aN(ε) gives us the correct asymptotics for the transition time
in the infinite dimensional case:

a(ε) = lim
N→∞

aN (ε). (2.38)

This is done in Section 5.

The estimate (2.37) is proved in two steps.

(i) First we start from a probability measure (the equilibrium probability: νN) on the
boundary of a chosen neighborhood of the minimum φNl0 , which allows us to do the
computation of aN (ε):
∣∣∣∣

1

aN(ε)
EνN [τε(Bρ(M0))]− 1

∣∣∣∣ = ψ1(ε,N) < Ψ1(ε) = O(
√
ε |ln(ε)|3/2). (2.39)

This is done in Section 6.
(ii) Then we have to control the error made by starting on the boundary of the minimum

and not precisely at the minimum:

1

aN (ε)

∣∣∣EνN [τε(Bρ(M0))]− EφNl0
[τNε (Bρ(M0))]

∣∣∣ = ψ2(ε,N) < Ψ2(ε) (2.40)

with Ψ2(ε) = O(
√
ε |ln(ε)|3/2). This result comes from the loss of memory of the

initial condition adapted from Martinelli in [34]. This is exposed in Section 4.
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3. Discretization

In this section, we present the convergence of the discretization uN to the solution of
the SPDE and prove the convergence of the hitting times.

3.1. Finite Dimensional Model. We write the discretized system uN in a mild form.
We define a function κN , with ⌊x⌋ the integer part of x,

κN (x) =

⌊
(N + 1)x+ 1

2

⌋

N + 1
, for Dirichlet boundary conditions, (3.1)

κN (x) =
⌊Nx⌋ + 1

N
− 1

2N
, for Neumann boundary conditions. (3.2)

We define gN the semi-group associated with the discretized Laplacian. The discretized
Laplacian is a N dimensional matrix, denoted by ∆N

d for Dirichlet boundary conditions
and by ∆N

n for Neumann boundary conditions:

∆N
d =

1

h2N




−2 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 −2




∆N
n =

1

h2N




−1 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 −1



. (3.3)

We consider the matrix pN(t) = h−1
N etγ∆

N
. Therefore pN(t)i,j is the solution of





d

dt
pN (t)i,j = (γ∆NpN (t))i,j

pN(0)i,j =
1

hN
δij .

(3.4)

The semi-group gN is the linear interpolation of pN(t) on [0, 1]× [0, 1] along the discretiza-
tion points.

Let us now prove the convergence of the solution of (3.8) to the solution of Equation
(1.1).

Theorem 3.1. For all initial condition u0 ∈ C3
bc([0, 1]), T > 0, and p > 1, we get the

convergence

uN −−−→
N→∞

u on [0, 1]× [0, T ] (3.5)

in the following senses:

• in Lp(Ω, C([0, 1]× [0, T ])), i.e. E
[∥∥uN − u

∥∥p
∞,T

] 1
p −−−→

N→∞
0

• almost surely in C([0, 1]× [0, T ]), i.e. for every η ∈]0, 1
2
[, there exists Ξ a random

variable almost surely finite such that

∥∥uN − u
∥∥
∞,T

6
Ξ

Nη
. (3.6)
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Remark 3. Let us denote

‖u‖q,T = sup
t∈[0,T ]

[∫ 1

0

|u(x, t)|q dx
] 1

q

= sup
t∈[0,T ]

‖u(t)‖Lq . (3.7)

We have ‖u‖q,T 6 ‖u‖∞,T . As a consequence we get convergence in Theorem 3.1 in the Lq

norm instead of the uniform norm.

The convergence of the finite discretization is proved in [28] if V ′ is globally Lipschitz. We
proved that the result holds in the case that V ′ satisfies (2.5) via a localization argument.
The idea, notably used by Funaki in [27], is to rewrite the finite dimensional system uN

in a ”mild form” and prove the convergence of this finite dimensional mild form to the
infinite dimensional mild form (2.3).

Lemma 3.2. For every u0 ∈ Cbc([0, 1]) and N > 0, the function uN defined on [0, 1]×R
+

satisfies the equation

uN(x, t) =

∫ 1

0

gNt (x, κN(y))u0(κN(y))dy −
∫ t

0

∫ 1

0

gNt−s(x, κN(y))V
′(uN(κN(y), s))dyds

+
√
2ε

∫ t

0

∫ 1

0

gNt−s(x, κN(y))W (dy, ds). (3.8)

For all p > 1 and T > 0, we have

sup
N

E

[
sup

[0,T ]×[0,1]

∣∣uN(x, t)
∣∣p
]
6 C(T, p). (3.9)

Proof. This lemma is just a reformulation of the system of stochastic differential equations.
We use the variation of the constant to integrate the linear part and then interpolate
linearly the system to obtain a mild formulation of the function uN (see [27, 28]). To
obtain the uniform moment bound, we proceed classically using a truncation procedure.
We define uNR and uR solutions of equations (3.8) and (2.3) in which we have replaced the
function V ′ by bR defined, for R > 0 by

bR(u) = V ′(u)1[−R,R] + V ′(R)1]R,+∞[ + V ′(−R)1]−∞,−R[. (3.10)

bR is continuous, bounded and globally Lipschitz. Firstly, using the uniform estimates of
the semi-group and the boundedness of bR, we prove that for all T , all p > 1, there exists
C(p, T, R) independent of N such that

sup
[0,1]×[0,T ]

E
[∣∣uNR (x, t)

∣∣p] 6 C(p, T, R) < +∞. (3.11)

Secondly, there exists C(p, T, R) independent of N , such that

sup
N

E

[
sup

[0,1]×[0,T ]

∣∣uNR (x, t)
∣∣p
]
6 C(p, T, R) < +∞. (3.12)

We use regularity of the solution (Kolmogorov’s theorem) to prove (3.12). Thirdly, we use
a comparison theorem to obtain uniform bounds on uN from bounds on uNR0

where R0 is
fixed and sufficiently large. �
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We use the convergence of uNR to uR proved in [28].

Proposition 3.3. [[28]] For all R > 0, T > 0 and 0 < η < 1
2
and u0 in C3

bc[0, 1], there
exists a random variable ξR almost surely finite such that

∥∥uNR − uR
∥∥
∞,T

6
ξR
Nη

. (3.13)

Proof of Theorem 3.1. Let R > 0, we define the stopping times

τR = inf{t, ‖uR(t)‖∞ > R} = inf{t, ∃x ∈ [0, 1], |uR(x, t)| > R} (3.14)

τNR = inf{t,
∥∥uNR (t)

∥∥
∞ > R} = inf{t, ∃x ∈ [0, 1],

∣∣uNR (x, t)
∣∣ > R}. (3.15)

Let us choose 0 < δ < 1. For R > 1, we define

ΩR = {τR−δ > T and lim inf
N→∞

τNR > T}. (3.16)

First we show that P[ΩR] −−−→
R→∞

1. Let M > 0. For ω ∈ {ξR < M} ∩ {τR−δ > T}, by
Proposition 3.3, for N sufficiently large,

∥∥uNR
∥∥
∞,T

(ω) < ‖uR‖∞,T (ω) + δ < R (3.17)

which means that lim infN→∞ τNR (ω) > T . Then by taking the complement relatively to
{ξR < M} we get

P[lim inf
N→∞

τNR < T ; ξR < M ] 6 P[τR−δ < T ; ξR < M ] 6 P[τR−δ < T ]. (3.18)

By definition of the time τR−δ, we have by the Markov inequality for p > 1 and from
Equation (2.4)

P[lim inf
N→∞

τNR < T ; ξR < M ] 6 P[τR−δ 6 T ] 6 P

[
‖u‖∞,T > R− δ

]
6

E

[
‖u‖p∞,T

]

(R− δ)p
. (3.19)

Finally we get

P[ΩcR] = P[τR−δ 6 T or lim inf
N→∞

τNR 6 T ]

6 P[τR−δ 6 T ] + P[lim inf
N→∞

τNR < T ; ξR < M ] + P[ξR >M ]

6
2E[‖u‖p∞,T ]

(R− δ)p
+ P[ξR >M ]. (3.20)

Since ξR is finite almost surely, we take first the limit M → +∞ then R → +∞.

Let us define Ω̃R = ΩR ∩ {ξR < ∞}. Since τR and τNR are increasing in R ∈ N, the sets
ΩR are also increasing in R. Then we have

P[∪∞
R>1Ω̃R] = P[∪R∈NΩR] = lim

R→∞
P[ΩR] = 1. (3.21)

Let ω ∈ Ω̃R. By definition of τNR , there exists N0(ω) such that for all N > N0(ω),
τNR (ω) > T and τR−δ(ω) > T . By using the proposition 3.3, for all N > N0(ω),∥∥uN − u

∥∥
∞,T

(ω) =
∥∥uNR − uR

∥∥
∞,T

(ω) 6 ξR(ω)N
−η. (3.22)
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We define ξ′R(ω) by

ξ′R(ω) = sup
N6N0(ω)

Nη
∥∥uNR − uR

∥∥
∞,T

(ω) + ξR(ω). (3.23)

ξ′R(ω) is finite on Ω̃R and is such that
∥∥uN − u

∥∥
∞,T

6 ξ′RN
−η. Let us define the random

variable Ξ by

Ξ(ω) = ξ′R(ω) on Ω̃R \ Ω̃R−1 for R > 2

Ξ(ω) = ξ′1(ω) on Ω̃1. (3.24)

Then on ∪R>1Ω̃R, set of probability 1, Ξ is almost surely finite and
∥∥uN − u

∥∥
∞,T

6 ΞN−η

which finishes the proof of the almost sure convergence.

To conclude, we show that E
[∥∥uN − u

∥∥p
∞,T

]
converges to 0. Since

∥∥uN
∥∥
∞,T

has uniform

moments in N (Lemma 3.2), we define

ΩR,N0 = ∩N>N0{τR−δ > T and τNR > T}. (3.25)

We have ΩR = ∪N0ΩR,N0 . For all N > N0, we get by definition
∥∥uN − u

∥∥p
∞,T

= 1ΩR,N0

∥∥uNR − uR
∥∥p
∞,T

+ 1Ωc
R,N0

∥∥uN − u
∥∥p
∞,T

. (3.26)

Thus using Cauchy-Schwarz inequality and the bound (3.9), we get

E

[∥∥uN − u
∥∥p
∞,T

]
6 E

[∥∥uNR − uR
∥∥p
∞,T

]
+ P[ΩcR,N0

]
1
2C(2p, T )

1
2 . (3.27)

Using the convergence of uNR to uR (Proposition 3.3), we obtain

lim sup
N→∞

E

[∥∥uN − u
∥∥p
∞,T

]
6 C(2p, T )1/2P[ΩcR,N0

]
1
2 . (3.28)

Let us fix η > 0. Since P[ΩR] tends to 1 and ΩR is increasing, we choose R such that
P[ΩcR] 6 η. Similarly, ΩR,N0 is increasing in N0, thus P[ΩcR] = limN0→∞ P[ΩcR,N0

] 6 η.
Let us choose N0 such that P[ΩcR,N0

] 6 2η. Inserting this bound in (3.28), we obtain the
result. �

3.2. Convergence of the Transition Times. We conclude this section by proving the
convergence of the transition times.

Let us denote by u0 the initial condition of the solution of Equation (1.1) and φ a
continuous function. We define the hitting times: for ρ > 0

τε(ρ) = inf {t > 0, ‖u(t)− φ‖∞ < ρ} (3.29)

τNε (ρ) = inf
{
t > 0,

∥∥uN(t)− φN
∥∥
∞ < ρ

}
(3.30)

where φN is the linear approximation of φ.

Proposition 3.4. Suppose that
∥∥φN − φ

∥∥
∞ converges to 0 and that there exists ρ0 such

that for every ρ0 > ρ > 0,

Eu0 [τε(ρ)] <∞. (3.31)
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Then for almost every ρ > 0,

τNε (ρ) −−−→
N→∞

τε(ρ) a.s. and EuN0
[τNε (ρ)] −−−→

N→∞
Eu0 [τε(ρ)]. (3.32)

Proof. For the sake of simplicity we omit ε in the proof. First we prove that for all δ > 0,
T > 0, we have

τ(ρ+ δ) ∧ T 6 lim inf
N→∞

τN(ρ) ∧ T 6 lim sup
N→∞

τN (ρ) ∧ T 6 τ(ρ− δ) ∧ T a.s. (3.33)

From Theorem 3.1,
∥∥uN − u

∥∥
∞,T

converges to 0 almost surely. Therefore with proba-

bility 1, there exists N0(ω) such that for all N > N0(ω)

sup
t∈[0,T ]

∥∥uN(t)− u(t)
∥∥
∞ (ω) <

δ

2
and

∥∥φN − φ
∥∥
∞ <

δ

2
. (3.34)

Then for t 6 τ(ρ+ δ) ∧ T and N > N0(ω), using the triangle inequality we get

ρ+ δ 6 ‖u(t)− φ‖∞ 6
∥∥u(t)− uN(t)

∥∥
∞ +

∥∥uN(t)− φN
∥∥
∞ +

∥∥uNf − φ
∥∥
∞

6 δ +
∥∥uN(t)− φN

∥∥
∞ (3.35)

which means that t 6 τN (ρ) ∧ T . Thus, we obtain τ(ρ + δ) ∧ T 6 lim infN→∞[τN(ρ) ∧ T ]
almost surely. By the same arguments for t 6 τN (ρ) ∧ T and N > N0(ω), we get

ρ 6
∥∥uN(t)− φN

∥∥
∞ 6 δ + ‖u(t)− φ‖∞ . (3.36)

Therefore lim supN→∞[τN (ρ) ∧ T ] 6 τ(ρ− δ) ∧ T which proves the inequality (3.29).
From the definitions of τ(ρ) and τN (ρ), the functions ρ 7→ τ(ρ) and ρ 7→ τN (ρ) are left

continuous and have right limits. Then using the fact that τ(ρ) is finite almost surely, we
get

τ(ρ+) 6 lim inf
N→∞

τN(ρ) 6 lim sup
N→∞

τN (ρ) 6 τ(ρ) < +∞ a.s. (3.37)

where τ(ρ+) = limδ→0+ τ(ρ+ δ).
At a point of continuity of ρ 7→ τ(ρ), we obtain τ(ρ) = limN→∞ τN (ρ). Let us fix ρ1 > 0.

There exists N ⊂ Ω a null set such that for ω /∈ N , ρ 7→ τ(ρ)(ω) is bounded, decreasing,
left continuous on [ρ1,+∞[. We define the set of discontinuities, P:

P =
{
(ω, ρ) ∈ N

c × [ρ1,+∞[, τ(ρ+)(ω) 6= τ(ρ)(ω)
}
⊂ Ω× R. (3.38)

Then we consider the projection ΠR

ω from Ω × R on R along {ω} × R. For ω ∈ N c we
define

D(ω) = ΠR

ω(P) =
{
ρ ∈ [ρ1,+∞[, τ(ρ+)(ω) 6= τ(ρ)(ω)

}
⊂ R. (3.39)

D(ω) is at most countable since ρ 7→ τ(ρ)(ω) is a bounded decreasing function.
We define N (ρ) = ΠΩ

ρ (P) with ΠΩ
ρ the projection from Ω×R on Ω along Ω×{ρ}. N (ρ)

is the set of Ω for which τ(ρ) is not continuous at ρ. Therefore, we have

P = ∪ω∈Ω {ω} × D(ω) = ∪ρ>ρ1N (ρ)× {ρ} . (3.40)

Then, using Fubini-Tonelli Theorem
∫ +∞

ρ1

P[N (ρ)]dρ =

∫

Ω

∫ +∞

ρ1

1P(ω, ρ)dρdP(ω) =

∫

Ω

∫ +∞

ρ1

1D(ω)(ρ)dρdP(ω) = 0. (3.41)
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We get a null set E(ρ1) on [ρ1,+∞[ such that P[N (ρ)] = 0 for all ρ ∈ E(ρ1) i.e. the
convergence is almost sure. To conclude, we consider a sequence (ρn)n>0 converging to 0,
then E = ∪n>0E(ρn) is a null set of R on which the convergence is almost sure.

By using dominated convergence, we obtain the convergence of the expectations. �

4. Initial condition

4.1. Large Deviation Control. For 0 < α < 1, we set Cα([0, 1]) the set of α-Hölder
continuous functions on [0, 1] equipped with the norm ‖·‖Cα

‖f‖Cα = ‖f‖∞ + sup
x,y

|f(x)− f(y)|
|x− y|α . (4.1)

We also define Dα([0, 1]) the separable subset of this Hölder space which is the closure of
C∞ in Cα.

Let 0 < α < 1
2
and ρ > 0, we consider the neighborhood Bα

ρ (φ) of φ ∈ Dα
bc([0, 1])

Bα
ρ (φ) = {ψ ∈ Dα

bc([0, 1]), ‖φ− ψ‖Cα < ρ} . (4.2)

We also have Bα
ρ (Ml) = ∪φ∈Ml

Bα
ρ (φ).

With this large deviation principle, Chenal and Millet [17] derive exponential asymptotic
estimates for the exit time of domains with a unique stable stationary point. Using their
evaluations and the procedure developed by Freidlin-Wentzell [25] in the finite dimensional
case, we have the following result.

Lemma 4.1 ([17]). For 0 < α < 1
2
, there exists ρ0 such that for all ρ < ρ0, we have for

all φ ∈ Bα
ρ (φl0) and η > 0

lim
ε→0

Pφ

[
exp

(
ε−1(Ŝ + η)

)
> τε(B

α
ρ (Ml)) > exp

(
ε−1(Ŝ − η)

)]
= 1, (4.3)

where Ŝ = Ŝ(φl0 ,Ml). Let τε = τε(B
α
ρ (Ml)). Then

τε
Eφ [τε]

L−−→
ε→0

E (4.4)

where E is an exponential variable of parameter 1. Moreover for all φ ∈ Bα
ρ (φl0)

lim
ε→0

ε logEφ [τε] = Ŝ and lim
ε→0

ε logEφ
[
τ 2ε
]
= 2Ŝ. (4.5)

These estimates are the infinite dimensional version of the Freidlin-Wentzell theory.

4.2. Exponential Contractivity. For a given ψN = (ψ1, · · · , ψN) ∈ R
N , we consider

equivalently the point in R
N and the function in C([0, 1]) obtained by the linear inter-

polation between the points (xi, ψi). Reciprocally, for ψ ∈ Cbc([0, 1]), we let ψ̂N be the

linear interpolation of ψ along the discretization. ψ̂N is the linear interpolation between
the points (xi, ψ(xi)).

We set
B∞
ρ (φ) = {ψ ∈ Cbc([0, 1]), ‖ψ − φ‖∞ < ρ} . (4.6)

We adapt trajectorial results of contractivity for the localized process fromMartinelli and
Scoppola [34]. We denote u(φ), uR(φ) the solutions of Equation (1.1) with respectively V ′
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and bR, starting from φ. Accordingly, we denote uN(φN), uNR (φ
N) the solutions of Equation

(3.8) with V ′ and bR, starting from φN ∈ R
N .

Lemma 4.2. Let φ be a minimum of S and R > R0. There exists m,CR > 0 and
ε0, ρ0 > 0, such that for all ρ < ρ0 and every ψ ∈ B∞

ρ (φ) we have, for all ε0 > ε > 0

P

[
sup
N>N0

∥∥∥uNR (ψ̂N)(t)− uNR (φ̂
N)(t)

∥∥∥
∞

6 e−mt ‖ψ − φ‖∞ , ∀t > 0

]
> 1− e−

CR
ε . (4.7)

This result can be proved via an adaptation of the arguments of [35] and [34]. Lemma
4.2 describes that the solutions of Equation (1.1) and (3.8) depend slightly on the initial
condition. Moreover, the solutions starting from two functions are exponentially close
uniformly in the dimension. Martinelli and Scoppola called that the loss of memory of the
initial condition because the specific initial condition is not relevant for the evolution of
the process.

4.3. Uniformity in the initial condition. Let us recall that φl0 is a minimum and Ml

is a set of lower minima. We denote

τNε (φl0) = τNε (Bα
ρ (φl0)) = inf

{
t, uN(t) ∈ Bα

ρ (φl0)
}

τNε (Ml) = τNε (Bα
ρ (Ml)) = inf

{
t, uN(t) ∈ Bα

ρ (Ml)
}
. (4.8)

Similarly, we denote by τN,Rε the hitting time associated with the localized process uNR .

Proposition 4.3. For all ρ0 > ρ > 0, there exists η > 0 such that for a sequence φNl0 of

minima of SN , converging to φl0 in L2,

sup
N>N0

sup
‖φN−φNl0‖∞

<ρ

∣∣∣EφN
[
τNε (Ml)

]
− EφNl0

[
τNε (Ml)

]∣∣∣ 6 e
Ŝ−η
ε . (4.9)

For any sequence φNi ∈ H1 of minima of SN converging to φi ∈ H1 in L2, we also have

sup
N>N0

sup
‖φNi −φN‖

∞
<ρ

∣∣∣PφNi
[
τNε (φl0) < τNε (Ml)

]
− PφN

[
τNε (φl0) < τNε (Ml)

]∣∣∣ 6 e−
η
ε . (4.10)

The proof comes from a comparison between the deterministic process (i.e. ε = 0) and
the stochastic process starting from the moment of the hitting time .

Proof. Since the minima are not degenerate, we can assume ρ small enough to get
〈
δS

δφ
φ, φ− φi

〉

L2

6 −b ‖φ− φi‖2L2 . (4.11)

for some b > 0, all 1 < i < l, and all φ ∈ B2ρ(φi).
First, let us prove similar estimates on the expectations of transition times for the

localized process uNR . We denote by σN(φN) the hitting time τN,Rε (Ml) for the process u
N
R

starting from φN . We set

ΩR =

{
sup
N>N0

sup
‖u0−φ‖∞<ρ

∥∥uRN(u0)(t)− uRN(φ)(t)
∥∥
∞ 6 ρe−mt, ∀t > 0

}
. (4.12)
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From Proposition 4.2, we get P(ΩR) > 1− e−CR/ε.

Let us fix δ1 > 0. We define T (ε) = e
Ŝ−δ1

ε and we take ε < ε0 such that e−mT (ε) < ρ. On
the set

{
σN(φl0) > T (ε)

}
, setting ψ = uRN(φ)(σ

N(φl0)), we get
∥∥ψ − uRN(φl0)(σ

N(φl0))
∥∥
∞ < e−mT (ε) < ρ (4.13)

with probability at least 1 − e−CR/ε. Let us suppose that σN(φ) − σN(φl0) > 0 and that
uRN(φl0)(σ

N(φl0)) ∈ Bρ(φi).
The deterministic process uN,0R is the solution of (3.8) for the drift bR and ε = 0. φNi is

a minimum of SN , so φNi is an equilibrium point of uN,0R . Then using Equation (4.11), we
get for t > 0

∥∥∥uN,0R (ψ)(t)− φi

∥∥∥
2

L2
6 e−bt ‖ψ − φi‖2L2 6 e−bt(e−mtρ+ ρ)2 6 4ρ2e−bt (4.14)

by the triangle inequality. For t > t0 =
1
b
ln(16), we obtain

∥∥∥uN,0R (ψ)(t)− φi

∥∥∥
L2

6
ρ
2
.

From the large deviation principle, we can compare the deterministic solution with the
perturbed one. We obtain C > 0 such that

P

[{∥∥∥uN,0R (ψN)− uNR (ψ
N)
∥∥∥
∞,2t0

<
ρ

3

}]
> 1− e−C/ε. (4.15)

Therefore, with probability at least 1 − e−C/ε − e−CR/ε, we get
∥∥uNR (ψ)(2t0)− φi

∥∥
L2 <

5ρ
6

which implies
(σN(φ)− σN(φl0))+ 6 2t0. (4.16)

We proceed similarly if σN(φ)−σN (φl0) 6 0. In this case, we stop the process at σN (φ).
Finally we get

∣∣σN(φ)− σN(φl0)
∣∣ 6 2t0 with probability at least 1−e−C′/ε, for some C ′ > 0.

We obtain

E
[∣∣σN(φ)− σN(φl0)

∣∣] 6 E

[∣∣σN (φ)− σN(φl0)
∣∣1ΩR

1{σN (φl0 )>T (ε)}
]

+ E

[∣∣σN(φ)− σN(φl0)
∣∣ (1Ωc

R
+ 1{σN (φl0 )>T (ε)}c)

]

6 2t0(1− e−C
′/ε)P

[
ΩR ∩

{
σN (φl0) > T (ε)

}]
(4.17)

+ E

[∣∣σN(φ)− σN(φl0)
∣∣2
] 1

2
(P[ΩcR]

1
2 + P

[{
σN (φl0) 6 T (ε)

}] 1
2 ).

By using Proposition 4.2, we have P[ΩcR] < e−CR/ε. From Proposition 4.1, we deduce that
for ε 6 ε0

P[σN(φl0) 6 T (ε)] < 1− e−e
−

δ1
ε < e−

δ1
ε . (4.18)

Moreover, we have for all δ2 > 0

E

[∣∣σN(φ)− σN(φl0)
∣∣2
]
< e2

Ŝ+δ2
ε . (4.19)

So we finally get

E[
∣∣σN(φ)− σN(φl0)

∣∣] 6 2t0(1− e−CR/ε − e−
δ1
ε ) + e

Ŝ+δ2
ε (e−C/2ε + e−

δ1
2ε ) 6 e

Ŝ−η
ε . (4.20)

By choosing δ1, δ2 and η small enough, we prove the proposition for the localized process.
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Let us now choose R such that Ŝ(B∞
R (0), B∞

ρ (φl0)) > Ŝ + 1, then from Proposition 4.1,
we have

sup
φ∈B∞

ρ (φl0 )

Pφ[τε(B
∞
R (0)) 6 exp((Ŝ + 1− δ3)/ε) = T2(ε)] 6 e−C/ε (4.21)

sup
φ∈B∞

ρ (φl0 )

Pφ[τ
N
ε (Ml) > T2(ε)] 6 e−C/ε. (4.22)

We consider the process u starting from φ and φl0 . Before T2(ε), with high probability,
the processes are in B∞

R (0) and coincide with uR up to this time. Moreover T2(ε) is much
larger than the transition time, so the transition already occurs when the processes reach
B∞
R (0)c. Therefore, with very high probability, the transition time for the localized process

is exactly the correct transition time.
For Equation (4.10), we follow a similar method, by using Proposition 4.2 for the local-

ized process and then comparing the deterministic and stochastic processes in the neigh-
borhood of a minimum. �

5. Approximation of the potential

In this section, we prove (or refer to) results about the convergence of the potential and
its related quantities.

5.1. Convergence of the potential. Let us recall from Section 4.2 that for a point
uN ∈ R

N , we denote also by uN the linear interpolation between the points (xi, u
N
i ). For

a function u ∈ Cbc([0, 1]), we denote by ûN the linear interpolation between the points
(xi, u(xi)). We say that the sequence uN ∈ R

N converges to u ∈ H1 if the sequence of
linear interpolations associated to uN (also denoted uN) converges to u in the H1 norm.

Let us recall that HSN(uN) is the Hessian matrix of SN at uN and can be interpreted
as a bilinear form. We prove the following proposition.

Proposition 5.1. For any sequence uN ∈ R
N converging to u ∈ H1, we have

• SN(uN) −−−→
N→∞

S(u) <∞
• for any sequence hN converging to h: ∇SN(uN) · hN −−−→

N→∞
DuS(h)

• for any sequences hN , kN converging to h, k:

HSN(uN)(hN , kN) −−−→
N→∞

D2
uS(h, k).

If u is twice differentiable DuS(h) =
∫ 1

0
δS
δφ
(u)h and if k is twice differentiable D2

uS(h, k) =∫ 1

0
hHuSk.

Proof. Let uN ∈ R
N be a sequence converging to u ∈ H1, then uN converges uniformly on

[0, 1] to u, so by dominated convergence,

1

N

N∑

i=1

V (uNi ) −−−→
N→∞

∫ 1

0

V (u(x))dx. (5.1)
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The convergence in H1 directly ensures us that

1

N

N∑

i=1

N2(uNi+1 − uNi )
2 =

∫ 1

0

∣∣∣
(
uN
)′
(x)
∣∣∣
2

dx −−−→
N→∞

∫ 1

0

|u′(x)|2 dx. (5.2)

Let hN ∈ R
N be some sequence converging to h ∈ H1 then we have

∇SN(uN) · hN =

N∑

i=1

∂SN

∂xi
(uNi )h

N
i =

1

N

N∑

i=1

γN2(uNi+1 − uNi )(h
N
i+1 − hNi ) + V ′(uNi )h

N
i

−−−→
N→∞

∫ 1

0

γu′h′ + V ′(u)h (5.3)

by L2 convergence of the derivatives and dominated convergence. Lastly, the convergence
of the Hessian is completely similar. �

5.2. Convergence of the eigenvalues. Let us consider a sequence of points uN ∈
R
N converging to u in H1. We need to estimate the convergence of the eigenvalues

(Nλk,N)16k6N of N ·HSN(uN) to the eigenvalues (λk)16k of HuS.
The convergence of a single eigenvalue Nλk,N for k fixed, is obvious from Proposition

5.1. The control of the convergence for all the eigenvalues is complex because of the higher
eigenvalues (e.g. λN,N). This problem is closely related to the discrepancy between the
eigenvalues of γ

N
∆N and γ∆, the discrete Laplacian (defined by (3.3)) and the Lapla-

cian. We denote λ0N,k, λ
0
k their respective eigenvalues in the increasing order. For Dirichlet

boundary conditions, we have

ek,N = Nλ0N,k − λ0k = γ

[
4N2 sin2

(
kπ

2N

)
− π2k2

]
. (5.4)

Then eN,N = γN2(4−π2) does not converge to 0. The following proposition adapted from
[30] gives us a control of the approximation of the eigenvalues and eigenvectors.

Proposition 5.2. Let us consider a sequence uN ∈ R
N converging to u ∈ C2 and such

that ‖uN − u‖∞ = O
(

1
N2

)
. We have:

(i) there exist α ∈ [0, 1[ and a constant C1 such that for all N and k < αN

|NλN,k − λk − ek,N | 6
C1

N2
, (5.5)

(ii) there exists a constant C2 such that |eN,k| 6 C2k
4N−2,

(iii) for a fixed k 6 N , the normalized (in H1) eigenvector φk,N of HSN(uN) associated
to λk,N converges in H1 to the eigenvector φk of HuS associated to λk and we have,
for all k

‖φk,N‖∞
‖φk,N‖2,N

6
C√
N
. (5.6)

Proof. The proposition is an adaptation of the results of [30] in our case since NHSN(uN)
is the finite difference approximation of the Sturm-Liouville operator HuS. The original
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statement in [30] concerns an approximating sequence uN which is precisely the sequence

ûN of linear interpolations of u. If we take a sequence uN , then for all y ∈ R
N

N
∣∣∣HSN(uN)(y)−HSN(ûN)(y)

∣∣∣ =
N∑

i=1

∣∣V ′′(uNi )− V ′′(u(xi))
∣∣ y2i 6 C

∥∥uN − u
∥∥
∞ ‖y‖22 .

(5.7)

Since ‖uN − u‖∞ = O
(

1
N2

)
, we deduce that the difference between the eigenvalues of

NHSN(uN) and NHSN(ûN) is bounded by O( 1
N2 ) which gives us the result. A similar

control holds for the convergence of the eigenvectors. The last result (5.6) comes from the
fact that for the eigenvectors of HuS ([18] pp.334-335), we have a constant C such that
‖φk‖∞ 6 C ‖φk‖L2. Then, since φk,N converges in H1, it converges in L∞ and L2, then the

result comes from the fact that ‖φk,N‖2,N > C
√
N ‖φk,N‖L2 . �

Remark 4. The normalized eigenvector eN = φN
‖φN‖2,N

satisfies

‖eN‖2∞,N =
‖φN‖2∞,N

‖φN‖22,N
6

‖φN‖2L∞

N ‖φN‖2L2

6
C

N

‖φN‖2H1

‖φN‖2L2

6
C

N
. (5.8)

Thus, this proves that the coordinates of the normalized eigenvectors in R
N for the eu-

clidean norm are uniformly bounded by O
(

1√
N

)
.

The following proposition from [30] states uniform estimates in the function φ of the
eigenvalues of the Hessian operators HφS and HSN(φN).

Proposition 5.3. Let φN1 , φ
N
2 be sequences converging in H1 to φ1, φ2, then for all N, k

∣∣λ1k,N − λ2k,N
∣∣ 6 C

∣∣λ1k − λ2k
∣∣ 6 C (5.9)

and λik = π2k2 +
∫ 1

0
V ′′(φi(x))dx+O

(
1
k2

)
for i = 1, 2.

Remark 5. This proposition shows the convergence of the infinite product of the ratio of
eigenvalues denoted by D(φ, ψ)

N∏

k=1

λk(φ)

λk(ψ)
=

N∏

k=1

[
1 +

λk(φ)− λk(ψ)

λk(ψ)

]
−−−→
N→∞

∞∏

k=1

λk(φ)

λk(ψ)
= D(φ, ψ) (5.10)

since ∣∣∣∣
λk(φ)− λk(ψ)

λk(ψ)

∣∣∣∣ 6
C

k2
. (5.11)

5.3. Product of eigenvalues. We show the convergence of the product ratio of the eigen-
values of HSN(φN) and HSN(ψN) to D(φ, ψ).

Proposition 5.4. For any φN , ψN converging in H1 to φ, ψ such that HS(ψ) and HS(φ)
do not have a zero eigenvalue, and that

∥∥φN − φ
∥∥
∞ ∨

∥∥ψN − ψ
∥∥
∞ 6

C

N2
, (5.12)
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we have the convergence

det(HSN(φN))

det(HSN(ψN))
−−−→
N→∞

D(φ, ψ) =
+∞∏

k=1

λk(φ)

λk(ψ)
. (5.13)

Proof. The proof of the convergence comes from the fact that for small k the approximated
eigenvalues are close to the continuous ones (λk,N ≈ λk) whereas this is not the case for k
close to N (Proposition 5.2). The eigenvalues λk,N(φ), λk,N(ψ) are close at the first order
in k uniformly on φ, ψ (Proposition 5.3). Therefore we decompose the product in two
parts for small k (i.e. k < αN from Proposition 5.2) and large k.

Let us denote µk,N(φ) = NλN,k(φ
N)− λk(φ)− ek,N . From Proposition 5.2, there exists

0 < α < 1 such that, for k 6 αN , |µk,N(φ)| 6 c
N2 . The same holds for the sequence ψN .

Then, we get,

Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)
=

1 + θk,N(φ)

1 + θk,N(ψ)
= 1 +

θk,N(φ)− θk,N(ψ)

1 + θk,N(ψ)
(5.14)

where θk,N(φ) = λk(φ)
−1(ek,N + µk,N(φ)). Let us remark that for k 6 αN

|θk,N(ψ)| 6
C

k2

(
k4

N2
+

1

N2

)
6 C

(
α2 +

1

N2

)
(5.15)

thus if we take α small enough and N large enough, we have |θk,N(ψ)| < 1
2
. Hence we

obtain ∣∣∣∣∣ln
αN∏

k=1

Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)

∣∣∣∣∣ 6 2
αN∑

k=1

|θk,N(φ)− θk,N(ψ)| 6
2Cα

N
(5.16)

since from Proposition 5.3, |θk,N(φ)− θk,N(ψ)| 6 C
N2 .

For k > αN we proceed similarly. Let us write

Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)
=

1 + θ′k,N
1 + θ′k

= 1 +
θ′k,N − θ′k
1 + θ′k

(5.17)

where θ′k,N = λk,N(ψ)
−1(λk,N(φ)− λk,N(ψ)) and alike for θ′k. From Proposition 5.3, we get

for all k and N > N0, that
∣∣θ′k,N

∣∣ ∨ |θ′k| 6 C
k2
. Thus we obtain

∣∣∣∣∣ln
N∏

k=αN

Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)

∣∣∣∣∣ 6
N∑

k=αN

C

k2

(
1 +

C

k2

)
6
C

N
(5.18)

which finishes the proof. �

In fact, we need a slightly different convergence.

Corollary 5.5. Let be φN , ψN converging to φ, ψ such that
∥∥φN − φ

∥∥
L2 ∨

∥∥ψN − ψ
∥∥
L2 6

C

N
. (5.19)

Then we have
det(HSN(φN))

det(HSN(ψN))
−−−−→
N→+∞

D(φ, ψ). (5.20)



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 24

Proof. From the previous proposition, we get that

det(HSN(φ̂N))

det(HSN(ψ̂N))
−−−−→
N→+∞

D(φ, ψ) (5.21)

where φ̂N (resp. ψ̂N) is the linear interpolation of φ (resp. ψ). So we prove

DN =
det(HSN(φ̂N))

det(HSN(ψ̂N))

[
det(HSN(φN))

det(HSN(ψN))

]−1

=
N∏

k=1

1 + θk(φ)

1 + θk(ψ)
−−−→
N→∞

1 (5.22)

where θk(φ) = λk,N(φ
N)−1(λk,N(φ̂

N)− λk,N(φ
N)). From the fact that

∥∥φN − φ
∥∥
L2 6

C
N

we

obtain
∥∥∥φN − φ̂N

∥∥∥
L2

6 C′

N
. Then for all y ∈ R

N , we have

∣∣∣HSN(φN)(y)−HSN(φ̂N)(y)
∣∣∣ = 1

N

N∑

i=1

∣∣V ′′(φNi )− V ′′(φ(xi))
∣∣ |yi|2

6
C

N

N∑

i=1

∣∣φNi − φ(xi)
∣∣ |yi|2 6

C√
N

∥∥∥φN − φ̂N
∥∥∥
L2

‖y‖24,N 6
C

N3/2
‖y‖22,N .

Therefore we get that
∣∣∣λk,N(φN)− λk,N(φ̂

N)
∣∣∣ 6 C

N3/2 . The same holds for ψ.

Then, we obtain

|θk(ψ)| 6
CN

k2
× 1

N3/2
6

C

k2
√
N

6
1

2
(5.23)

for N sufficiently large.
Thus we get

|ln [DN ]| 6
N∑

k=1

|θk(φ)− θk(ψ)|
1 + θk(ψ)

6 2

N∑

k=1

|θk(φ)|+ |θk(ψ)| 6 4C

N∑

k=1

1

k2
√
N
. (5.24)

Then let us fix η > 0, we have

|ln [DN ]| 6 C

η 3√N∑

k=1

1

k2
√
N

+ C
N∑

k=η 3√N

1

k2
√
N

6 CηN−1/6 +
C

η2
N−1/6. (5.25)

Therefore we get lim supN→∞ |ln [DN ]| = 0 which proves the proposition. �

5.4. Approximated stationary points. The last property we need to check is that
for each stationary point of S, there exists a unique sequence of stationary points of
SN converging to this stationary point. Moreover, to ensure the limit of the ratio of
eigenvalues, this convergence has to be fast enough (see Corollary 5.5). To this aim, we
have the following proposition.

Proposition 5.6. There exist C,N0, such that for all N > N0, there is for each minimum
(resp. saddle point) φ of S a minimum (resp. saddle point) φN of SN such that

∥∥φ− φN
∥∥
L2 6

C

N
(5.26)
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where φ̂N is the linear interpolation of φ.

Proof. Since by Assumption 2.4, there is a finite number of saddles and stationnary points
then we only need to prove the proposition for a given saddle or minimum. Let φ be a
minimum, we prove that there is sequence φN of minima of SN such that

∥∥∥φN − φ̂N
∥∥∥
L2

6
C

N
. (5.27)

The result (5.26) follows from (5.27) since we already have that

∥∥∥φ− φ̂N
∥∥∥
L2

6

∥∥∥φ− φ̂N
∥∥∥
∞

6
C

N2
. (5.28)

In order to prove (5.27), we use a fixed point theorem. Let us consider the ball BC/
√
N

of radius C√
N

in the ‖·‖2,N norm where C is a constant we will fix later. We want to find

z0 ∈ BC/
√
N such that ∇SN(φ̂N + z0) = 0. In that case we will have φN = φ̂N + z and

∥∥∥φN − φ̂N
∥∥∥
2

L2
6

1

N
‖z‖22,N 6

C

N2
. (5.29)

By a Taylor expansion of the gradient we have

∇SN(φ̂N + z)i = ∇SN(φ̂N)i + (HSN(φ̂N)z)i + gi(z) (5.30)

where gi is the remainder which can take the form

gi(z) =

∫ 1

0

(1− t)
∂3SN

∂z3i
(φ̂N + tz)z2i dt =

1

N

∫ 1

0

(1− t)V ′′′(φi + tzi)z
2
i dt. (5.31)

Then we have for all z, y ∈ BC/
√
N

|gi(z)| 6
C0

N
z2i and |gi(x)− gi(y)| 6

C0

N

∣∣z2i − y2i
∣∣ 6 2C0

N3/2
|zi − yi| . (5.32)

Let us also remark that since φ is a stationary point for the potential S, thus we have
−γφ′′(xi) + V ′(φ(xi)) = 0. Therefore we get

∣∣∣∇SN(φ̂N)i
∣∣∣ =

∣∣∣∣∇SN(φ̂N)i −
1

N
(−γφ′′(xi) + V ′′(φ(xi)))

∣∣∣∣

=
1

N

∣∣γN2(φ(xi+1)− 2φ(xi) + φ(xi−1))− γφ′′(xi)
∣∣ 6 C1

N2
. (5.33)

For N sufficiently large HSN(φ̂N) is not degenerate then z0 is solution of the fixed point
equation

z0 = HSN(φ̂N)−1(−∇SN(φ̂N)− gi(z
0)) = F (z0). (5.34)
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The (2, N)-norm of HSN(φ̂N)−1 is bounded by the inverse of the smallest eigenvalue (in

absolute value). Then
∥∥∥HSN(φ̂N)−1

∥∥∥
2,N

6 C2N . For z ∈ BC/
√
N , we get

‖F (z)‖22,N 6

∥∥∥HSN(φ̂N)−1
∥∥∥
2

2

(∥∥∥∇SN(φ̂N)
∥∥∥
2

2
+

N∑

i=1

|gi(z)|2
)

6 C2
2N

2

(
C2

1

N3
+ C2

0 ‖z‖44,N
)

6 C ′
1

(
1

N
+N2 ‖z‖42,N

)
6 C ′

1

(
1

N
+
C4

N2

)
6
C2

N
(5.35)

for C sufficiently small. Therefore F (BC/
√
N ) ⊂ BC/

√
N . We also have for z, y ∈ BC/

√
N ,

F (y)− F (z) = HSN(φ̂N)−1(−gi(y) + gi(z)).
Then

‖F (y)− F (z)‖22,N 6 C2N
2

N∑

i=1

|−gi(y) + gi(z)|2 6
C ′

2

N
‖y − z‖22,N .

Thus F is a contraction for N sufficiently large. By the fixed point Theorem, there exists
z0 ∈ BC/

√
N solution of z0 = F (z0) which proves Proposition 5.6 �

6. Estimates

6.1. Description. In this section, we compute uniformly in the dimension the expectation
of the transition times. We proceed as in [2] and use the potential theory developed in [9].
Let us consider the N -dimensional diffusion

dYt = −∇SN(Yt)dt+
√
2εdBt (6.1)

which comes from (2.30) with the time change YhN t = Xt. We denote by µN the invariant
measure for the process Y

µN(dx) = e−
SN (x)

ε dx. (6.2)

Let us consider the norms for y ∈ R
N and p > 1

‖y‖pp,N =

N∑

x=1

|yi|p ‖y‖∞,N = max
i=1···N

|yi| . (6.3)

Remark 6. As in the previous section, we associate to a point y ∈ R
N its linear interpolation

on [0, 1] between the points (xi, yi) (xi is given by (2.33),(2.34)) that we denote by y. Let
us consider the Lp norm of y on [0, 1], we have for all p ∈ [1,+∞]

1

(4N)1/p
‖y‖p,N 6 ‖y‖Lp =

[∫ 1

0

|y(x)|p dx
] 1

p

6
1

N1/p
‖y‖p,N . (6.4)

This can be done using the Riesz-Thorin Theorem, remarking that

1

4N
‖y‖1,N 6 ‖y‖L1 6

1

N
‖y‖1,N and ‖y‖∞,N = ‖y‖L∞ . (6.5)



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 27

In order to introduce the other norms, we need the following a priori estimates on the
eigenvalues of the Hessian of SN . Let us recall the Hessian of SN at a point φN ∈ R

N is

HSN(φN)(h)j = − 1

N
(∆Nh)j +

1

N
V ′′(φN(xj))hj, for h ∈ R

N (6.6)

with the suitable boundary conditions.

Lemma 6.1 ([30]). For all φN ∈ R
N such that

∥∥φN
∥∥
∞ < A, the eigenvalues (λk,N(φ

N))Nk=1

of HSN(φN) arranged in increasing order satisfy the bound

m(A)k2 − 1 6 Nλk,N(φ
N) 6M(A)k2 + 1 (6.7)

where m(A) and M(A) do not depend on N and φN (only on A).

Let us fix φN ∈ R
N . We consider the orthonormal eigenvectors (vl)l of HS

N(φN).

The decomposition of h ∈ R
N in this orthonormal basis is given by h =

∑N
l=1 h̃ivl. For

p ∈ [1,∞], we define the norms ‖h‖p,F

‖h‖pp,F =
N∑

i=1

∣∣∣h̃i
∣∣∣
p

‖h‖∞,F = max
i=1···N

∣∣∣h̃i
∣∣∣ . (6.8)

As in [2], these are the norms we use to control the approximations of the potential around
our stationary points. Let us note that the norms depend on the point φN .

Remark 7. As in Section 4.1.1 in [2], the Hausdorff-Young Theorem can be adapted to the
norms ‖·‖p,F and ‖·‖p,N . For all 2 6 p 6 +∞ and q such that q−1 + p−1 = 1, we obtain

1

N
‖x‖pp,N 6 C

(
1√
N

‖x‖q,F
)p

. (6.9)

In fact, let T : RN → R
N be the linear mapping T (y) =

∑N−1
k=0 ykvN,l(z

∗
i ). By definition,

‖Ty‖p,F = ‖y‖p,N . The proof of (6.9) is an application of the Riesz-Thorin Theorem,

between p = 2 and p = ∞. On one hand, we have ‖Ty‖22,N = ‖y‖22,N since the eigenvectors

form a orthonormal basis. On the other hand, we have ‖Ty‖∞,N 6 C√
N
‖y‖1,N since the

coordinates of the eigenvectors of the basis are bounded by C√
N

(see Lemma 5.2, Equation

(5.6)).

Let us recall the infinite dimensional situation. The process u starts from a minimum

φl0 of S and reaches the set of minima Ml. We denote by Ŝ0 = Ŝ(φl0 ,Ml) the height of
the saddle points defined by (2.14).

By Assumption 2.4, for all N sufficiently large, we have a finite set MN = {x∗i } of
minima of SN . From Proposition 5.2 and Proposition 5.6, we deduce that a sequence
of minima x∗l0 converges to φl0 . Similarly, there is a subset MN

l of MN such that each

minimum of MN
l converges to a minimum of Ml.

We construct a graph for the finite dimensional case as the graph for the infinite dimen-
sional case in Section 2.3. The vertices are the minima MN . The edges are the saddle

points z∗k of SN for which
∣∣∣Ŝ0 − SN(z∗k)

∣∣∣ < η for some fixed η > 0. We connect the edge z∗k
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between the two minima that the saddle point z∗k connects directly. To each saddle point
z∗k , we associate a weight

w∗
k =

∣∣λ−N(z∗k)
∣∣ e−

SN (z∗k)

ε

√
|detHSN(z∗k)|

. (6.10)

To each minima x∗j , we associate a value aj = a(x∗j ) ∈ R. We denote by ai+ and ai− the
two values associated to the minima connected by the saddle point z∗i .

We associate to this graph a quadratic form QN (a), for a a real vector indexed by the
minima MN

QN(a) =
∑

z∗l

w∗
l (al+ − al−)

2. (6.11)

The equivalent conductance, C∗(N, ε), between the sets x∗l0 and MN
l is defined by

C∗(N, ε) = inf
{
QN(a), a(x∗l0) = 1, a(x∗i ) = 0, x∗i ∈ MN

l

}
. (6.12)

We recall the fundamental formula (6.15) proved in [9]. The expression of the expectation
of the hitting time τNε (BNρ (x∗l0)) is based on two quantities: the equilibrium potential and

the capacity with respect to the sets BNρ (x∗l0) and BNρ (MN
l ). The equilibrium potential,

h∗, is defined by h∗(x) = Px[τ
N
ε (BNρ (x∗l0)) < τNε (BNρ (MN

l ))]. The Dirichlet form, E N ,

associated with the diffusion process Y on R
N is

E
N(h) = ε

∫

RN

‖∇h(x)‖22,N µN(dx). (6.13)

The capacity is the evaluation of the Dirichlet form on h∗. The capacity also satisfies a
variational principle. We have

cap
(
BNρ (x∗l0),BNρ (MN

l )
)
= E

N (h∗)

= inf
{
E
N(h), h ∈ H1(RN), h = 1 on BNρ (x∗l0), h = 0 on BNρ (MN

l )
}
. (6.14)

The expectation of the hitting time is expressed by

EνN [τ
N
ε (BNρ (MN

l ))] =

∫
RN h

∗(x)dµN (x)

cap
(
BNρ (x∗l0),BNρ (MN

l )
) (6.15)

where νN is a probability measure on ∂BNρ (x∗l0).

6.2. Capacity. We prove that the capacity defined in (6.14) can be estimated by the
equivalent conductance C∗(N, ε) defined in (6.12).

Proposition 6.2. For all ε < ε0 and ρ, we have

cap
(
BNρ (x∗l0),BNρ (MN

l )
)
= ε

√
2πε

N−2
C∗(N, ε)(1 + ψ1(ε,N)) (6.16)

where lim supN→+∞ |ψ1(ε,N)| < √
ε |ln(ε)|3/2 for all N > N0.

The proof of this result is an adaptation to the case of a finite number of saddle points
of Proposition 4.3 in [2]. The estimate of the capacity is made in two steps: an upper
bound and a lower bound.
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6.2.1. Upper bound. We have the following proposition.

Proposition 6.3. For all ε < ε0 and ρ, we have

cap
(
BNρ (x∗l0),BNρ (MN

l )
)
6 ε

√
2πε

N−2
C∗(N, ε)(1 + ψu(ε,N)) (6.17)

where lim supN→∞ |ψu(ε,N)| < √
ε |ln(ε)|3/2.

Proof. The proof of this upper bound follows the proof of Lemma 4.4 in [2]. To obtain an
upper bound for the capacity, we just estimate the Dirichlet form on a test function h+.
h+ is defined on some neighborhood CN

δ (z∗i ) of each saddle point z∗i for some δ > 0 small
enough.

In the local orthonormal basis (given by coordinates y(i) ∈ R
N ) of the saddle point z∗i ,

the neighborhood CN
δ (z∗i ) is defined by

CN
δ (z∗i ) =

{
y(i) ∈ R

N : |y(i)l | 6 δ
rl√
|λN,l|

, 0 6 l 6 N − 1

}
+ z∗i (6.18)

where (rl) is a sequence satifying
∑

l

r
3/2
l

l3/2
< ∞ and (λN,l)l are the eigenvalues in the

increasing order of HSN(z∗i ). Let us denote C
N
δ = ∪iCN

δ (z∗i ).
Let us consider

SN,δ =
{
x, SN(x) > SN(z∗i ) + cδ2, ∀i

}
. (6.19)

The set (SN,δ ∪CN
δ )c contains a finite number of connected components denoted Dj since

each of them contains at least a minimum x∗j (which are in finite number by Assumption
2.4). For each connected component Dj, we define h+ to be the constant aj ∈ [0, 1]. For
a saddle z∗i , we denote Di+ and Di− the connected components attained from z∗i when
y(i) = (δσ0, 0) and y

(i) = (−δσ0, 0) respectively.
On SN,δ \CN

δ , we take h+ of class C1 and such that ‖∇h+‖2,N ≤ c1
δ
. Then we define h+

on each CN
δ (z∗i ) in the local coordinates, by h+(y(i)) = fi(y

(i)
0 ) where

fi(y0) = (ai− − ai+)

∫ δσ0
y0

e−|λN,0|t2/2εdt
∫ δσ0
−δσ0 e

−|λN,0|t2/2εdt
+ ai+. (6.20)

Therefore, we have to estimate EN(h+) =∑i I1(i) + I2 with

I1(i) = ε

∫

CN
δ (z∗i )

∥∥∇h+(x)
∥∥2
2,N

e−
SN (x)

ε dx, I2 = ε

∫

SN,δ\BN
δ

∥∥∇h+(x)
∥∥2
2,N

e−
SN (x)

ε dx.

(6.21)

Taking δ = K
√
ε |ln ε|, the integrals I1(i) give us the right asymptotics and are estimated

by an adaptation of Lemma 4.4 from [2]. The quadratic approximation of the potential on
the sets CN

δ (z∗i ) is a consequence of Remark 7 and of the choice of the sets CN
δ (z∗i ). The

integral I2 is computed by following the same method as in Lemma 4.6 in [2].
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Therefore, we obtain that for all (aj)j , for N > N0(ε)

cap
(
BNρ (x∗),BNρ (MN

l )
)
6
∑

i

ε
√
2πε

N−2 (ai− − ai+)2 |λN,0| e−
SN (z∗i )

ε√
| det(HSN(z∗i ))|

(1 + A1

√
ε |ln(ε)|3/2).

Taking the minimum of the right-hand side over a, we get the result (6.17). �

6.2.2. Lower bound. We now prove the corresponding lower bound.

Proposition 6.4. For all ε < ε0 and ρ, we have

cap
(
BNρ (x∗),BNρ (MN

l )
)
> ε

√
2πε

N−2
C∗(N, ε)(1 + ψl(ε,N)) (6.22)

where lim supN→∞ |ψl(ε,N)| < √
ε |ln(ε)|3/2.

Proof. The proof is adapted from [2]. For a saddle point z∗i , we take a narrow corridor from
one (local) minimum to another one and minimize the Dirichlet form on the union of these
corridors. In [2], this corridor was a rectangle because of the particular case considered.
In this article, we have to be more precise about their construction. We use the same
notations as in the proof of the upper bound.

Let us fix δ0. We consider the subset of RN−1

CN,⊥
δ (z∗i ) =

{
y(i) ∈ R

N : |y(i)l | 6 δ
rl√
|λN,l|

, 1 6 l 6 N − 1

}
. (6.23)

and we define CN
δ (z∗i ) = [−δ0, δ0] × CN,⊥

δ (z∗i ) + z∗i . We denote by x∗i− and x∗i+ the two
minima of the basins surrounding z∗i .

Let (γ0(s))s∈[−s−,s+] be a regular C2 path from xi− to xi+ with γ0(s) = z∗i + (s, 0) for
s ∈ [−δ0, δ0]. We also suppose that there is η > 0 for which SN(γ0(s)) < SN0 − 3η for
|s| > δ0 and that ‖γ′0(s)‖2,N = 1. Let, for all s, A(s) be an isomorphism from R

N−1 to

γ′0(s)
⊥ ⊂ R

N of class C1 in s and such that for |s| < δ0, A(s)y = (0, y1, · · · , yN−1). Then
we construct a family of paths γ(s, y⊥) by

γ(s, y⊥) = γ0(s) + A(s)y⊥. (6.24)

Such a construction of a path γ0 is always possible in the infinite dimensional setting
(because of Assumption 2.4). Then taking the finite dimensional projection, it gives us a
path for the finite dimensional case.

We define the corridor from xi− to xi+, for δ > 0 small enough

Cδ(z
∗
i ) =

{
x = γ(s, y⊥), y⊥ ∈ CN,⊥

δ (z∗i ), ∀s
}
. (6.25)

Let h be the equilibrium potential which realizes the minimum of the Dirichlet form and
define ai±(y⊥) = h(xi± + A(±s±)y⊥), the values near the minimum.

To estimate a lower bound, we are going to restrict the Dirichlet form on the union of
the corridors Cδ(z

∗
i ):

EN(h) = ε

∫

RN

‖∇h‖22,N µN(dx) >
∑

i

ε

∫

Cδ(z
∗

i )

‖∇h‖22,N µN(dx) = ε
∑

I5(i). (6.26)
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We define the function fi on Cδ(z
∗
i ), by fi(s, y⊥) = h(γ(s, y⊥)). The change of variable

on Cδ(z
∗
i ) gives us the Jacobian gi(s, y⊥) = det(Jγ)(s, y⊥) and we obtain

I5(i) >

∫

BN,⊥
δ (z∗i )

∫ s+

−s−

∣∣∣∣
∂fi
∂s

∣∣∣∣
2

e−S
N (γ(s,y⊥))/εgi(s, y⊥)dsdy⊥. (6.27)

We take y⊥ as a parameter then the second term is bounded below by the minimum over
functions fi of the integral

∫ s+

−s−

∣∣∣∣
∂fi
∂s

∣∣∣∣
2

e−S
N (γ(s,y⊥))/εgi(s, y⊥)ds (6.28)

with the conditions fi(−s−, y⊥) = h(xi− +A(−s−)y⊥) = ai−(y⊥) and fi(s+, y⊥) = h(xi+ +
A(s+)y⊥) = ai+(y⊥). This gives us a lower bound for the capacity.

A simple computation shows that the function fi realizing this lower bound is

fi(s, y⊥) = (ai+(y⊥)− ai−(y⊥))

∫ s
−s− e

SN (s,y⊥)/εgi(s, y⊥)
−1ds

∫ s+
−s− e

SN (s,y⊥)/εgi(s, y⊥)−1ds
+ ai−(y⊥). (6.29)

Inserting this function in the integral (6.27), we obtain

I5(i) >

∫

CN,⊥
δ (z∗i )

(ai+(y⊥)− ai−(y⊥))
2

[∫ s+

−s−
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds

]−1

dy⊥. (6.30)

The end of the proof comes from an upper bound of the integral uniformly for y⊥ ∈
CN,⊥
δ (z∗i ). We write

∫ s+

−s−
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds = I6(i) + I7(i) (6.31)

where

I6(i) =

∫ δ0

−δ0
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds and I7(i) =

∫

|s|>δ0
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds. (6.32)

As in Lemma 4.8 in [2], we control the quadratic approximation near the saddle z∗i with
the following lemma for which we omit the proof.

Lemma 6.5. For all y = (s, y⊥) ∈ CN
δ (z∗i ), if the sequence (rl)l satisfies

∑
l

r
3/2
l

l3/2
<∞, we

have for δ0 > δ∣∣∣∣SN(γ(s, y⊥) + z∗i )− SN(γ(0, y⊥) + z∗i ) +
1

2
|λ0,N | s2

∣∣∣∣ 6 A6δ
3
0 (6.33)

∣∣∣∣∣S
N(z∗i + γ(0, y⊥))− SN(z∗i )−

1

2

N−1∑

k=1

λN,ky
2
k

∣∣∣∣∣ < A8δ
3. (6.34)

Following the proof of Lemma 4.7 in [2], we can also prove the existence of a constant
A6 such that for all N and y⊥

I6(i) 6 e
SN (z∗i +(0,y

⊥
))

ε

√
2πε

|λN,0|

(
1 + A6

δ30
ε

)
. (6.35)
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In addition, we need to prove an upper bound for the integral I7(i).

Lemma 6.6. There exists a constant A7 such that for all N and y⊥

I7(i) 6 A7

√
Ne

Ŝ−2η
ε (6.36)

where η > 0 is given by the definition of the path γ0.

Proof. We have to be careful with the change of variable. Let us write the Jacobian matrix
Jγ(s, y⊥) in the local base (γ′0(s), γ

′
0(s)

⊥), if we denote P0 the projection on Span(γ′0(s)),
we get the Jacobian matrix (written by blocks)

Jγ(s, y⊥) =

(
1 + P0(A

′(s)y⊥) 0
∗ A(s)

)
(6.37)

since ImA(s) = γ′0(s)
⊥. Then, as A(s) is an isometry, we obtain that

gi(s, y⊥) = |det(Jγ(s, y⊥))| = |1 + P0(A
′(s)y⊥)| = 1 +O(δ). (6.38)

Thus, for δ sufficiently small,

I7(i) =

∫

|s|>δ0
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds 6 (1 + Cδ)e

Ŝ−2η
ε (s+ + s−) 6 2(s+ + s−)e

Ŝ−2η
ε

since SN(s, y⊥) < Ŝ−2η for all |s| > δ0, and y⊥ ∈ CN,⊥
δ . Then by construction of the path

we have that

s+ + s− 6 C ‖xi− − xi+‖2,N 6 C
√
N ‖xi− − xi+‖L2 . (6.39)

�

We insert (6.35) and (6.36) in Equation (6.30). Then we proceed as in the proof of
Lemma 4.7 from [2] and we obtain

I5(i) > ε

√
|λN,0|
2πε

∫

BN,⊥
δ (z∗i )

(ai+(y⊥)− ai−(y⊥))
2e−

SN (z∗i +(0,y⊥))

ε dy⊥

[
1 + A6

δ30
ε
+ A′

7e
− η

ε

]−1

.

(6.40)

Using Equation (4.10) from Proposition 4.3, we obtain for all y⊥, |aj(y⊥)− aj(0)| < e−
C
ε .

Then using the approximation (6.34) and following the proof of Lemma 4.7 in [2], we

obtain for δ =
√
Kε |ln ε| and δ0 = K ′ε |ln ε| with K ′ > K,

I5(i) > ε(ai− − ai+)2e−
SN (z∗i )

ε

√
2πε

N−2 |λN,0|√
| det(HSN(z∗i ))|

(1− A5

√
ε |ln(ε)|3/2). (6.41)

Equation (6.22) follows by minimizing along the (aj)j . �
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6.3. Uniform estimate of the mass of the equilibrium potential. We prove esti-
mates of the numerator of (6.15). Let us denote x∗l0 ∈ R

N to be the closest minimum to
φl0 in L2([0, 1]). We will prove an adaptation of Proposition 4.9 of [2].

Proposition 6.7. For all ε < ε0 and ρ, we have
∫

RN

h∗(x)dµN(x) =
(2πε)N√

detHSN(x∗l0)
e−

SN (x∗l0
)

ε (1 + ψ2(ε,N)) (6.42)

where |ψ2(ε,N)| < √
ε |ln(ε)|3/2 for all N > N0.

Proof. As the previous section, we define around the minimum x∗l0 ∈ R
N a neighborhood

CN
δ (x∗l0). In the local orthonormal basis of the minimum x∗l0 , the neighborhood CN

δ (x∗l0) is
defined by

CN
δ (x∗l0) =

{
y ∈ R

N : |yl| 6 δ
rl√
|λN,l|

, 0 6 l 6 N − 1

}
+ x∗l0 (6.43)

where (rl) is a sequence satifying
∑

l

r
3/2
l

l3/2
< ∞ and (λN,l)l are the eigenvalues in the

increasing order of HSN(x∗l0).
We need to estimate ∫

RN

h∗(x)dµN (x). (6.44)

Let us remark that for x ∈ ∂CN
δ (x∗), then one of the coordinate is precisely δrk/

√
λk,N

thus
SN(x) > SN(x∗) + δ2r2k − Cδ3 > SN(x∗) + cδ2. (6.45)

We consider S ′ such that the set {φ, S(φ) ∈]S(φl0), S ′]} contains no stationary point. Then
using Proposition 5.1, for all η small enough, there exists N0 such that for N > N0,{
x, SN (x) ∈ [SN(x∗) + 1

2
cδ2, S ′ − η]

}
contains no stationary point. We define the set A ={

SN (x) 6 SN(x∗) + cδ2
}
\ BNρ (x∗). Note also that for δ small enough, CN

δ (x∗) ⊂ BNρ (x∗).
Hence we decompose (6.44) in three parts:

∫

RN

h∗(x)dµN (x) = I8 +

∫

SN (x)>SN (x∗l0
)+cδ2

h∗(x)dµN(x) +

∫

A

h∗(x)dµN (x) (6.46)

To estimate the third integral we need a control on the equilibrium potential on the set A.

Lemma 6.8. For all ρ < ρ0 and η > 0 there exists ε0(ρ) such that for ε < ε0 and δ > 0,
let x ∈ A, we have

h∗N(x) = Px[τ
N
ε (BN

ρ (x
∗)) < τNε (BN

ρ (MN
l ))] 6 e−(S′−SN (x)−2η)/ε. (6.47)

Proof. By definition of the set A all the paths from x ∈ A to x∗ attain a height of S ′ − η

at least. To prove this fact, let us take a path from x to x∗, it must attain its maximum Ŝ
at some time t0. This maximum must satisfies Ŝ > SN(x∗) + cδ2, since if it is not the case
then from Equation (6.45), the path must stay in CN

δ (x∗) which contradicts the fact that
x is in A. Then the minimal path from x to x∗ must attain its maximum at a stationary
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point of height greater than SN(x∗) + cδ2 thus of height greater than S ′ − η. This gives us
an easy lower bound for the rate function on the set of transition from x ∈ A to x∗. Then
using the method from [25] and the uniform large deviation principle, we prove that

h∗(x) = Px[τ
N
ε (BNρ (x∗)) < τNε (BNρ (MN

l ))] 6 e−(S′−2η−SN (x))/ε (6.48)

uniformly in N . �

We get from (6.46)
∫

RN

h∗(x)dµN(x) 6 I8 +

∫

SN (x)>SN (x∗l0
)+cδ2

e−S
N (x)/εdx+

∫

SN (x)6SN (x∗l0
)+cδ2

e−(S′−2η)/εdx

(6.49)

where we have used the fact that h∗ is bounded by one for the second integral and the
previous lemma for the third integral. The integral I8 gives the main contribution and is
estimated as in the proof of Proposition 4.9 of [2] using the quadratic approximation of
the potential on CN

ρ (x∗l0). The second integral on the right-hand side is estimated as in
the proof of Lemma 4.6 in [2].

We bound the third integral by the volume of the set
{
SN(x) 6 SN(x∗l0) + cδ2

}
which is

bounded uniformly in N . In fact, from the bound on SN and the convergence of SN(x∗l0)
to S(φl0), we get for δ sufficiently small

{
SN(x) 6 SN(x∗l0) + cδ2

}
⊂
{∥∥∇Nx

∥∥2
2,N

+ ‖x‖22,N < N(S(φl0) + c)
}

(6.50)

which is a deformed ball. The computation shows that this quantity is uniformly bounded
in N .

We obtain the result since the order of magnitude of the two last integrals (O
(
e−(S′−η)/ε))

of (6.49) is much smaller than I8 = O
(
e−S

N (x∗l0
)/ε
)
. �

6.4. Finite Dimensional Formula. The finite dimensional Formula is now obtained
with a uniform control in the dimension. From Proposition 5.6, we take x∗ = φNl0 where

φNl0 is the unique minimum of SN such that

∥∥φl0 − φNl0
∥∥
L2 6

C

N

∥∥∥φ̂Nl0 − φNl0

∥∥∥
∞

6
C√
N

(6.51)

where φ̂Nl0 is the linear interpolation of φl0.

Proposition 6.9. Let τNε be the transition time from BNρ (φNl0 ) to BNρ (MN
l ), we have uni-

formly in N

EφNl0

[
τNε
]
=

2πe
SN (φNl0

)

ε

C∗(N, ε)
√
detHSN(φNl0 )

(1 + Ψ(ε,N)) (6.52)

where C∗(N, ε) is the equivalent conductance and

lim sup
N→+∞

|Ψ(ε,N)| 6 C
√
ε |ln ε|3/2 . (6.53)
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Proof. Inserting the estimates for the capacity (Proposition 6.2) and the numerator (Propo-
sition 6.7) in Equation (6.15) we conclude that

EνN [τ
N
ε ] =

2πe
SN (φNl0

)

ε

C∗(N, ε)
√
detHSN(φNl0 )

(1 + Ψ1(ε,N)) (6.54)

where lim supN |Ψ1(ε,N)| < C
√
ε |ln(ε)|3/2 and νN is a probability measure on ∂BNρ (φNl0 ).

Now we use Proposition 4.3 to replace the measure νN by the point φNl0 . For y ∈ BNρ (φNl0 ),
we have by definition

∥∥φNl0 − y
∥∥2
L2 < ρ2

∣∣SN(φNl0 )− SN(y)
∣∣ < ρ. (6.55)

Then from Proposition 5.6, we have N0 such that for N > N0

‖φl0 − y‖2L2 < 2ρ2
∣∣S(φl0)− SN(y)

∣∣ < 2ρ. (6.56)

Thus since V is regular, we obtain
∣∣∣
∥∥φ′

l0

∥∥2
L2 − ‖y′‖2L2

∣∣∣ < Cρ.

Let z = y − φl0, we have by integration by parts
∣∣∣
∥∥φ′

l0
+ z′

∥∥2
L2 −

∥∥φ′
l0

∥∥2
L2

∣∣∣ =
∣∣∣2
〈
φ′
l0
, z′
〉
+ ‖z′‖2L2

∣∣∣ =
∣∣∣−2

〈
φ′′
l0
, z
〉
+ ‖z′‖2L2

∣∣∣ < Cρ (6.57)

since φl0 is regular as a classical solution of a differential equation. Then we obtain by the
Cauchy-Schwarz inequality

‖z′‖2L2 6 Cρ+ 2
∥∥φ′′

l0

∥∥
L2 ‖z‖L2 6 (C + 2

∥∥φ′′
l0

∥∥
L2)ρ. (6.58)

Thus we get
∥∥y − φNl0

∥∥
∞ 6 ‖y − φl0‖∞ 6 C ′ ‖y − φl0‖H1 = C ′ ‖z‖H1 6 C ′′√ρ. (6.59)

Using Proposition 4.3, we get that for all N > N0

∣∣∣EνN
[
τNε
]
− Eφl0

N

[
τNε
]∣∣∣ 6 e

Ŝ−2η
ε (6.60)

which gives us (6.52) since the exponential asymptotics of (6.54) is greater than e
Ŝ−η
ε . �

6.5. Proof of Theorem 2.6. From Proposition 6.9 applied to the finite diffusion approx-
imation where the minima and saddle points are given by Proposition 5.6, we have

EφNl0

[
τNε
]
=

2πhNe
SN (φNl0

)

ε

C∗(N, ε)
√
detHSN(φNl0 )

(1 + Ψ(ε,N)) (6.61)

where the factor hN comes from the time change (Equation (2.30)). Using Proposition 5.2
(convergence of the eigenvalues) and Corollary 5.5 (convergence of the ratio of eigenvalues),
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the quadratic forms QN converges to Q:

1

hN
QN(a)

√
detHSN(φNl0 ) =

∑

φ∗Nl

∣∣λ−N (φ∗N
l )
∣∣

hN

√
detHSN(φNl0 )∣∣detHSN(φ∗N

l )
∣∣e

−SN (φ∗Nl )

ε (al+ − al−)
2

1

hN
QN(a)

√
detHSN(φNl0 ) −−−−→N→+∞

∑

φ∗l

∣∣λ−(φ∗
l)
∣∣
√

DetHφl0
S∣∣DetHφ∗l
S
∣∣e

−S(φ∗l)

ε (al+ − al−)
2

= Q(a)e−
S(φ∗l)

ε

√
DetHφl0

S. (6.62)

where φ∗N
l are the relevant saddle points given by Proposition 5.6. Then the minimizer

converges. For all ε, we get

1

hN
C∗(N, ε)

√
detHSN(φNl0 ) −−−→N→∞

C∗(φl0,Ml)e
−S(φ∗l)

ε

√
DetHφl0

S. (6.63)

Therefore, we obtain the result of Theorem 2.6 from Proposition 3.4.
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[14] Brunovský, P. and Fiedler, B.: Connecting orbits in scalar reaction diffusion equations. II. The

complete solution, J. Differential Equations, 81(1), 106–135, 1989.
[15] Cassandro, M., Galves, A., Olivieri, E. and Vares, M. E., Metastable behavior of stochastic dynamics:

a pathwise approach, J. Statist. Phys., 35(5-6), 603–634, 1984.



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 37

[16] Cassandro, M., Olivieri, E. and Picco, P.: Small random perturbations of infinite-dimensional dynam-

ical systems and nucleation theory, Ann. Inst. H. Poincaré Phys. Théor., 44(4), 343–396, 1986.
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